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Abstract: In light of the constantly increasing prevalence of allergic diseases, changes in dietary
patterns have been suggested as a plausible environmental explanation for the development and
progression of these diseases. Nowadays, much attention has been paid to the development of dietary
interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols
have been studied extensively as one of the most prominent natural bioactive compounds with well-
documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to
discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their
ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification;
however, these issues need to be elucidated in detail. This paper reviews the current evidence from
experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin,
resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms
of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune
response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and
therefore could be used either for preventive approaches or therapeutic interventions in relation
to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future
research directions are also discussed.
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1. Introduction

The prevalence of allergic diseases has increased dramatically over the past two to
three decades, and the second wave of the allergy epidemic is now affecting not only
the Western world but also developing countries [1–12]. Assuming that modifications in
genetic predispositions over such a time frame are unlikely, this dramatic upward trend
should rather be attributed to changing environmental factors. Dietary patterns and habits
seem to be a plausible environmental explanation since they have undergone significant
changes in the last decades [13–19]. Moreover, according to the “diet hypothesis”, nutrients
and food components may play a fundamental role in the development of allergic diseases
by influencing the immune system and allergic inflammation pathways either directly or
through the influence on gut microbiota, and thus may promote or protect against allergic
diseases [20–25]. Considering that diet is one of the most modifiable and readily accessible
interventions, the identification of nutrients, food components, or dietary patterns that
could be implemented as a preventive or therapeutic strategy for allergic disease seems to
be essential.

Recently, Vlieg-Boerstra et al. proposed an “immune-supportive diet”, a dietary
intervention that should be incorporated into the future comprehensive management (pre-
vention or treatment) of allergic diseases. Based on the existing evidence from observational
and interventional studies, the authors developed a sustainable diet that should include a
highly diverse range of fresh, whole, natural, or minimally processed foods and consist of
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at least 60% plant-based food such as fresh fruits, raw and cooked vegetables, whole grains,
legumes, fermented foods, herbs and spices as well as black and green tea, supplemented
with a moderate amount of nuts, peanuts, seeds, omega-3-rich oils, and animal-based prod-
ucts [26]. In addition to foods rich in dietary fiber, fermented foods, and foods naturally
rich in beneficial microbes, a prominent place among the recommended foods is given
to foods rich in flavonoids as well as polyphenols derived from tea, herbs, and spices,
assigned as one of the best anti-inflammatory food components according to the Dietary
Inflammatory Index [27]. The safety profile of polyphenols, their widespread distribution
in plants, frequent presence in the daily diet, and a broad spectrum of bioactivity, includ-
ing anti-inflammatory and immunomodulatory properties, make them a valuable and
promising dietary intervention in the prevention and treatment of allergic diseases [28–30].
Therefore, in recent years, polyphenols have gained great scientific interest and have been
subjected to extensive research in response to the growing demand for the development of
new preventive and therapeutic alternatives based on natural products [31–33].

Purposely, this review aims to summarize the current knowledge and research progress
in the field of the potential application of dietary polyphenols as natural, bioactive sub-
stances for the prevention and treatment of allergic diseases. We also provide insight into
the mechanisms underlying the potential antiallergic properties of phenolic compounds in
experimental and clinical settings and the resulting beneficial clinical effects of polyphenols
on food allergies and allergic respiratory diseases and offer direction for future research.

2. Characterization of Polyphenols

Polyphenols represent an extensive group of at least 10,000 chemical components
naturally occurring in the plant kingdom as secondary non-energetic, metabolic products
synthetized in response to free radicals or environmental stress factors [34]. In addition
to plant defense and protection, phenolic compounds have antimicrobial and antioxidant
activity, act as photoreceptors, determine the organoleptic properties, and are responsible
for the proper growth and reproduction of plants [35,36]. Polyphenols are abundantly
present in almost all plant-based foods; however, their main source in the human diet
are fruits, vegetables, seeds, cereals, and nuts, as well as processed foods such as olives,
tea, coffee, chocolate, red fermented vinegar, and red wine [34,37,38]. Depending on the
structural arrangements that affect absorption, metabolism, bioavailability, and biological
activity, polyphenols are divided into four primary classes: flavonoids, phenolic acids,
lignans, and stilbenes (Table 1) [35]. Flavonoids are the most common polyphenols, found
in over 4000 plants, and responsible for the attractive colors of leaves, flowers, fruits, and
vegetables [39]. Mostly studied flavonoids include quercetin, kaempferol, and myricetin,
occurring in high amounts in kale, onion, tomato, apples, berries, herbal tea and red
wine [40]. Other dietary important flavonoids include isoflavones present in soybeans;
anthocyanidins found in colored vegetables and fruits like red cabbage, eggplant, berries,
cherries; catechins present in high concentrations in green tea, red wine, and dark chocolate;
flavones like apigenin, luteolin, baicalin exist in high numbers in green and black tea, cereals,
aromatic herbs such as celery and parsley; naringenin and hesperidin highly present in
citrus fruits [38,41–43]. Phenolic acids (gallic, caffeic, ferulic acids), constituting almost
30% of total dietary polyphenols, are found in red fruits, onions, and black radishes [34].
Lignans are a small class of phenolic compounds mainly present in linseed, whole grains,
and cereals [38]. Among stilbenes, the most important for human health is resveratrol, the
main source of which are grape skins, red wine, peanuts, blueberries, and cranberries [44].
Polyphenols have been known since the 1930s when the new element extracted from
oranges was classified as a flavonoid; however, only extensive research over the last two
decades has provided data on the beneficial effects of the phenolic compound on human
health, confirming their antibacterial and antifungal, anti-inflammatory, antioxidant and
immunomodulatory properties, as well as antidiabetic, anticarcinogenic, anticoagulant,
and neuroprotective functions [28,29].
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Table 1. The list of main classes of polyphenols with anti-allergic properties and their dietary sources.

Polyphenols Classes Type Dietary Source Reference

Flavonoids

Flavonols
Quercetin
Kaempferol
Myricetin

apples, cherries,
berries, apricots,
cranberries, grapes,
mango peel,
onions, kale, tomatoes, broccoli, fennel,
capers, okra, rocket,
tea, red wine, beer, cocoa,
bee pollen

[30,40,43,45]

Flavones
Luteolin
Apigenin
Baicalein

lemon, tangerine, and orange peel and pulp
parsley, green pepper, celery,
artichoke, lettuce
watermelon, melon,
cantaloupe, apples
green and black tea

[39,45,46]

Isoflavones Genistein
Daidzein

legumes such as
soybean
green peas and black beans

[30,42,47]

Flavanones Hesperidin
Naringenin

citrus peel,
tomato peels,
seeds, spices
aromatic plants: mint, chamomile

[38,48]

Flavanols

Catechin
Epicatechin
Gallocatechin
Epigallocatechin

peels of grapes
peels of apples grapes, seeds, roasted
peanuts, almonds, pistachios
green tea leaves
chocolate, red wine,
rosemary

[30,38,41,44]

Anthocyanidins Cyanidin

grape skin, wine lees
grape pomace
blueberries, banana,
strawberries,
cherries, pears,
cranberries, plums,
beans, red cabbage

[38,39,49]

Non-flavonoids

Phenolic acids

Gallic acid
Ferulic acid
Caffeic acid
Curcumin

onions, black radishes,
red fruits,
citrus peels
grapes (seed and skin) potato peel
tea and fruit tea, coffee

[34,43]

Stilbenes Resveratrol grape by-products, red and white wine,
berry fruits, strawberries [44,50]

Lignans

grains and cereals: oat, wheat, rye, barley
strawberries, apricots
cabbage, broccoli, garlic
olive

[38,50]

3. Evidence from Epidemiological Studies

Evidence from several epidemiological studies investigating the relationship between
nutrition and allergic diseases has suggested that increased consumption of fruit and
vegetables is associated with a lower prevalence of food allergy, allergic rhinitis and
asthma [51–57]. A large observational study conducted in children demonstrated that
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higher consumption of fruit was associated with reduced risk of allergic rhinitis, atopic
dermatitis, and recurrent wheeze. The protective effect was observed in children who
consumed fruit at least three times per week as a part of the more traditional diet, while fast
food/burger eating significantly increased the rate of wheezing and allergic rhinitis [58].
Interestingly, the dietary-related reduction in the risk of developing allergic diseases was
particularly pronounced for a diet containing fruit such as apples, pears, carrots, tomatoes,
and citrus [54,59,60]. Three population-based case–control studies in Australia, Finland,
and the United Kingdom have shown that apple and pear intake was correlated with a
decreased risk of asthma and significantly lower frequency and severity of asthma symp-
toms and bronchial hypersensitivity [21,60–62]. Moreover, Willers et al. identified the
consumption of apples during pregnancy as a protective factor for the development of
childhood asthma and allergic diseases [63]. Recently published systemic review provided
an excellent overview of studies that investigated the nutritional interventions in asthma
patients showing the most consistent and promising results for certain components from
herbs, herbal mixtures, and extracts [64]. These beneficial, allergy-preventing effects as-
sociated with a diet rich in fruits, vegetables, and herbs have been attributed to the high
content of polyphenols, in particular, flavonoids in this dietary source [56,59,64,65].

The Mediterranean diet, characterized by high consumption of vegetables, cereals,
and olive oil, has also being widely investigated as a dietary pattern that may potentially
exert a beneficial impact on the pathogenesis of asthma and other allergic diseases. Recent
systematic reviews and meta-analysis have provided highly promising evidence suggest-
ing that adherence to the Mediterranean diet is inversely associated with the prevalence
of asthma, atopy, and food allergies [52,66,67]. Moreover, data from observational and
experimental studies have pointed out that olive oil, rich in polyphenols and fatty acids, as
a main component of the Mediterranean diet, may be responsible for the health benefits
of this dietary pattern, including the remarkable effectiveness against the development of
asthma and other allergies [68]. For instance, a recent population-based multi-case-control
study confirmed the correlation between olive oil consumption and reduced risk of current
asthma, indicating that each additional 10 g per day of olive oil intake reduces the risk of
asthma by a further 20% [69].

Interesting results regarding the correlation between prenatal dietary exposure to
different food components, mainly chemicals, and the risk of allergic diseases came from a
very recently published, large cohort study involving 1248 mother–child pairs observed up
to 8 years of age. Prenatal dietary exposure to resveratrol was associated with a lower risk
of both wheezing and allergic rhinitis, while most tested food chemicals increased the risk
of asthma, wheezing, and allergic rhinitis [70].

4. Potential Mechanisms of Action in the Prevention or Treatment of Allergic Diseases

The exact molecular and cellular mechanisms by which polyphenols may exert their
protective and therapeutic effects on allergic diseases remain uncertain and need to be
elucidated. However, it is suggested that the beneficial antiallergic activity of polyphenols is
related to their influence on three fundamental targets: (1) interaction with allergic proteins
and reduction in their allergenicity, (2) modulation of the local and systemic immune
response, and (3) impact on the gut microbiota composition and diversity (Figure 1).

