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Abstract: Early epidemic reports have linked low average 25(OH) vitamin D levels with increased
COVID-19 mortality. However, there has been limited updated research on 25(OH) vitamin D and
its impact on COVID-19 mortality. This study aimed to update the initial report studying the link
between vitamin D deficiency and COVID-19 mortality by using multi-country data in 19 European
countries up to the middle of June 2023. COVID-19 data for 19 European countries included in this
study were downloaded from Our World in Data from 1 March 2020, to 14 June 2023, and were
included in the statistical analysis. The 25(OH) vitamin D average data were collected by conducting
a literature review. A generalized estimation equation model was used to model the data. Compared
to European countries with 25(OH) vitamin D levels of ≤50 nmol/L, European countries with 25(OH)
vitamin D average levels greater than 50 nmol/L had lower COVID-19 mortality rates (RR = 0.794,
95% CI: 0.662–0.953). A statistically significant negative Spearman rank correlation was observed
between 25(OH) vitamin D average levels and COVID-19 mortality. We also found significantly lower
COVID-19 mortality rates in countries with high average 25(OH) vitamin D levels. Randomized trials
on vitamin D supplementation are needed. In the meantime, the issue of vitamin D use should be
debated in relation to the ongoing discussions of national post-COVID-19 resilience against future
pandemics.

Keywords: population-based study; vitamin D; Europe; COVID-19; coronavirus; mortality; generalized
estimation equation model

1. Introduction

The COVID-19 pandemic is one of major public health concerns due to high mortality
rates and hospitalization, particularly among older individuals aged 65 years or above [1–4].
The impact of this pandemic is known to be disproportionate globally due to younger
people’s composition or proportion in populations. In the African region except for South
Africa, for example, where the majority of its population is under 65 years of age [5],
lower COVID-19 infection and mortality rates were observed compared to most countries
worldwide [6,7]. Previous studies have suggested that non-pharmaceutical interventions
aimed at controlling COVID-19 transmission, such as through universal lockdowns, were
known to be a primary means of reducing COVID-19 case incidence, despite the economic
consequences that followed [8–10]. By the middle of 2021, COVID-19 had affected nearly
180 million individuals worldwide, whereas the European region reported the highest
number of COVID-19 cases [11].
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Malnutrition is known to be one of the risk factors for increased mortality and mor-
bidity [12]. Nutrition and infectious diseases, for instance, are linked in several ways,
including in terms of the development of the human immune system [13]. Previous studies
suggested that certain micronutrients, such as vitamin D, played a role in various infectious
processes [14]. Vitamin D is a hormone metabolized and coordinated in the skin, liver,
and kidney [15]. Vitamin D plays a crucial role in regulating metabolic functions and
maintaining skeletal health [16]. Vitamin D is also known to be related to infection and
immunity as it can modulate innate and adaptive immune responses [17]. In addition,
previous studies have established the connection between vitamin D deficiency and the
risk of infectious diseases, including influenza [18,19]. There have been a few observa-
tional studies demonstrating a relationship between vitamin D deficiency and COVID-19
infection and mortality [20–23]. A previous systematic review and meta-analysis study
reported better clinical outcomes and mortality rate reduction among COVID-19 patients
after receiving replacement therapy with calciferol [24]. However, to date, there have been
limited major trials regarding vitamin D and COVID-19 infection. The most recent vita-
min D supplementation trials have shown improved liver function among 140 COVID-19
hospitalized patients [25].

There has been ongoing research on vitamin D and its impact on COVID-19 infection
and mortality in European countries as this region was one of the earliest regions to
conduct research on this topic of interest since the early period of COVID-19 back in
2020 [26–28]. Furthermore, initial population-based average levels of 25(OH) vitamin D
were collected during the first 2 months of the pandemic and found to correlate inversely
with COVID-19 mortality [26]. Nevertheless, there is limited updated research on 25(OH)
vitamin D deficiency and its impact on COVID-19 mortality. This study aimed to update
the initial report studying the link between 25(OH) vitamin D deficiency and COVID-19
mortality rates based on public records of the number of COVID-19 deaths from 1 March
2020, to 14 June 2023. This study included 19 European countries, namely: Portugal,
Spain, Switzerland, the United Kingdom (UK), Belgium, Italy, Germany, Austria, Ireland,
Greece, The Netherlands, France, Hungary, Czechia, Denmark, Norway, Finland, Sweden,
and Slovakia.