4.1. Modification of Allergic Protein

The potential of dietary polyphenols to reduce food allergenicity is related to their
strong affinity for binding food proteins and the ability to form soluble and insoluble
protein–phenolic complexes with changed functional properties [71,72]. It has been pro-
posed that the conjunction of polyphenols with allergens present in food, which can be
both covalent and non-covalent, causes changes in the spatial structure of the allergenic
protein, thereby reducing the IgE-binding capacity to allergen that reflects its sensitization
potential [72,73]. Indeed, different polyphenols have been found to mask linear epitopes of
the allergen by conjugation with nucleophilic amino acids as well as change the conforma-
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tional epitopes of allergen by altering the secondary and tertiary structure of the protein,
hence lowering allergenicity [72,74–76]. Several studies focusing on the phytochemical
modification of β-lactoglobulin, the major allergen in cow milk, have demonstrated that
covalent conjugation with various polyphenols, namely rutin, ferulic acid, caffeic acid,
epigallocatechin (EGCG), chlorogenic acid lead to conformational changes resulting in
more unfolded structure of proteins that correlate with reduced IgG/IgE binding capac-
ity [77–82]. Furthermore, Pu et al. confirmed that several flavonoids, such as EGCG,
naringenin, myricetin, kaempferol, and quercetin, can also decrease the allergenicity of
β-lactoglobulin by noncovalent interactions, showing the highest inhibitory potency on
β-LG antigenicity for EGCG resulting in 73% reduction in IgE binding ability [83]. Similarly,
covalent conjugation between quercetin and ovalbumin changed the protein’s secondary
and tertiary conformation and caused the less folded structure and decreased allergen
stability, which declines the ovalbumin allergenicity tested in vitro as the ability to trigger
degranulation of effector cells and in vivo as the degree of the allergic immune response
and symptom score [84]. Moreover, the spectrometric structural analysis of profilin family
allergens after covalent and non-covalent binding with quercetin indicated the loss of the
α-helical structures in the conjugates by up to 40%, which, together with masking of the
antigenic epitopes, resulted in markedly lower allergenicity [85]. Recently, it has been
reported that conformational changes in the structure of shrimp tropomyosin caused by
covalent interaction with CA, EGCG, and polyphenols extracted from the algae Sargassum
fusiforme can lead to a significant reduction in allergenicity, which, in turn, alleviated
shrimp-induced allergic symptoms in vivo [86,87].
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Besides the ability for structural modification, polyphenols can also improve the over-
all functional properties of allergic proteins determining the allergenic potency, in particular
digestibility, which can be increased as a result of exposing a larger number of protein
cleavage sites, and thus faster and more effective degradation of allergen [71,88,89]. For
instance, the results from experimental studies have indicated that the covalent conjuga-
tion of EGCG and CA to peanut proteins significantly decreases allergenicity not only by
changing both linear and conformational epitopes but also by improving the digestibility
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of peanut allergen. The reduced peanut protein allergenicity as expressed by lower food
allergy responses including symptoms, frequency of mast cells, and damage in the intestine
was observed in vitro and in the food allergy mouse model [90–92]. Similar results, confirm-
ing the effect of polyphenols on the simulated gastric digestion and the spatial structure
of Ara h 1 peanut protein, were obtained for five major apple polyphenols (epicatechin,
phlorizin, rutin, chlorogenic acid, and catechin), indicating epicatechin as exerting the
strongest inhibitory effect on peanut allergy [93]. Additionally, the covalent binding of
wheat gliadin with chlorogenic acid and luteolin influenced the IgE/IgG binding capacity
by changing the protein conformation and transforming it into a more ordered structure,
as well as significantly improving the thermal stability and in vitro digestibility of allergic
proteins [94,95].

Finally, the binding of polyphenols to the allergen may induce protein aggregation
and cross-linking, leading to a reduction in allergen load, possibly through the loss of
some reactive allergens and a reduction in the accessibility of reactive epitopes [71,74,75].
On the other hand, the ability of polyphenols to form cross-linked protein polymers
causes the allergen binding to be effective, even if the number of polyphenol molecules
is less than the number of allergen reaction sites, and the resulting polyphenol–allergen
complexes are more stable and consequently more effective [71,75,96]. This phenomenon
was well illustrated in a great series of studies evaluating the structural and functional
properties of various soybean globulins after covalent binding with polyphenols such as
EGCG, chlorogenic acid, caffeic acid, gallic acid, and tannic acid [96–99]. In all cases, the
formation of polyphenol–soybean globulin conjugate and cross-linking of soybean proteins
resulted in structural changes hiding or destroying allergen epitopes as well as increased
UV absorption and protein digestibility, which, in turn, reduced IgE binding activity and
histamine release in vitro [96–99]. Interestingly, experiments on the murine model of allergy
revealed that covalent conjugation of soy 11S protein with EGCG and chlorogenic acid can
not only reduce the allergenicity of the protein and alleviate the allergy symptoms, but also
effectively induce the development of oral tolerance to soy allergen [99].

Considering all this evidence, dietary polyphenols have great potential to reduce
food allergenicity; therefore, it could be useful in developing hypoallergenic foods that
could potentially alleviate food allergy symptoms and/or prevent its development by
inducing tolerance.

4.2. Immunomodulatory Effects

In recent years, much attention has been paid to the mechanisms by which polyphe-
nols can exert immunomodulatory actions in allergic diseases. Evidence from in vitro
and in vivo studies has highlighted that polyphenols can influence allergic immune re-
sponse, exhibiting both stimulatory and inhibitory effects at two essential stages, during
the sensitization and the effector phase [30–33,100–107].

4.2.1. Sensitization Phase

The first stage in the sensitization phase is the presentation of the entering allergen by
dendritic cells (DCs) to naïve CD4+ T cells in draining lymph nodes, which leads to the
differentiation of naïve CD4+ T cells into allergen-specific Th2 cells producing proallergic
cytokines (IL-4, IL-5, IL-9, IL-13) [108]. It has been demonstrated that specific groups of
polyphenols can impede the antigen presentation process by affecting DC differentiation,
maturation, and capacity to activate T cell differentiation into allergic type Th2 cells [103].
Indeed, resveratrol impacts the differentiation of human DC from monocytes, as well as
inhibits the DC maturation leading to the induction of an immature phenotype [109,110].
The ability to suppress the phenotypic and functional maturation of murine bone marrow-
derived DC has been demonstrated for different polyphenols, such as quercetin, curcumin,
fisetin, silibinin, isoflavones, and blackberry polyphenols. In addition, these compounds
hinder efficient antigen presentation by downregulating the expression of co-stimulatory
molecules (CD83, CD80, CD86) and major histocompatibility complex (MHC) class II on
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the surface of DCs [111–115]. Other polyphenols, EGCG, and apigenin were found to not
only affect the DCs differentiation and decrease antigen uptake activity, but also provoke
apoptosis of DC-precursors and immature DCs [112,116]. Furthermore, polyphenols can
exhibit the regulatory effect on naïve CD4+ T cell priming, the next important event in
the sensitization phase. In fact, it has been shown that kaempferol and lycoricidine inhibit
the naïve CD4+ T cells activation and differentiation into Th2 effector cells by suppressing
TCR-mediated signaling cascades [117,118].

In addition to allergen presentation by DCs, cytokines such as TSLP, IL-25, and IL-33,
secreted in response to food- and aero-allergens by epithelial cells lining barrier sites, play
an important role in the allergic sensitization phase by activating DCs and innate lymphoid
cells type 2 (ILC2) and promoting Th2 cell development [119,120]. ILC2 are also highly
essential in the promotion of the Th2 immune response by producing IL-4, IL-13, and IL-5
in the early stage of antigen sensitization [121]. Various polyphenols such as quercetin,
curcumin, and baicalin have been identified as suppressing the expression and secretion of
TSLP and IL-33 both in atopic dermatitis (AD) models of human keratinocytes and AD-like
mouse models [122–124]. Moon et al. demonstrated that two other polyphenols, resvera-
trol and naringenin, inhibit the TSLP production and mRNA expression in human mast
cell lines [125,126]. The modulatory effect of quercetin on epithelium-derived cytokines
was also observed in experimental models of allergic airway inflammation as quercetin
significantly decreased IL-25, IL-33, and TSLP levels in BAL and expression of this cytokine
in lung tissue [127]. Recently, Fallopia japonica (Asian knotweed), a traditional medici-
nal herb rich in polyphenols such as resveratrol and flavones, was reported to target the
IL-33/TSLP signaling pathway, strongly reducing these cytokine levels in both nasal and
bronchoalveolar lavage fluid in the allergic rhinitis and asthma mouse model [128].

The proallergic cytokines, IL-4 and IL-13, produced by Th2 and ILC2 in the early stage
of the sensitization phase, prompt IgE isotype class-switching in B cells and their transfor-
mation into plasma cells secreting a huge amount of allergen-specific IgE that subsequently
link to high-affinity FcεRI receptors on the surface of mast cells and basophils, which leads
to an allergic sensitization state [129]. Polyphenols have been suggested to affect B cell
recruitment, maturation, and function; however, this effect has not yet been thoroughly
investigated and described [71,100,130]. On the other hand, the capacity to inhibit the
production of antigen-specific IgE in a dose- and time-dependent manner has been well
documented in in vitro and in vivo studies for a number of polyphenols such as curcumin,
rosmarinic acid, quercetin, ferulic acid, tea catechins (EGCG, ellagitannins and gallic acid)
and red grape polyphenols [104,131–136]. Zhang et al. illustrated the modulatory effect of
polyphenols with an example of dihydromyricetin, a natural flavonoid, which effectively
suppressed the sensitization phase by reducing the population of B cells and their produc-
tion of antigen-specific IgE as well as blocking the FcεRI–IgE interaction [137]. Similarly,
phlorotannins (i.e., eckol, dieckol) and tea catechins could interact with FcεRI by directly
binding to the α chain, thereby blocking the possibility of binding antigen-specific IgE to
FcεRI and thus suppressing the sensitization phase of mast cells [138–140]. Additionally,
evidence has been provided that phlorotannins, saponins, catechins, as well as quercetin,
kaempferol and resveratrol may contribute to the attenuation of the allergic reaction by re-
ducing the expression of the FcεRI receptor, which is crucial for the persistent sensitization
of MCs and their subsequent degranulation during the effector phase [105,140–143].

4.2.2. Effector Phase

During the effector phase, re-exposure to the same allergen leads to the cross-linking
of IgE bound to FcεRI on the surface of mast cells and basophils causing their activation
and degranulation with the release of reactive mediators triggering acute systemic allergic
reaction [119]. Recently, numerous in vitro and in vivo studies have investigated the mech-
anisms through which polyphenols may exert a modulatory effect on mast cells as major
effector cells of the allergic reaction [30,31,105]. In addition to aforementioned impact on
the expression of the FcεRI receptor and the FcεRI–IgE binding, different polyphenols,
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such as resveratrol, quercetin, procyanidins from cinnamon or apple extract, can suppress
mast cells activation via inhibiting the cross-linking of IgE by allergens on the cell sur-
face [106,144,145]. Moreover, the ability to stabilize mast cell membranes and thus suppress
their degranulation has been demonstrated for certain polyphenols, including quercetin,
phlorotannins, luteolin, and myricetin, which have been found to downregulate the ex-
pression of calcium channel proteins and inhibit calcium influx and intracellular calcium
elevation necessary for the degranulation in mast cells [107,138,146–148]. Indeed, these
phenolic compounds, along with curcumin, EGCG, rosmarinic acid, and resveratrol, exhib-
ited pronounced inhibitory effects on the release of histamine and β-hexosaminidase, which
are used as markers to evaluate the level of mast cell degranulation [104,107,141,144,146–151].
In addition, polyphenols have been reported as potent suppressor of both FcεRI mediated
protein kinases (Syk, Lyn, PLCγ, PKC) signaling cascade and the MAPK and the NF-κB
signaling pathway that are critical for the allergic reaction, resulting in attenuating se-
cretion of pro-inflammatory cytokines (IL-4, TNF-α) in and synthesis of lipid mediators
(prostaglandin D2, leukotrienes) [144,146,149,150,152–154]. Interestingly, Yong et al. con-
firmed the anti-allergic potential of stingless bee honey (Kelulut honey) in terms of mast
cell activation and degranulation; however, the inhibitory effect was strictly dependent on
the botanical source of honey as it was only indicated in the case of rich in polyphenols
honey obtained from bamboo and rubber trees, while honey poorer in polyphenols sourced
from noni and mango did not show such anti-allergic action [155].

Within the later effector phase, the overexpression of Th2-related immune response,
accompanied by increased production of Th2 cytokines, i.e., IL-4, IL-5, and IL-13, re-
sults in maintaining high antigen-specific IgE levels, recruitment of immune cells such
as eosinophils to inflammatory sites, increased mucus production, and initiates chronic
allergic inflammation causing tissue damage and remodeling [156]. A large number of
experimental studies using cellular and animal models have confirmed that polyphenols
exhibit immunomodulatory effects at various crucial stages of the effector phase, including
inhibition of the Th2 differentiation, downregulation of the Th2-related cytokine produc-
tion, reduction in the inflammatory cells infiltration, and, as a result, the suppression of
allergic inflammation. Most importantly, polyphenols were found to effectively restore
the Th1/Th2 imbalance through upregulating the Th1 pathways while hampering the
overexpression of Th2-mediated immune responses [30,100,130]. These effects have been
well documented for curcumin in several models of allergic diseases indicating its anti-
allergic action exerted by reducing the activity and proliferation of Th2 cells along with
decreasing the secretion of IL-4, IL-5 and IL-13, inhibiting the activation and infiltration of
macrophages, monocytes, neutrophils and eosinophils into inflammatory sites and shifting
the Th1/Th2 response towards the Th1 phenotype [124,132,157,158]. With particular em-
phasis on asthma models, kaempferol and rosmarinic acid attenuated airway inflammation
by lowering the synthesis of IL-4, Il-5, and Il-13 in the serum and bronchoalveolar lavage
fluid (BALF) and effectively reduced the recruitment of eosinophils into lung tissues, air-
way hyperresponsiveness and hyperproduction of mucus [136,159,160]. Evidence from
studies in a mouse model of allergic rhinitis indicated that flavonoids such as quercetin,
isoquercetin, myricetin, and luteolin alleviate nasal mucosa inflammation not only by
suppressing Th2 cell differentiation and cytokine secretion but also by promoting the Th1
pathway and thus maintaining Th1/TH2 balance [161–165]. Moreover, quercetin as well
as tea catechins (ellagitannins and gallic acid) have been shown as effective inhibitors of
ovalbumin (OVA)-induced allergic response, stimulating immune tolerance through the
Th1/Th2 modulation and induction of regulatory T-cells (Treg) in a mouse models of food
allergy [133,162].

Indeed, in addition to Th1/Th2 dysregulation, disturbance of the balance between
Th17/Treg cells contributes to the breakdown of immune tolerance and thus has a role in
the enhancement and progression of chronic allergic inflammation [166,167]. Recent experi-
mental studies provided strong evidence that certain flavonoids such as quercetin, luteolin,
cyanidin, and baicalin exert an anti-allergic effect by upregulating the number of Tregs
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and restoring the balance between Th17/Treg [164,168–170]. Similarly, curcumin showed
a modulatory effect on Th17/Treg imbalance, effectively reducing the differentiation of
Th17 cells while significantly increasing the number of Treg subtypes in a murine model of
asthma [171–173].

In conclusion, the abundance of data from in vitro experiments and studies in animal
models indicate that polyphenols possess the potential to prevent the development of
allergic diseases by modulating the allergic sensitization process, and their impact on
allergy effector cells during re-exposure may constitute a new therapeutic strategy.

4.3. Modulation of the Gut Microflora

Modulation of the gut microbiota represents another target mechanism by which
polyphenols may exert antiallergic effects and thus play a role in the prevention or treat-
ment of allergic diseases. The gut microbiome is intrinsically related to the maturation
and regulation of the immune response; thus, any disturbance of the gut-immune axis
resulting from dysbiosis, defined as alterations in the composition and diversity of the gut
microbiota, has been suggested to increase the risk of developing allergic diseases [174–178].
Recently, the large, deeply characterized CHILD cohort study provided evidence that de-
layed and insufficient infant microbiota maturation is strongly associated with an increased
risk of developing asthma, allergic rhinitis, food allergy, and atopic dermatitis at the age of
5 years and, importantly, an immature gut microbial composition preceded the diagnosis
of an allergic disease [179]. Regarding this evidence, it is plausible that dietary interven-
tions affecting the microbiome composition and function can be considered as an indirect
method of preventing allergic diseases. This may be particularly true for polyphenols, as
a major part of polyphenols passes through the small intestine unchanged and is only
metabolized and absorbed after reaching the large intestine, which may explain the certain
ability of polyphenols to modulate the gut microbiota [180]. In fact, polyphenols could
act as “prebiotics” to shape the composition of gut microbiota through promoting the
growth of beneficial genera including Bifidobacterium, Lactobacillus, and Akkermansia while
inhibiting the frequency of various pathogens and altering the ratio of Firmicutes to Bac-
teroides [181,182]. To name only a few of many examples, curcumin and resveratrol restore
intestinal dysbiosis by decreasing the relative abundance of Actinobacteria, Proteobacte-
ria, and Firmicutes/Bacteroidetes ratio and exhibit anti-inflammatory effects in animal
experiments [183–185]. Rutin and quercetin stimulated the populations of Bifidobacterium,
Bacteroides, and Lactobacillus and strongly inhibited Enterococcus and Fusobacterium ssp.; thus,
they promote gut homeostasis [186,187]. Other flavonoids such as procyanidin, green tea
catechins, and grape seed extract can also decrease the Firmicutes/Bacteroidetes ratio and
exhibit growth enhancement of Akkermansia, Lactobacillus plantarum, and Lactobacillus casei
to alleviate inflammation [188–192]. Similarly, gallotannins derived from mango peels and
cocoa-derived polyphenols were found to demonstrate prebiotic effect on the populations
of bifidobacteria and lactic acid bacteria [193–195].

The mechanisms by which this beneficial effect on gut microbiota influences local and
systemic immunity and promotes immune tolerance are now being studied. It has been
demonstrated that gut microbiota can significantly impact the maturation of the immune
system and can regulate the immune response by promoting the differentiation of Tregs,
decreasing the amount of circulating basophil and other allergy effector cells along with
stimulation of anti-inflammatory cytokine (IL-10, TGF-β) production [180,196–199]. Fur-
thermore, the gut microbiota is effective in maintaining the intestinal barrier function and
integrity and can increase mucin secretion, level of fecal IgA, and production of antimicro-
bial peptides, and thus can prevent allergen access to the systemic circulation [178,196–198].
Anthocyanins, for example, were found to be effective in the regulation of gut microbiota
composition by promoting the growth of beneficial bacteria (Lactobacillus and Odoribacter)
and lowering the abundance of pathogenic bacteria which was consequently associated
with the upregulation of intestinal barrier-related gene expression, increased secretion on
IgA and β-defensin and restoring Th1/Th2 imbalance [200,201]. Another in vivo study
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stated that the supplementation of baicalin to rats stimulated the population of SCFA-
producing species such as Butyricimonas spp., Roseburia spp., and Eubacterium spp. that in
turn promote intestinal immune tolerance by the downregulation of the Th17/Treg ratio
and strengthen the intestinal barrier by the upregulation of TJ protein expression [202].
Furthermore, dietary supplementation with ferulic acid may counteract the impairment of
the intestinal barrier and changes in gut microbiota observed after the LPS challenge in
piglets [203]. Additionally, cocoa-derived polyphenols were demonstrated to induce oral
immune tolerance in OVA-sensitized mice by changing gut microbiota composition, and
this tolerogenic effect could be due to a reduction in the percentage of bacteria belonging to
the Firmicutes and Proteobacteria phyla and an increase in the population of Tenericutes
and Cyanobacteria [204].

An increasing body of experimental and epidemiological data has suggested the exis-
tence of a cross-talk phenomenon known as the gut–lung axis, which may, at least partially,
explain the complex pathogenetic relationship between the gut microbiota and lung immu-
nity and its impact on the development of lung diseases such as asthma [205,206]. Although
the exact mechanisms need to be elucidated, one of the proposed pathways includes the
systemic transmission of gut microbiota-derived products and metabolites that act as signal-
ing molecules transferring intestinal microbial signals to the lung and regulating immune
lung homeostasis [205,207–209]. In particular, SCFAs have been suggested as important
immunomodulatory metabolites that function as a bridge between the microbiota and
the immune system, exhibiting a potential antiallergic effect by modulating the epithelial
barrier function and immune tolerance in the intestines, as well as both innate and adap-
tive immunity that is involved in the development of asthma [198,210,211]. Importantly,
polyphenols not only modify gut microbial composition, but also exhibit beneficial effects
on SCFA production and increase the level of circulating SCFAs [180,181]. For instance,
anthocyanins, phenolic acids, green and black tea catechins, grapefruit extract, containing
hesperidin and naringin, and apple polyphenols were proven to expand the abundance
of SCFAs-producing bacteria such as Akkermansia and increased the production of SCFAs,
especially acetate, propionate, and butyrate [181,212–216]. More recently, Alharris et al.
confirmed in a murine model of allergic asthma that resveratrol can ameliorate asthma
features, as expressed by improvement in pulmonary functions and reduction in inflamma-
tory cytokines in the lungs. In addition, significant upregulation of tight junction proteins
and reduction in mucin production was observed in the pulmonary epithelium which
was directly related to the stimulating effect of resveratrol on the growth of Akkermansia
mucinuphila in the lungs. A detailed analysis of gut microbiota has also revealed that resver-
atrol causes Bacteroides acidifaciens outgrowth accompanied by an increased production of
SCFAs, mainly butyric acids inducing the Tregs cells subtype which in turn can modulate
the adaptive immune response and attenuate asthma. The authors suggested that the
therapeutic effect of resveratrol on allergic asthma can be attributed to the alteration in
both lung and gut microbiome, highlighting the role of complex cross-talk between gut
microbiota and lung immunity [217].