2. Materials and Methods
2.1. Data Sources and Variables

COVID-19 pandemic data for 19 European countries were retrieved from the “Our
World in Data” website, which provides real-time statistics on the COVID-19 pandemic,
including COVID-19 mortality cases worldwide [29,30]. This source contains data derived
from international institutions or statistical agencies, such as from the World Bank and
the United Nations [31]. Data from 1 March 2020, to 14 June 2023, were included in the
statistical analysis. We selected 19 European countries as a previous study on vitamin D
and COVID-19 mortality showed sufficient numbers with regard to population size and
the reported number of COVID-19 cases in order to perform suitable analyses with regard
to COVID-19 mortality [11].

Data on the prevalence of 25(OH) vitamin D deficiency in these 19 European countries
were extracted through the literature review that provided vitamin D data by the time
we started the analysis [26,32,33]. We used a cut-off of 50 nmol/L for 25(OH) vitamin D,
whereas the deficiency range of vitamin D is <50 nmol/L, as it is common in epidemiological
studies to make study findings more interpretable and easier to understand by public
health professionals [34,35]. The covariates or third variables that we included in our
multivariate model were extracted from “Our World in Data” and were selected based on
previous studies. These were population age structure [36,37] and year of the COVID-19
pandemic [38]. These variables were known to confound the association between vitamin
D and COVID-19 clinical outcomes, including COVID-19 mortality [36–38].
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2.2. Statistical Analysis

A Spearman rank correlation was used to evaluate the association between the total
number of COVID-19 deaths and the average 25(OH) vitamin D levels of the 19 European
countries at five different quantiles (Table 1). A jackknife empirical 95% confidence interval
for the Spearman’s correlation was further computed [39]. Whenever vitamin D data were
not available, the last observation carried forward was used to impute missing values [40].
In the case of Greece’s 25(OH) vitamin D average data unavailability, the missing values
were imputed in terms of the 25(OH) vitamin D median value of all other countries included
in the study [26].

Table 1. Data used in the statistical analysis in 19 European countries. Min. represents COVID-19
mortality on 1 March 2020 and max. represents COVID-19 mortality on 14 June 2023. The Qu.1st,
median, and Qu3rd, determined based on the distribution of population deaths due to COVID-19
over time, are summarized in terms of the cumulative COVID-19 mortality over the period from
2 March 2020, to 14 June 2023. The population of each country included all ages. Age 70+ represents
the proportion of the population aged 70 years and older in 2015, as stated in Our World in Data,
and 25(OH) vitamin D is presented as country-level data. Data are listed in ascending order by vit.
D values.

Country/
Location Min. Qu.1st Median Qu.3rd Max. Population Age 70+

Population
25(OH) Vit
D (nmol/L)

25(OH) Vit D
(ng/mL)