Regarding this evidence, dietary polyphenols and their metabolites may modulate
the composition of gut microflora and intestinal barrier function, and consequently also
the local and systemic immune response; however, the potential implication of these
mechanisms in the prevention and treatment of allergic diseases in humans needs to
be resolved.

5. Polyphenols in the Prevention and Treatment of Food Allergy

Based on the evidence from experimental studies confirming the ability of polyphenols
to reduce food allergenicity, modulate systemic immune response, and modify the gut
microbiota, polyphenols seem to be dietary components potentially useful for the preven-
tion and treatment of food allergy. Besides the previously mentioned anti-allergic and
anti-inflammatory mechanisms, polyphenols can additionally modulate the local intesti-
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nal immune response, repair gastrointestinal mucosa, maintain its integrity, and improve
intestinal barrier function [188,189].

Numerous studies using animal models of food allergy have considered the impact of
various polyphenols on immune response which dictate the sequelae of allergic reaction
showing their potential to ameliorate food hypersensitivity and allergy symptoms in
sensitized mice [31]. In this respect, Zhang et al. indicated that tea catechins such as
epigallocatechin (EGC) and epigallocatechin gallate (EGCG) are effective in inhibiting
mast cell activation, specific IgE and Th2 cytokine production and reducing the degree
of pathological changes in the intestine in a model of mice sensitized by αs1-casein milk
protein [218]. Similarly, Chinese sweet tea polyphenols, particularly ellagitannins and gallic
acid, have been demonstrated as a potent inhibitor of hen egg ovalbumin-induced allergic
response in mice by modulating the Th1/Th2 balance, increasing the percentage of Treg
subtype and enhancing intestinal IgA secretions which clinically manifested as a reduction
in symptoms such as scratching, lethargy and gastrointestinal signs [133]. The remarkable
therapeutic effect against food allergy has also been reported for other polyphenols such
as resveratrol, myricetin, quercetin, curcumin, and polyphenols extracted from apple and
areca nuts that were found to not only mitigate food allergy symptoms including diarrhea,
decreased rectal temperature and anaphylactic reaction, but also suppress allergic response
by inhibiting the infiltration and degranulation of mast cells in the duodenum, decreasing
the serum level of specific IgE, restoring the Th1/Th2 imbalance and upregulating the
population of Treg [162,219–222]. Interestingly, a study in a rat model of food allergy
indicated that cocoa-derived flavonoids administered simultaneously with an allergen
during the induction phase can completely prevent the synthesis of specific IgE as well
as inhibit local and systemic immune response as evidenced by the suppression of Th2-
related cytokines released from a mesenteric lymph node and spleen cells, thus exhibiting
a protective effect against food allergy, although this impact was not sufficient to prevent
anaphylactic reaction after an oral allergen challenge [223].

In addition, several studies have presented evidence for the ability of polyphenols to
modulate local immune response by suppressing intestinal Th2-mediated immunity, affect-
ing TCR-mediated signaling cascades and inducing the differentiation and functionality of
Treg cells in lamina propria, resulting in the maintenance of immune tolerance which is
closely related to oral tolerance formation and the alleviation of food allergy [182,224–227].
Namely, it has been demonstrated that a diet enriched with polyphenols such as cocoa
flavonoids or apple condensed tannins can inhibit sensitization to an oral allergen and
can prevent the development of food allergies, while this protective effect was explained
by an increase in the percentage of γδ TCR T cells, the main subset of intraepithelial T
lymphocytes, which plays a crucial role in development of immune tolerance [104,130,225].

Considering that impairment of the intestinal barrier and increase in intestinal per-
meability have been known as the primary risk factors contributing to food allergy, it can
be assumed that dietary polyphenols due to their ability to enhancement the intestinal
barrier integrity and function might prevent the development or attenuate the symptoms of
food allergy by inhibiting allergen permeation. Indeed, evidence from in vitro and animal
studies has indicated that dietary polyphenols can alleviate intestinal barrier dysfunction
and reduce intestinal permeability through different mechanisms including the upregu-
lation of the intestinal tight junction (TJs) protein expression, increase in trans epithelial
electrical resistance (TEER) across a cellular monolayer, reduction in oxidative stress and
inhibition of signaling pathways such as nuclear factor kappa β (NF-κβ) and mitogen-
activated protein kinases (MAPK) involved in the inflammation process [182,228–230].
The main evidence on the beneficial effect on intestinal barrier function and integrity and
thus alleviation of food allergy symptoms are available for quercetin, luteolin, naringenin,
kaempferol, curcumin, green and black tea flavonoids, grape seed proanthocyanidin, wild
blubbery anthocyanins, and chlorogenic acids, tested in doses ranging from physiological
(i.e., epicatechin) to pharmacological concentrations (i.e., berberine) [188,189,225,230–234].
Recently, the capacity of polyphenols to prevent food allergy by regulating intestinal immu-
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nity and improving intestinal barrier function has been well illustrated by studies carried
out with olive oil, one of the main components of the Mediterranean diet, containing a
high concentration of polyphenols such as phenolic acids (ferulic and caffeic), lignans and
flavones (apigenin, luteolin) [68]. Two animal studies have demonstrated that olive oil
supplementation decreased the scores of food allergy symptoms such as scratching and
gastrointestinal response as well as improved the intestinal barrier integrity by repairing
ileum tissue villi, upregulation of TJ protein expression, and decreasing mucin production.
Moreover, olive oil reduced the Th2-cytokine level in lamina propria and alleviated the
degree of tissue inflammation, whereas it upregulated the Treg population and increased
the intestinal sIgA production, thus promoting the development of antigen tolerance and
the maintenance of intestinal immunity [226,235]. In addition, studies in weaning piglets
have revealed that apple and red wine polyphenols added to the starter diet can impact
gut barrier architecture and function as well as suppress the GALT activation in Peyer’s
patches in the ileum, resulting in the prevention of intestinal inflammatory response and a
faster development of immune tolerance [130,236].

Overall, there appears to be promising evidence suggesting that dietary polyphenols
may be an effective strategy for preventing and/or treating food allergies (Table 2). How-
ever, most findings are based solely on experimental studies and should be confirmed
by high-quality human clinical trials, which are still lacking. Such efforts are particularly
important because dietary interventions aimed at both preventing the initial stage of an
allergic reaction, such as sensitization to a food allergen, and effectively treating food
allergy symptoms are likely to exhibit an additional effect later in life by reducing the risk
of developing allergic rhinitis and asthma.

Table 2. Effect of polyphenols on food allergy (in vitro and in vivo studies).

Polyphenol Polyphenol Dose Study Type Results/Observations Side Effects Ref.

Epigallocatechin,
Epigallocatechin
gallate

50 mg/day extracted
from tea

In vivo BALB/c
mice model of αs1-casein
milk protein allergy

Significantly reduced levels of mast cell
protease, histamine, specific IgE
antibodies, and Th2 cytokines
Reduced degree of pathological changes
in the intestine

No data
available [218]

Ellagitannins
Gallic acid

0.1%; 0.5%; 1.0% tea
leaf extract:
gallic acid 1659.0
mg/100 g dry weight
ellagic acid 4622.7
mg/100 g dry weight

In vivo BALB/c
mice model of egg allergy

Reduction in symptoms such as
scratching, lethargy, and
gastrointestinal signs
Modulating the Th1/Th2 balance
Increased percentage of the
Treg subtype
Enhancing intestinal IgA secretions

No data
available [133]

Curcumin 3 mg, 30 mg/kg
Curcuma longa extract

In vivo BALB/c
mice food allergy model

Reduction in food allergy symptoms
such as decreased rectal temperature
and anaphylactic response
Inhibited IgE, reduced Th2-related
cytokines, and enhanced
Th1-related cytokine
Maintaining Th1/Th2 balance

No data
available [219]

Resveratrol
2.5–40 µg/mL
5, 10, 20 mg Abies
georgei extract

In vitro RBL-2H3 cells
In vivo BALB/c
mice

Reduced mast cell degranulation and
release of β-hexosaminidase
and histamine
Suppression in the development of
diarrhea upregulates the
rectal temperature
Decreased serum level of specific IgE,
mouse mast cell protease-1,
and histamine

No cytotoxic
effect [220]

Catechins
0.05% 0.1% areca nut
extract via
drinking water

In vivo BALB/c
mice

Attenuated OVA-induced allergic
responses, including diarrhea
Reduced infiltration and degranulation
of mast cells in the duodenum
Suppressed specific IgE production and
Th2 immune response

No data
available [222]
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Table 2. Cont.

Polyphenol Polyphenol Dose Study Type Results/Observations Side Effects Ref.

Flavonoids 100 g/kg cocoa
beans powder

In vivo Brown
Norway rats

Suppressed synthesis of specific IgE
Suppressed Th2-related cytokines
released from mesenteric lymph node
and spleen cells

No data
available [223]

Baicalin
50, 100, 200 µmol/L
20 mg/kg Scutellaria
baicalensis extract

In vitro Caco-2 cells
In vivo BALB/c
mice food allergy model

Reduction in food allergy symptoms,
serum IgE, and effector Th2 cells
Up-regulation of Treg
Enhancement of intestinal barrier
function through the regulation of
tight junctions

No data
available [224]

Anthocyanidins 1 and 5 mg/mL wild
blueberry extract In vitro Caco-2 cells

Enhancement of intestinal barrier
function and integrity of the intestinal
cell monolayer
Reduced intestinal permeability,
increased TEER, upregulation
of claudin-1

No data
available [232]

Theaflavins
0.02–0.20% black tea
theaflavin mixture
via food powder

In vivo BALB/c
mice

Reduction in food allergy symptoms:
the severity of diarrhea
Alleviating oxidative stress

No data
available [233]

Chlorogenic acid 50, 200 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice model of
shrimp allergy

Reduction in food allergy symptoms
Decreased IgE level
Regulation of AMPK/ACC/CPT-1
signaling pathway

No data
available [234]

Ferulic acid
Caffeic acid
Apigenin
Luteolin

1–3 g/kg/day
olive oil

In vivo BALB/c
mice

Repaired ileum villi, and upregulated
tight junction protein expression
Increased levels of Treg-related
cytokines (IL-10) in lamina propria
Decreased levels of Th2 cell-associated
cytokines in lamina propria
Reduced Burkholderiaceae and
increased Clostridiaceae in the
intestinal microflora

No data
available [226]

600 mg/kg/day
olive oil

In vivo BALB/c
mice

Reduction in food allergy symptoms
decreased the IgE level, increased
expression of intestinal tight junction
proteins (Claudin-1, Occludin),
increased levels of mucin 2
and β-defensin

No data
available [235]

6. Polyphenols in the Prevention and Treatment of Respiratory Allergy

Considering the fundamental role of allergic inflammation in the development and
progression of respiratory allergic diseases, it can be assumed that polyphenols, due to their
anti-inflammatory and immunomodulatory properties, may be beneficial in the prevention
and treatment of asthma and allergic rhinitis. In addition to anti-allergic actions, in vitro
studies suggest that polyphenols also can function as mucus anti-secretory agents and have
antioxidant and antifibrotic activities and thus target not only allergic inflammation, but
also the accompanying inflammation-induced oxidative stress and structural changes in
the airways, leading to airway hyperreactivity and airway remodeling [130].

6.1. Allergic Rhinitis

Among flavonoids, quercetin is the most frequently studied in relation to allergic
rhinitis due to its well-known anti-inflammatory and antihistamine properties [106,237].
The therapeutic effect of quercetin has been demonstrated in an experimental rat model
of allergic rhinitis, in which orally administered quercetin reduced the nasal symptoms
such as sneezing, rubbing and redness as well as alleviated allergic reaction by decreas-
ing IgE and Th2-cytokine production, inhibiting the inflammatory cells infiltration and
improving the imbalance of Th1/Th2 and Treg/Th17 [135,164,238]. In another experiment
on allergen-sensitized rats, quercetin has been suggested to attenuate the symptoms of al-
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lergic rhinitis through the inhibition of neuropeptide productions and suppression of nasal
neurogenic inflammation [239]. Further in vitro and in vivo studies have investigated the
exact mechanism of the antiallergic effect of quercetin by using human nasal epithelial cells
(HNEpC) and mice models of allergic rhinitis. Based on the obtained results, three potential
mechanisms for the inhibitory effect of quercetin on the development of nasal allergy-like
symptoms were proposed, which include reducing the production of NO by nasal epithelial
cells and increasing the ability of nasal epithelial cells to produce endogenous proteins such
as thioredoxin (TRX) and uteroglobin (Clara cell protein 10), which are known to suppress
inflammatory cell chemotaxis and downregulate Th2 cytokine responses [240–242]. Re-
cently, a study evaluating the therapeutic effect of onion extract, a rich source of quercetin,
in a mouse model of allergic rhinitis demonstrated that topical administration of onion extract
on the nasal cavity is efficacious in the treatment of allergic rhinitis symptoms by decreasing
the level of specific IgE and Th2 cytokines and reducing eosinophil infiltration of the nasal
mucosa [243]. The antiallergic properties similar to onion, resulting from equal content of
quercetin compounds, were also confirmed in the case of shallots, which additionally proved
to be effective in a preliminary clinical study in patients with allergic rhinitis. An oral shallot
supplement (3 g/day) used in combination with a standard dose of antihistamine (cetirizine)
improved symptoms such as sneezing, rhinorrhea, itchy nose, and eyes significantly more
effectively than placebo and cetirizine alone [244]. Previous clinical studies evaluating the
efficacy of enzymatically modified isoquercitrin in patients with Japanese cedar pollinosis
have indicated that isoquercetin exerts both therapeutic effects in improving nasal and ocular
symptoms during the cedar peak season and also prevents the development of symptoms
when treatment was started 3 weeks before the first day of pollen dispersal [245].

Furthermore, evidence from in vivo studies has revealed that other flavonoids, such
as luteolin, myricetin, naringenin, baicalin, rosmarinic acid, procyanidins, and catechin,
were also able to reduce nasal itching and sneezing frequency, infiltration of inflammatory
cells, nasal mucosa thickness and mucus secretion as well as decrease the levels of allergen-
specific IgE in murine models of allergic rhinitis [165,169,246–252]. These findings support
the potential therapeutic application of flavonoids in the treatment of allergic rhinitis;
however, the clinical studies are limited. Promising results come from a randomized clinical
trial assessing the therapeutic potency of tomato extract rich in naringenin, which indicated
that oral administration of the extract for 8 weeks markedly reduces sneezing, rhinorrhea,
and nasal obstruction and improves quality of life in subjects with persistent symptoms of
allergic rhinitis due to house dust mite allergy [253]. Another randomized clinical trial of
silymarin, a mixture of three flavonoids derived from milk thistle (silibinin, silydianine, and
silychristine), demonstrated its effectiveness in attenuating the severity of allergic rhinitis
symptoms [254]. A preliminary clinical study has shown that Pycnogenol®, a standardized
extract from French maritime pine bark containing a mixture of flavonoid compounds
(mainly procyanidins and catechins), alleviates the symptoms of allergic rhinitis in patients
allergic to birch pollen, and, importantly, the effectiveness of the extract was found to be
greater if treatment was initiated at least 5 weeks before exposure to the allergen [255]. Lertal®,
a novel oral nutraceutical containing quercetin, vitamin D3, and Perilla frutescens (a mixture
of rosmarinic, luteolin, and apigenin), was found to be effective in the reduction in allergic
rhinitis symptoms and the need to use symptomatic medications in children observed during
Phase II of a randomized, double-blind, placebo-controlled study [256]. Polyphenols extracted
from apples, which consist primarily of procyanidins, tannins, catechins, and epicatechins,
are also suspected to be effective in the treatment of allergic rhinitis as they have been
reported to inhibit mast cell activation and histamine release [257]. Two randomized clinical
studies confirmed that high-dose (at least 200 mg/day) consumption of apple polyphenols
significantly attenuates nasal symptoms including sneezing, rhinorrhea, and swelling of the
nasal turbinates in both patients with persistent allergic rhinitis allergic to house dust mites
and those with seasonal symptoms due to cedar pollen allergy [250].

Resveratrol is a non-flavonoid polyphenol considered to be a candidate for the treat-
ment of allergic rhinitis, owing to its promising immunomodulatory function. Recent
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in vivo studies in murine models of allergic rhinitis have clearly demonstrated that orally
administered resveratrol can reduce nasal symptoms, inhibit the secretion of proallergic
mediators and cytokines, and reduce the number of inflammatory cells in nasal tissue
samples [258,259]. These findings were confirmed in a randomized clinical trial conducted
in children with allergic rhinitis caused by pollen allergy, in which intranasal treatment
with resveratrol led to significant improvement in all nasal symptoms including itching,
sneezing, rhinorrhoea, and nasal obstruction as well as reduction in the use of symptomatic
medications [260]. Furthermore, a study in adults with allergic rhinitis supported the bene-
ficial effect of resveratrol that not only alleviated the nasal symptoms, but also ameliorated
the quality of patients’ lives [261].

Curcumin is another non-flavonoid polyphenol for which a favorable therapeutic effect
on allergic rhinitis has been reported in studies on animal models, pointing out that treatment
with curcumin resulted in suppression of allergen-induced allergic rhinitis symptoms and
histopathological features such as goblet cell metaplasia, infiltration of the inflammatory cell
and vascular proliferation in nasal tissue [150,172,262]. Wu et al. conducted a randomized,
double-blind study in allergic rhinitis patients, providing evidence that orally administered
curcumin is able to modulate immune response, remarkably mitigate the nasal symptoms
(sneezing, itching, rhinorrhea), and increase the nasal airflow, thus relieving the obstruc-
tion [263]. Recently, the safety of topical application of curcumin on the nasal mucosa has
been experimentally confirmed since curcumin applied at appropriate concentrations did not
exert adverse effects on the viability and proliferation of normal cells [264]. Moreover, an
experimental study in a mice model of allergic rhinitis has suggested that using curcumin
along with an allergen in the combined formulation results in better immunomodulatory
effects and enhances the effectiveness of immunotherapy [132]. Table 3 summarizes current
research that has been reported with regard to allergic rhinitis and different polyphenols.

6.2. Asthma

With reference to asthma models, resveratrol has been widely investigated in pre-
clinical studies and has been proven to exhibit therapeutic activity against asthma [265].
Numerous studies in a mouse model of asthma have demonstrated that oral administration
of resveratrol during the OVA challenge markedly reduced symptoms of airway hyper-
responsiveness by suppression of peribranchial inflammatory cells infiltration, reduction
in mucus production, relaxation of the respiratory tract smooth muscle and alleviation of
allergic inflammatory response [265–267]. Moreover, resveratrol effectively suppressed
airway remodeling observed in the course of asthma through ameliorating many structural
changes in the airways such as epithelial damage, thickening of epithelium and the subepithe-
lial smooth muscle, goblet cell hyperplasia, and hypertrophy [265,267–269]. Recently, Zhang
et al. confirmed the protective antioxidant effects of resveratrol in a house dust mite (HDM)-
induced asthma model, indicating that treatment with resveratrol prevented oxidative DNA
damage and apoptosis in bronchial epithelial cells exposed to HDM [270]. Despite promising
findings from in vitro and animal studies, research in human subjects is still lacking.