Portugal 1 6490 18,109 24,805 26824 10,270,857 14.924 39.00 15.63

Spain 1 53,606 89,004 114,946 121,416 47,558,632 13.799 42.50 17.03

Switzerland 2 7085 10,800 13,540 14,020 8,740,471 12.644 46.00 18.43

United Kingdom 3 89,820 166,690 206,036 226,977 67,508,936 12.527 47.40 18.99

Belgium 1 19,341 25,984 32,449 34,360 11,655,923 12.849 49.30 19.75

Italy 29 71,359 131,724 174,300 190,625 59,037,472 16.24 50.00 20.03

Germany 1 45,885 97,611 150,593 174,545 83,369,840 15.957 50.10 20.07

Austria 1 6979 13,658 20,513 22,518 8,939,617 13.748 56.00 22.44

Ireland 1 2228 5492 7927 8998 5,023,108 8.678 56.40 22.60

Greece 1 4507 15,519 32,077 37,052 10,384,972 14.524 57.95 23.22

The Netherlands 1 10,891 18,277 22,564 22,992 17,564,020 11.881 59.50 23.84

France 2 62,051 115,014 149,846 163,787 67,813,000 13.079 60.00 24.04

Hungary 1 8951 30,492 47,083 48,790 9,967,304 11.976 60.60 24.28

Czechia 1 11,242 30,707 40,807 42,806 10,493,990 11.580 62.50 25.04

Denmark 1 1140 2696 6833 8736 5,882,259 12.325 65.00 26.04

Norway 1 421 929 3958 5556 5,434,324 10.813 65.00 26.04

Finland 1 574 1199 5782 9798 5,540,745 13.264 67.70 27.12

Sweden 1 9229 14,999 19,796 24,391 10,549,349 13.433 73.50 29.45

Slovakia 1 1732 12,886 20,322 21,167 5,643,455 9.167 81.50 32.65

To improve the reliability of our study, we used the Poisson GEE model, which enabled
us to control for correlation using robust standard errors. This was carried out so that all
countries were assigned the same weight and were able to handle different numbers of
observations per cluster if one used simple correlation structures. In the first multivariate
analysis, a Poison generalized estimation equation (GEE) regression model was fitted with
the number of COVID-19 deaths as an outcome. The percentage of those aged 70+ years,
the binarized 25(OH) vitamin D, and the year of the COVID-19 pandemic variables were
used as fixed-effect predictors. The variable for the 19 European countries was used as a
cluster identifier. The population variable was added as an offset in the model. Relative
risks (RRs), 95% confidence intervals (95% CI), and corresponding robust z- as well as
p-values were computed. In the second multivariate analysis, a quasi-Poisson regression
model was performed with the total number of COVID-19 deaths as an outcome, and
percentage of those aged 70+ years and the average of 25(OH) vitamin D as predictors. The
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population variable was added as an offset in the model. The number of COVID-19 deaths
was predicted for different average 25(OH) vitamin D and population aged 70+ years
values. The root mean square error (RMSE) was computed as a measure of goodness of
fit as an “in sample” prediction error, since the usual criteria such as AIC or BIC are not
available for GEE. In a sensitivity analysis, Greece was excluded and the first multivariate
analysis was repeated with data from 18 European countries using a multivariate Poisson
GEE regression model. Lastly, four multivariate quasi Poisson regression models were fitted
with the Qu.1st (25th quantile), Median, Qu.3rd (75th quantile), and the total COVID-19
deaths (Max) as an outcome. The predictors were percentage of those aged 70+ years and
the average of 25(OH) Vitamin D, and the population variable was added as an offset in
each model. The linear predictor was plotted for aged 70+ and Vitamin D from the fitted
model in the next analysis.. All applied statistical tests were two-sided, and p-values < 0.05
were considered statistically significant. Statistical analyses were performed in R 4.2.3 [41].

3. Results

Table 1 shows the data used in the statistical analysis in 19 European countries listed
in ascending order by 25(OH) vitamin D values. The min. and max. values present the
observed COVID-19 death data from March 01, 2020, to June 14, 2023. The first quantile
(Qu.1st), median, and third quantile (Qu.3rd) data are summarized as the 25th, 50th
(median), and 75th quantile of COVID-19 deaths from 1 March 2020, to 14 June 2023,
respectively (Table 1).

Figure 1 shows the correlation association between the average 25(OH) vitamin D
level and the total COVID-19 mortality during the observational period. A statistically
significant moderate negative Spearman’s ρ correlation was observed between the average
25(OH) vitamin D level and the total number of COVID-19 deaths at the 25th quantile,
median, 75th quantile, and maximum.
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Figure 1. Estimated Spearman’s correlation between the total number of COVID-19 deaths with
average 25(OH) vitamin D level at min. (data from 1 March 2020) and max. (data up to 14 June 2023)
as well as at the 25th (Qu.1st), 50th (median) and 75th (Qu.3rd) quantiles. A negative and statistically
significant Spearman’s correlation was observed (black dots) as all computed 95% confidence intervals
(blue lines) do not include zero (red line).

Table 2 presents the result from the first fitted multivariate generalized estimation
equation Poisson regression model. Countries with a 25(OH) vitamin D average level
of >50 nmol/L (20 ng/mL) had lower COVID-19 death rates, as compared with countries