A considerable amount of data about effectiveness in asthma, both from preclinical
and clinical studies, have been provided for curcumin. In a mouse model of allergic asthma,
curcumin exerted a beneficial therapeutic effect concerning symptoms, airway inflamma-
tion, oxidative stress, and lung pathological changes (inflammatory cell infiltration and
mucus hypersecretion) as well as airway constriction and hyperreactivity, mainly through
inhibiting Th2 signaling pathways and inducible nitric oxide synthase and Treg cells stimu-
lation [158,173,271]. Importantly, evidence suggested that curcumin, by inhibition of the
Notch1–GATA3 signaling pathway, is capable of not only attenuating the severity of airway
inflammation, but also preventing the development of an allergic inflammatory response
when administered before the OVA challenge [272]. Curcumin has also been reported to be
efficacious in the reduction in airway remodeling in asthma, with the effect of curcumin on
histopathological features being dose-dependent and, at the highest doses, comparable to
that of dexamethasone [171,271,273]. Moreover, Wu et al. showed that supplementation
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of curcumin in asthmatic mice could increase the therapeutic efficacy of dexamethasone
and even prevent adverse effects caused by glucocorticoid treatment, suggesting potential
employment as an add-on therapy in asthma [171]. Indeed, a randomized control study
involving patients with mild to moderate asthma demonstrated significant enhancement
in the mean FEV1 values in patients treated with oral curcumin in addition to standard
therapy compared to a group receiving only standard inhaled therapy for asthma. Impor-
tantly, any significant side effects related to curcumin were not reported during the study,
indicating the great safety profile of high-dose curcumin supplementation (1000 mg/per
day) [274]. Next, in a double-blinded, placebo-controlled, randomized trial conducted in
children with persistent asthma, oral administration of encapsulated curcumin as add-on
therapy to standard treatment of asthma effectively improved disease control after 3 and
6 months, which was evident by less frequent nighttime awakenings and less frequent use
of short-acting β-adrenergic agonists when compared to placebo [275]. In addition, admin-
istration of nutraceutical dietary supplements containing curcumin with resveratrol, soy
phospholipids, zinc, selenium, and vitamin D in children with moderate to severe asthma was
found to mitigate allergic airway inflammation as expressed by decreased fractional exhaled
nitric oxide level [276]. Supplementation with high doses of curcumin (1500 mg twice daily)
for 12 weeks is currently being investigated in a phase 2 clinical trial to evaluate the effect on
moderate to severe asthma in adults; however, no data are available for review to date [277].

Table 3. Effect of polyphenols on allergic rhinitis (in vitro and in vivo studies).

Polyphenol Polyphenols Dose Study Type Results/Observations Side Effects Ref.

Quercetin

1, 10 and 50 mg/kg,
p.o. pure isolated
polyphenol

In vivo BALB/c
mice

Decreased sneezing, nasal rubbing, and
nasal redness frequency
Decreased level of NO, decreased IgE
and Th2-cytokine production

No data
available [135]

20, 35, or 50
mg/kg/day pure
isolated polyphenol

In vivo BALB/c
mice

Reduced rubbing and sneezing
Reduced IgE, histamine in serum
Decreased number of inflammation
cells and goblet cells in tissues
Inhibited Th1/Th2 imbalance and
Treg/Th17 imbalance

No data
available [164]

80 mg/kg pure
isolated polyphenol

In vivo
Sprague–Dawley rats

Decreased secretion, sneezing, and
itching
Decreased IgE and
Th2-cytokine production
Decreased eosinophil count in the
mucosa of the nasal turbinate

No data
available [238]

25 mg/kg pure
isolated polyphenol

In vivo
Sprague–Dawley rats

Inhibited nasal rubbing movements
and sneezing

No data
available [239]

20 mg/kg pure
isolated polyphenol

In vitro HNEpC
In vivo BALB/c
mice

Inhibited nasal symptoms and
increased TRX levels in nasal lavage
fluids

No data
available [240]

100.0 pM, 1.0 nM,
10.0 nM, 100.0 nM
pure isolated
polyphenol

In vitro HNEpC Reduced NO production
Downregulated Th2 cytokine responses

No data
available [241]

20, 40 µL red
onion extract

In vivo BALB/c
mice

Reduced allergic rhinitis symptom
Decreased levels of IL-4, IL-5, IL-10,
IL-13
Reduced eosinophil infiltration of
nasal turbinate

No data
available [243]

3 g/day shallot
oral supplement Clinical study Improved symptoms such as sneezing,

rhinorrhea, itchy nose, and eyes
No side effects,
well-tolerated [244]

100 mg/day pure
isolated polyphenol Clinical study

Improved nasal and ocular symptoms
Prevention of the development
of symptoms

No side effects [245]
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Table 3. Cont.

Polyphenol Polyphenols Dose Study Type Results/Observations Side Effects Ref.

Luteolin

10, 30 mg/kg pure
isolated polyphenol

In vitro PBMC
In vivo BALB/c
mice

Decreased allergic symptoms
and serum
HDM-specific IgE
Inhibition of IL-4 production

No side effects [247]

10 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Decreased nasal sneezing frequency,
nasal mucosa thickness, and levels of
specific-IgE and IL-17A, increased
IL-10 and Foxp3 expression,
suppressed Treg/Th 17 imbalance

No side effects [169]

Myricetin
50, 100, 200 mg/kg
pure isolated
polyphenol

In vivo BALB/c
mice

Protected against histamine challenge,
decreased serum level of total
and specific-IgE
Inhibition of mast cell degranulation,
regulation of Th1/Th2 balance

No data
available [165]

Naringenin

100 mg/kg pure
isolated polyphenol

In vivo
Sprague–Dawley rats

Decreased level of serum total IgE, IL4
and IL5
Reduced desquamation, erosion, and
eosinophilic cell infiltration in
nasal mucosa

No data
available [248]

360 mg per day of
tomato extract Clinical study

Significantly decreased sneezing score,
rhinorrhea, and nasal obstruction
Improved patients’ quality of life

No side effects [253]

Baicalin 100 µg/mL pure
isolated polyphenol

In vitro PBMC
In vivo BALB/c
mice

Restored Th17/Treg cell balance
Reduced infiltration of inflammatory
cells of the nasal lavage fluid,
improved nasal mucosal thickness and
mucus secretion

No side effects
mild laxative
effect

[249]

Silymarin (silibinin,
silydianine,
silychristine)

140 mg 3 times daily
mixture extracted
from milk thistle
Silybum marianum

Clinical study Significant improvement in clinical
symptom severity No side effects [254]

Pycnogenol
(procyanidins,
catechins)

50 mg French
maritime pine bark
extract

Clinical study Reduced symptoms of allergic rhinitis
in patients allergic to birch pollen No side effects [255]

Lertal
(mixture of quercetin,
rosmarinic, luteolin,
apigenin)

150 mg quercetin,
80 mg Perilla
frutescens extract

Clinical study
Reduction in allergic rhinitis symptoms
and the need to use
symptomatic medications

No data
available [256]

Procyanidins
Catechin
Epicatechin

50, 200, 500 mg/day
apple polyphenols
extract

Clinical study
Reduced nasal symptoms including
sneezing, rhinorrhea, and swelling of
the nasal turbinates

No data
available [250]

Resveratrol

5, 30, 50 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Decreased levels of histamine,
specific-IgE, IL-4, IL-5, IL-13, IL-17, and
inflammatory cell numbers (leucocytes,
eosinophils, lymphocytes, and
neutrophils)

No data
available [258,259]

100 µL Polygonum
cuspidatum extract Clinical study

Significant reduction in nasal
symptoms: itching, sneezing,
rhinorrhea, and obstruction as well as
the need to use antihistamine

No data
available [260]

100 µL Polygonum
cuspidatum extract Clinical study

Significant reduction in nasal
symptoms decreased IgE, IL-4, and
eosinophil levels in the blood,
improved the patient’s quality of life

No data
available [261]

Curcumin 500 mg/d pure
isolated polyphenol Clinical study

Significant reduction in nasal
symptoms (sneezing, itching,
rhinorrhea), and increase the nasal
airflow, suppression of IL-4, IL-8, IL-10

No side effects [263]

Based on the findings from in vitro studies indicating the immunomodulatory ac-
tivities of flavonoids, these polyphenolic compounds should also be considered as po-
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tentially effective preventive and therapeutic agents for asthma [251]. Indeed, several
studies in OVA-induced asthmatic mice have shown that luteolin, hesperidin, glabridin,
green tea catechins, and rosmarinic acid can significantly reduce both symptoms of bron-
choconstriction and allergic airway inflammation level by decreasing the Th2 cytokine
level, inflammatory cells infiltration, mucus secretion, interstitial fibrosis, and collagen
deposition, accompanied by alleviation of airway hyperresponsiveness and lung function
improvement [136,160,278–284]. Recently, in a house dust mite (HDM)-induced asthma
model, epigallocatechin gallate (EGCG), the major flavonoid extracted from green tea,
has been demonstrated to decrease specific IgE in the serum while increasing IL-10 levels
in the BALF, upregulate the amount of Treg cells and expression of Foxp3 mRNA in the
lung tissue, thus effectively ameliorating tissue injury, airway inflammation and airway
hyperresponsiveness [285,286]. Further, in vitro and in vivo studies have indicated that
dietary kaempferol, in addition to anti-inflammatory activities, can also exhibit inhibitory
effects on oxidative injury of lung epithelium and seems to be effective in the reduction in
fibrotic airway remodeling by suppressing bronchial wall and bronchial smooth muscle
thickening, leukocytes infiltration, goblet cell hyperplasia and alveolar hemorrhage observed
in the lung of OVA-challenged asthmatic mice [159,287–289]. Interestingly, evidence sug-
gested that kaempferol and EGCG have the potential either to prevent the development of
allergic airway inflammation when given orally 1 h before OVA sensitization or to treat OVA-
induced asthma symptoms when administered during the challenge to previously sensitized
mice [290,291]. Most in vivo studies carried out with quercetin have confirmed its beneficial
effect on immunological aspects of asthma, including reduction in white blood cells and
eosinophil recruitment into the BALF and lung tissue as well as regulation of the Th2/Th1
imbalance [102,127,140,292]. Quercetin was found to be dose-dependently effective in the
inhibition of immediate and late-phase asthma responses, and this activity seems to be similar
to that of cromolyn sodium and dexamethasone treatment [102,140]. The abovementioned
pine bark Pycnogenol® formulations have also been demonstrated as potential therapeutic
nutraceutical agents for the treatment of asthma. Three randomized, placebo-controlled,
double-blind trials involving asthmatic adults and children have revealed that treatment with
Pycnogenol® at a dose of 100 mg/day markedly improves the control of asthma symptoms
and lung function and reduces the need to use rescue inhaler medication [251,293,294].

In addition to those mentioned above, other polyphenolic compounds that demon-
strated a broad spectrum of anti-inflammatory and anti-allergic effects in vitro have recently
been intensively investigated in animal and clinical studies. For example, dietary supple-
mentation of BerriQi® Boysenberry and apple juice concentrate, containing high amounts
of anthocyanins, ellagitannins, and chlorogenic acids, in OVA-challenged asthmatic mice
can suppress immune cell infiltration in the lung, tissue damage, and mucus production as
a result of regulation of innate immune pathways [295]. Similarly, the chestnut inner shell
extract, as a rich source of gallic acid (a phenolic acid) and ellagic acid (a tannin), was found
to present the anti-asthmatic efficacy inhibiting the inflammatory response induced by OVA
challenge and relieving asthma symptoms, such as airway hyperresponsiveness and mucus
overproduction in the asthma mice model [296]. Therapeutic properties of magnolol, an active
polyphenol extracted from Magnolia officinalis, which is traditionally used in Chinese medicine
for the treatment of asthma and cough, were also confirmed in studies on OVA-induced
asthmatic mice models that showed significant suppression of allergen-induced airway hyper-
activity and inflammation along with reduction in lung tissue eosinophil infiltration, mucus
overproduction, and collagen deposition [297,298]. More recently, Yu and Li presented the
anti-asthmatic effects of punicalagin, a major polyphenol present in pomegranates, in an OVA-
induced experimental model of asthma [299]. Subsequently, a randomized, double-blind,
placebo-controlled trial was conducted in adults with persistent allergic asthma to assess
the therapeutic activity of a pomegranate extract which is known to exhibit three times the
anti-inflammatory and antioxidant activity of other polyphenol-rich food sources [300]. The
findings have revealed that patients in the intervention group receiving supplementation with
pomegranate extract (500 mg/day for 8 weeks) reported significantly fewer clinical symptoms,
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including daytime and nighttime shortness of breath as well as activity limitation due to
asthma symptoms when compared to the control group [301].

Considering all the mounting evidence, it is possible to expect that polyphenols can
constitute a promising adjuvant agent for treating or preventing respiratory allergic diseases
(Table 4). However, additional studies are necessary to fully understand their preventive
and therapeutic potential and evaluate their clinical effectiveness and safety.

Table 4. Effect of polyphenols on asthma (in vitro and in vivo studies).

Polyphenol Polyphenols Dose Study Type Results/Observations Side Effects Ref.

Resveratrol

30 mg/day pure
isolated polyphenol

In vivo BALB/c
mice

Inhibited OVA-induced airway
inflammation and mucus production

No data
available [266]

10, 50 mg/kg/day
pure isolated
polyphenol

In vivo BALB/c
mice

Reduction in inflammation, inhibition
of respiratory tract remodelling
progression
Reduced collagen production
Decreased IL-4, IL-5, IL-13,TGF-β1
and eosinophil level

No data
available [268]

100 mg/kg pure
isolated polyphenol

In vivo C57/Bl16
mice

Reduced inflammation and eosinophil
infiltration

No data
available [269]

100 mg/kg pure
isolated polyphenol

In vivo C57BL/6J
mice

Prevention of oxidative DNA damage
and apoptosis in bronchial epithelial
cells exposed to HDM allergen

No data
available [270]

Curcumin

10, 20 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Significant decrease in airway
inflammation and oxidative stress
Treg cell stimulation

No data
available [158]

120 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Reduced cytokine production (IL-4,
IL-5, IL-13)
Suppression in tissue eosinophilia and
mucus hyperproduction

No data
available [173]

200 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Reduced total cell influx and number
of lymphocytes, eosinophils, and
neutrophils in BALF
Reduction in airway inflammation

No data
available [272]

800 mg pure isolated
polyphenol

In vivo BALB/c
mice

Alleviation of lung inflammation
Significantly reduced number of
eosinophils and the hyperproduction
of goblet cells
Decreased Th2-related cytokines IL-4,
IL-5, and IL-13 and Th17 cytokine
IL-17A production

No data
available [171]

1000 mg/per day of
pure isolated
polyphenol

Clinical study
adults

Significant improvement in the mean
FEV1 values No side effects [274]

30 mg/kg/day roots
of Curcuma longa

Clinical study
children

Improved disease control: less
frequent nighttime awakenings, less
frequent use of short-acting
β-adrenergic agonists

No side effects [275]

Luteolin

0.1 mg/kg pure
isolated polyphenol

In vivo BALB/c
mice

Significant decrease in IL-4, IL-5, and
IL-13 in their lung homogenate and in
inflammatory cell infiltration in
lung tissue

No data
available [278]

50, 100 mg/kg
Artemisia argyi extract

In vivo BALB/c
mice

Reduced inflammatory cell counts,
Th2 cytokines, airway
hyperresponsiveness
and mucus hypersecretion

No data
available [279]

Glabridin
40 mg/kg Glycyrrhiza
glabra (licorice)
roots extract

In vivo Wistar rats

Decreased serum IgE levels and the
expression of TNF-α, IL-4, IL-5
Decreased inflammatory cells in the
blood and BALF

No cytotoxic
effect [292]
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Table 4. Cont.

Polyphenol Polyphenols Dose Study Type Results/Observations Side Effects Ref.

Epigallocatechin
gallate

20 mg/kg green
tea extract

In vivo BALB/c
mice

Reduced asthmatic symptoms, lung
inflammatory cell infiltration, level of
inflammatory factors, and increased
the percentage of Treg

No data
available [280]

5, 50 mg/kg green tea In vivo BALB/c
mice

Decreased airway
hyperresponsiveness, tissue injury,
airway inflammation,
eosinophil infiltrations
Reduced specific IgE in the serum
and BALF
Upregulated amount of Treg cells and
expression of Foxp3 mRNA in the
lung tissue

No data
available [285,286]

Kaempferol

1–20 µM
10–20 mg/kg E.
pungens leaf extract

In vitro BEAS-2B
cells
In vivo BALB/c
mice

Improvement in symptoms of asthma
Suppressed collagen deposition,
epithelial excrescency, goblet
hyperplasia, and fibrotic
airway remodeling
Decreased eosinophils and leukocyte
numbers in blood and BLAF

No cytotoxic
effect [282–289]

50, 250, 500 µg/mL
1, 10 mg/kg, p.o.
Crocus sativus extract

In vitro PBMC
In vivo BALB/c
mice

Reduced nitric oxide level and
inflammatory cytokines in the
lung tissue
Inhibited activation of NF-κB and
STAT-1 in macrophages
Reduced percentage of neutrophils
and eosinophils in bronchoalveolar
lavage fluid

No data
available [290]

Quercetin 25, 50 mg/kg pure
isolated polyphenol

Neonatal asthmatic
rats

Reduced total number of leukocytes,
eosinophils, level of TNF-α, IL-6,
nitric oxide synthesis and apoptosis,
regulation of the Th2/Th1 imbalance

No data
available [292]

Pycnogenol
(procyanidins,
catechins)

100 mg/day French
maritime pine
bark extract

Clinical study
adults

Improved disease control: less
frequent nighttime awakenings,
decreased number of days with PEF <
80% and days with asthma score > 1,
less frequent use of salbutamol and
additional asthma medication
Improvement in the severity of chest
symptoms, wheezing, dyspnea, and
daytime symptoms

No side effects,
well-tolerated [293]

1 mg/kg/day French
maritime pine
bark extract

Clinical study
children

Decrease in symptom scores, increase
in lung function FEV1, PEF

No side effects,
well-tolerated [294]

Anthocyanins,
ellagitannins,
chlorogenic acids

0.2 mg/kg human
equivalent
dose BerriQi®

Boysenberry and
apple juice
concentrate

In vivo BALB/c
mice

Significantly decreased OVA-induced
infiltrating eosinophils,
neutrophils, and
T cells in the lung, and
mucous production

No data
available [295]

Gallic acid,
ellagic acid 100, 300 mg/kg In vivo BALB/c

mice

Reduced inflammatory cytokines, IgE,
and number of inflammatory cells
Reduction in inflammatory cell
migration and mucus secretion in
lung tissue

No data
available [296]

Magnolol
12.5, 25, 50 mg/kg
Magnolia officinalis
extract

In vivo BALB/c
mice

Reduction in allergic inflammation,
decreased levels of Th2 and
Th17 cytokines
Suppression of allergen-induced
airway hyperactivity, airway
eosinophilic inflammation, airway
collagen deposition, and airway
mucus hypersecretion

No data
available [297,298]
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Table 4. Cont.

Polyphenol Polyphenols Dose Study Type Results/Observations Side Effects Ref.

Punicalagin 12.5, 25, 50 mg/kg
pomegranate extract

In vivo BALB/c
mice

Decreased inflammatory cell
infiltration into BALF
Reduced levels of Th2-derived
cytokines and specific IgE levels
Regulation of IL-4/STAT6 and
Notch/GATA3 signalling pathways

No data
available [299]

Ellagic acid 500 mg/day
pomegranate extract Clinical study

Improved clinical symptoms of
asthma like daily breath shortness,
nocturnal breath shortness, and
limitation of asthma-related activity
Reduction in eosinophil, basophil,
and neutrophil counts

No data
available [301]

7. Limitations and Future Challenges

In recent years, the effects of polyphenols, both as dietary components and supple-
ments, on allergic diseases have extensively been investigated, providing a large amount of
promising data. However, studying the biological impact of polyphenols, particularly in
humans, presents certain limitations and poses several challenges that need to be addressed
before translating the current knowledge into dietary or therapeutic recommendations.

The first, very difficult to avoid, limitation results from the fact that most polyphenols
are supplied from dietary sources, mainly fruits, and vegetables, with very variable content
of phenolic compounds which directly impact their distinct dietary intake [29]. This great
variability and lack of knowledge about the precise polyphenol concentration in the food or
their real intake creates a substantial challenge in terms of comparing the effects of different
polyphenols found in food sources and offering exact recommendations about the most
beneficial foodstuff. Therefore, further research is needed to establish and characterize
natural sources of polyphenols, adequately standardize the polyphenolic extracts, and,
most importantly, identify the active phenolic compounds and metabolites in the extracts
responsible for the antiallergic effects.

Given the wide spectrum of biological actions exerted by polyphenols, further in-
depth studies evaluating the mechanism of action, level of activity, and structure–activity
relationship are needed to ensure the targeted and effective practical application of phe-
nolic compounds. Furthermore, polyphenols need to be investigated in terms of routes
of administration, target tissues, adequate doses, as well as the most appropriate com-
position of phenolic extracts, as it appears that a combination of polyphenols may lead
to a more effective beneficial effect. The potential use of polyphenols as preventive and
therapeutic interventions requires preclinical studies testing a wide range of doses to
determine the maximum safe single dose and the long-term safety profile polyphenols,
owning to their natural origin, are essentially considered to be non-toxic and safe, which is
further supported by data from preclinical and clinical studies reporting good tolerabil-
ity of the evaluated phenolic compounds with the advantages of no adverse effects and
high safety [169,220,244–247,249,253–255,274,275,282–289,293,294]. However, the amount
of data available in this area is limited, and additional research is needed to assess the
overall toxicity, and content of toxic substances generated during the polyphenol extraction
process or food processing.

With regard to the ability of polyphenols to reduce allergenicity through conjunction
with allergic proteins, it should be mentioned that the binding modes between polyphenols
and proteins present in food depend on the food processing methods and include both
covalent and non-covalent interactions [71]. Generally, covalent allergen–polyphenol conju-
gates, formed under alkaline conditions or as an effect of enzymatic oxidation, should be
preferred because they are irreversible and more stable when compared to non-covalent
bonds that occur under acidic and neutral conditions [302]. In addition, polyphenol–protein
interaction might be affected by external factors such as pH, temperature, ionic strength,
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and salt concentration; therefore, the most favorable conditions should be established to
reduce allergenicity in food processing [74].