Nutrients 2023, 15, 4818 5 of 12

with 25(OH) vitamin D average levels of ≤50 nmol/L, after adjusting for population age
structure and year of the COVID-19 pandemic with an RR of 0.794 (95% CI: 0.662–0.953,
z-value = −2.478, and p-value = 0.013). The percentage of those aged 70+ was not sta-
tistically significant with an RR of 0.981 (95% CI: 0.926–1.038, z-value = −0.676, and
p-value = 0.499). There were lower COVID-19 mortality rates in 2021, 2022, and 2023, as
compared to 2020 (reference group). However, the difference was only statistically signifi-
cant in 2022 and 2023, as compared to the reference group in 2020 with an RR of 0.540 (95%
CI: 0.428–0.681, z-value = −5.214, and p-value < 0.001) and RR of 0.196 (95% CI: 0.154–0.249,
z-value = −13.204, and p-value < 0.001), respectively. The estimated RMSE for the fitted
GEE model in Table 2 was 102.9 compared to an RMSE of 103.9 for a fitted GEE model
without 25(OH)-vitamin D level, showing an improvement when the 25(OH) vitamin D
level was added to the model.

Table 2. Multivariate generalized estimation equation Poisson regression model with the percentage
of age 70+, binarized vitamin D, and year variables as fixed-effect predictors, and COVID-19 deaths
as outcome. The country variable was used as cluster identifier. The population variable was added
as an offset.

Multivariate

Variable RR (95% CI) Robust z-Value (p-Value)

25(OH) vitamin D ≤ 50 nmol/L 1.000 (Reference Group)

25(OH) vitamin D > 50 nmol/L 0.794 (0.662, 0.953) −2.478 (0.013)

Age 70+ years in population 0.981 (0.926, 1.038) −0.676 (0.499)

Year 2020 1.000 (Reference Group)

Year 2021 0.878 (0.720, 1.072) −1.274 (0.203)

Year 2022 0.540 (0.428, 0.681) −5.214 (<0.001)

Year 2023 0.196 (0.154, 0.249) −13.204 (<0.001)

Figure 2 shows the predicted COVID-19 cases from the second fitted multivariate
analysis. The predicted number of COVID-19 deaths is higher when the 25(OH) vitamin
D average is low as compared to countries with 25(OH) vitamin D averages >50 nmol/L.
This is applied to different percentages of those aged 70+ years. However, the predicted
number of COVID-19 deaths was higher for higher percentages of those aged 70+ years.
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deaths on 14 June 2023 as an outcome, and the 25(OH) vitamin D average and age 70+ as predictors.
The predicted number of COVID-19 deaths is higher when the 25(OH) vitamin D average level is low,
as compared to countries with 25(OH) vitamin D average levels greater than 50. This is applied for
different percentages of age 70+. However, the predicted number of COVID-19 deaths was higher for
higher percentages of the population aged 70+.

Table 3 presents our sensitivity analysis by excluding Greece in the repeated analysis
(data from 18 European countries) using a multivariate Poisson GEE regression model.
A similar result in terms of the association between vitamin D deficiency and COVID
mortality was shown.

Table 3. Multivariate generalized estimation equation Poisson regression model from 18 countries
(excluding Greece) with the percentage of age 70+, binarized vitamin D, and year variables as fixed-
effect predictors, and COVID-19 deaths as outcome. The country variable was used as a cluster
identifier. The population variable was added as an offset.

Multivariate

Variable RR (95% CI) Robust z-Value (p-Value)

25(OH) vitamin D ≤ 50 nmol/L 1.000 (Reference Group)

25(OH) vitamin D > 50 nmol/L 0.780 (0.653, 0.931) −2.750 (0.006)

age 70+ 0.977 (0.924, 1.032) −0.840 (0.401)

Year 2020 1.000 (Reference Group)

Year 2021 0.878 (0.715, 1.078) −1.241 (0.215)

Year 2022 0.525 (0.418, 0.659) −5.545 (<0.001)

Year 2023 0.204 (0.154, 0.269) −11.188 (<0.001)

Figure 3 presents the associations of vitamin D and age 70+ estimated by a multivariate
quasi-Poisson regression fitted model with COVID-19 mortality in four different quantiles. This
summarized the cumulative COVID-19 mortality over the period from 2 March 2020, to 14 June
2023) as an outcome, and vitamin D as a predictor, stratified by the age category of 70+ years.
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fitted model with COVID-19 mortality (at the Qu.1st, median, and Qu.3rd, and total death or max
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June 2023) as an outcome, and vitamin D as a predictor, stratified by age category of 70+ years. The
blue line shows the correlation plot and shaded area is the 95% confidence interval.
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4. Discussion