The bioavailability of polyphenols presents a major limitation challenging the studies
on their effectiveness in both allergic animal models and human subjects, as the quantities of
phenolic compounds present in the blood after ingestion are strongly influenced by several
factors [29]. Firstly, the intestinal absorption of polyphenols depends on the type of dietary
source and is affected by their low solubility in water; secondly, weak chemical stability
along with rapid and extensive metabolism in the liver and intestinal epithelium restricts
bioavailability [303]. Additionally, gut microbiota extensively metabolizes polyphenols
into microbial derivatives of various polyphenols, further complicating their absorption
and bioavailability and, consequently, their bioactivity, which may differ from the parent
compounds [304]. However, available information on the activity of these metabolites is
scarce so far, and more studies are needed to evaluate their potential activity and for a
better understanding of the bidirectional relationship between polyphenols and microbiota.
Further research should also focus on identifying a food source that ensures optimal
absorption of natural plant polyphenols as well as investigating the strategies that can
improve the bioavailability of phenolic compounds. Therefore, in recent years, several drug
delivery systems, such as lipid-based carriers, polymer nanoparticles, and conjugate-based
systems, are being investigated to enhance the bioavailability and efficacy of polyphenols
with promising results [305–307].

Furthermore, the bioaccessibility, bioavailability, metabolism, and biological effects
of polyphenols may be modified by interaction with other bioactive, even phenolic, com-
pounds in the food matrix [308]. These interactions and the presence of other bioactive
molecules in the diet must be taken into account when interpreting the results of experi-
mental studies mainly focusing on the beneficial effect of a single phenolic compound. This
caution also applies to the findings from clinical studies, as inter-individual variability in
responses to phenolic compounds has been observed depending on the dietary pattern [29].
Moreover, it was reported that the response to polyphenols intake may vary between
subject to subject as a result of individual microbiota composition and personal metabolic
status dependent on variations in metabolic enzyme activity [309]. Thus, it is important
to bear in mind these inter-individual discrepancies, as well as the potential influence of
age and ethnicity, when planning future research. This approach is needed in order to
both develop general recommendations regarding the consumption of polyphenols and
also determine the possibility of their future use in very promising personalized nutrition
or therapy.

However, since most studies are focusing on in vitro or murine models, there is
still an urgent need for large, well-designed human clinical trials and population studies
evaluating the clinical application potential of different polyphenolic compounds on food
and respiratory allergies. These studies should focus on determining the efficacy and safety
profile in various age groups and clearly establish optimum conditions and time windows
for polyphenol intake that lead to the best prophylactic and therapeutic effects.

8. Conclusions

With advancing knowledge of the important role of diet and nutrition in the devel-
opment and severity of allergic diseases, there is a growing amount of attention on the
anti-allergic benefits of natural food components that can enhance the dietary and thera-
peutic management of allergic diseases. Among the dietary ingredients, polyphenols have
come into the spotlight as the most extensive group of bioactive secondary metabolites
with a broad spectrum of biological actions, including widely proven anti-inflammatory,
antioxidant, and immunomodulatory properties. As reviewed, evidence from experimental
and clinical studies reported in the literature so far confirms the great potential of polyphe-
nols to be used either for preventive approaches (functional foods or supplements) or
therapeutic interventions in relation to allergic diseases. Although currently available data
offer exciting prospects for the future, further studies are needed to better understand their
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potential mechanisms of action, inter-individual differences in metabolism, and bioavail-
ability to ensure widespread and effective use of polyphenols as pharmaceutical agents or
dietary interventions. The future integration of polyphenol-rich foods into daily diets or in
the formulation of functional foods and supplements seems to be very plausible, especially
since progress in this area is driven by increasing public awareness about diet and the
growing tendency to self-medicate with health supplements.
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248. Şahin, A.; Sakat, M.S.; Kılıç, K.; Aktan, B.; Yildirim, S.; Kandemir, F.M.; Kucukler, S. The protective effect of naringenin against
ovalbumin-induced allergic rhinitis in rats. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 4839–4846. [CrossRef] [PubMed]

249. Chen, S.; Chen, G.; Shu, S.; Xu, Y.; Ma, X. Metabolomics analysis of baicalin on ovalbumin-sensitized allergic rhinitis rats. R. Soc.
Open Sci. 2019, 6, 181081. [CrossRef]

250. Pellow, J.; Nolte, A.; Temane, A.; Solomon, E.M. Health supplements for allergic rhinitis: A mixed-methods systematic review.
Complement. Ther. Med. 2020, 51, 102425. [CrossRef]

251. Tanaka, T.; Iuchi, A.; Harada, H.; Hashimoto, S. Potential beneficial effects of wine flavonoids on allergic diseases. Diseases 2019,
7, 8. [CrossRef]

252. Sugiura, Y.; Usui, M.; Miyata, M. The soothing effect of phlorotannins on cedar pollinosis in Cry j 1-stimulated mice. Biosci. Biotech-
nol. Biochem. 2023, 87, 649–652. [CrossRef]

253. Yoshimura, M.; Enomoto, T.; Dake, Y.; Okuno, Y.; Ikeda, H.; Cheng, L.; Obata, A. An evaluation of the clinical efficacy of tomato
extract for perennial allergic rhinitis. Allergol. Int. 2007, 56, 225–230. [CrossRef]

254. Bakhshaee, M.; Jabbari, F.; Hoseini, S.; Farid, R.; Sadeghian, M.H.; Rajati, M.; Zamani, M.A. Effect of silymarin in the treatment of
allergic rhinitis. Otolaryngol. Head Neck Surg. 2011, 145, 904–909. [CrossRef]

255. Wilson, D.; Evans, M.; Guthrie, N.; Sharma, P.; Baisley, J.; Schonlau, F.; Burki, C. A randomized, double-blind, placebo-controlled
exploratory study to evaluate the potential of pycnogenol® for improving allergic rhinitis symptoms. Phytother. Res. 2010, 24,
1115–1119. [CrossRef] [PubMed]

256. Marseglia, G.; Licari, A.; Leonardi, S.; Papale, M.; Zicari, A.M.; Schiavi, L.; Italian Study Group on Pediatric Allergic Rhinocon-
junctivitis; Cardinale, F.; Cherubini, S.; Giordano, P.; et al. A polycentric, randomized, parallel-group, study on Lertal®, a
multicomponent nutraceutical, as preventive treatment in children with allergic rhinoconjunctivitis: Phase II. Ital. J. Pediatr. 2019,
45, 1–6. [CrossRef] [PubMed]

257. Wruss, J.; Lanzerstorfer, P.; Huemer, S.; Himmelsbach, M.; Mangge, H.; Höglinger, O.; Weghuber, J. Differences in pharmacoki-
netics of apple polyphenols after standardized oral consumption of unprocessed apple juice. Nutr. J. 2015, 14, 32. [CrossRef]
[PubMed]

258. Li, J.; Wang, B.; Luo, Y.; Zhang, Q.; Bian, Y.; Wang, R. Resveratrol-mediated SIRT1 activation attenuates ovalbumin-induced
allergic rhinitis in mice. Mol. Immunol. 2020, 122, 156–162. [CrossRef]

https://doi.org/10.1111/jfbc.14505
https://doi.org/10.1016/j.fshw.2022.09.015
https://doi.org/10.3390/microorganisms9030572
https://www.ncbi.nlm.nih.gov/pubmed/33802175
https://doi.org/10.1186/s13223-020-00434-0
https://www.ncbi.nlm.nih.gov/pubmed/32467711
https://doi.org/10.1007/s00405-017-4602-z
https://www.ncbi.nlm.nih.gov/pubmed/28493194
https://doi.org/10.1186/s12906-016-1123-z
https://doi.org/10.3390/medicines5040124
https://doi.org/10.1155/2018/6097625
https://doi.org/10.3390/medicines10040028
https://doi.org/10.1038/s41598-019-39379-9
https://doi.org/10.12932/ap-300319-0529
https://doi.org/10.1155/2022/8191253
https://doi.org/10.4196/kjpp.2020.24.4.329
https://www.ncbi.nlm.nih.gov/pubmed/32587127
https://doi.org/10.3389/fphar.2020.00291
https://www.ncbi.nlm.nih.gov/pubmed/32256362
https://doi.org/10.1007/s00405-021-06769-7
https://www.ncbi.nlm.nih.gov/pubmed/33772317
https://doi.org/10.1098/rsos.181081
https://doi.org/10.1016/j.ctim.2020.102425
https://doi.org/10.3390/diseases7010008
https://doi.org/10.1093/bbb/zbad032
https://doi.org/10.2332/allergolint.O-06-443
https://doi.org/10.1177/0194599811423504
https://doi.org/10.1002/ptr.3232
https://www.ncbi.nlm.nih.gov/pubmed/20549654
https://doi.org/10.1186/s13052-019-0678-y
https://www.ncbi.nlm.nih.gov/pubmed/31319883
https://doi.org/10.1186/s12937-015-0018-z
https://www.ncbi.nlm.nih.gov/pubmed/25890155
https://doi.org/10.1016/j.molimm.2020.04.009


Nutrients 2023, 15, 4823 33 of 34

259. Zhang, W.; Tang, R.; Ba, G.; Li, M.; Lin, H. Anti-allergic and anti-inflammatory effects of resveratrol via inhibiting TXNIP-oxidative
stress pathway in a mouse model of allergic rhinitis. World Allergy Organ. J. 2020, 13, 100473. [CrossRef]

260. Miraglia Del Giudice, M.; Maiello, N.; Capristo, C.; Alterio, E.; Capasso, M.; Perrone, L.; Ciprandi, G. Resveratrol plus
carboxymethyl-β-glucan reduces nasal symptoms in children with pollen-induced allergic rhinitis. Curr. Med. Res. Opin. 2014, 30,
1931–1935. [CrossRef]

261. Lv, C.; Zhang, Y.; Shen, L. Preliminary clinical effect evaluation of resveratrol in adults with allergic rhinitis. Int. Arch. Allergy
Immunol. 2018, 175, 231–236. [CrossRef]

262. Fu, M.; Fu, S.; Ni, S.; Wang, D.; Hong, T. Inhibitory effects of bisdemethoxycurcumin on mast cell-mediated allergic diseases.
Int. Immunopharmacol. 2018, 65, 182–189. [CrossRef]

263. Wu, S.; Xiao, D. Effect of curcumin on nasal symptoms and airflow in patients with perennial allergic rhinitis. Ann. Allergy Asthma
Immunol. 2016, 117, 697–702. [CrossRef]

264. Ceylan, E.; Turgut Cosan, D.; Bayar Muluk, N.; Cingi, C. Investigation of the effect of the curcumin component as an alternative
to the local treatment of nasal diseases. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 39–43. [CrossRef]
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