This study provided an updated linkage between 25(OH) vitamin D and COVID-
19 mortality rates. In this multi-country study, we found significantly lower COVID-19
mortality rates in countries with the highest average 25(OH) vitamin D levels. In addition,
we found statistically significant correlations between vitamin D and COVID-19 mortality
at different time points during our observation period. We used the quantile points that
were determined based on the distribution of population deaths due to COVID-19 over
time, to provide a more granular view of the data and to better understand the distribution
of deaths across different periods. In addition, we can account for the size of each country’s
population in our analyses, ensuring that our results are not biased towards countries
with larger populations. This allows us to make accurate comparisons of COVID-19
impacts across countries of varying population sizes. The 25(OH) vitamin D levels may
be linked to COVID-19 outcomes through several mechanisms, including innate and
adaptive cellular immunity [17], and renin–angiotensin system regulation [42]; therefore,
this suggests that increasing 25(OH) vitamin D concentration may improve the prognosis
of COVID-19. Whether vitamin D supplementation is an effective strategy to reduce the
risk of COVID-19 clinical outcomes should be further investigated in randomized trials. To
date, there are limited published papers on vitamin D and COVID-19 clinical outcomes
in randomized trials [43–46], in spite of the known role of vitamin D in the control of the
COVID-19 pandemic.

We found that European countries with 25(OH) vitamin D average levels greater
than >50 nmol/L had lower COVID-19 mortality rates, compared to European countries
with 25(OH) vitamin D levels of ≤50 nmol/L. Similar results were found when Greece,
the only country with no national data on vitamin D, was excluded in our sensitivity
analysis. A systematic review and meta-analysis study by Pereira et al. [45] showed
that vitamin D deficiency (<50 nmol/L) was related to higher COVID-19 mortality rates
(OR = 1.82, 95% CI = 1.06–2.58). In agreement with the previously mentioned study, a
previous hospital-based cohort study involving 185 patients in Germany also showed
that vitamin D deficiency was associated with a higher risk of COVID-19 mortality, af-
ter adjusting for age, gender, and comorbidities (HR = 14.73, 95% CI = 4.16–52.19 [47].
However, other systematic review and meta-analysis studies by Kummel et al. [43], in-
volving eight RCT studies, and Varikasuvu et al. [46], involving four RCT studies, did
not find a statistically significant association between vitamin D supplementation and
COVID-19 mortality (OR= 0.74, 95% CI = 0.32–1.71 and RR = 0.78, 95% CI = 0.25–2.40,
respectively). The previously stated findings were also consistent with a UK study that
utilized Biobank data involving 502,624 participants aged 37–73 years between 2006 and
2010. This study found that those with COVID-19 infection had lower 25(OH) vitamin
D levels (median = 43.8, IQR: 28.7–61.6), compared to those without COVID-19 infection
(median = 47.2, IQR: 32.7–62.7) [22]. However, the observed statistical significance disap-
peared after adjustment for confounders.

Our results from a quasi-Poisson regression model by plotting age 70+ years and
vitamin D with COVID-19 mortality at each point of the observation period showed positive
correlations between age and COVID-19 mortality. We selected the age 70+ population
and performed separate analyses using this age categorization, as this primary cutoff has
been widely used to reflect the significant demographic shift towards ageing populations
as well as to COVID-19 severity [4]. We also observed a negative correlation between
vitamin D and COVID-19 mortality in this age-stratified analysis. The possible mechanism
of this negative correlation can be described as follows: Vitamin D contributes to improved
COVID-19 clinical outcomes and lower mortality as it may enhance the body’s defense
against the SARS-CoV-2 virus by stimulating the production of antimicrobial peptides and
reducing the inflammatory response [48]. Next, vitamin D deficiency is often associated
with several comorbidities, like cardiovascular diseases and diabetes, that are known
to increase the severity of COVID-19 [49]. Therefore, adequate levels of vitamin D could
indirectly reduce COVID-19 mortality by mitigating these comorbidities. In agreement with



Nutrients 2023, 15, 4818 8 of 12

the study findings, a previous study found that 25(OH) vitamin D serum deficiency was
associated with a risk of death in elderly COVID-19 patients (mean age 76 ± 13 years) [50].
In addition, a previous study on vitamin D supplementation during or just before COVID-
19 among the elderly has shown promising results with a lower severity of COVID-19
and a better survival rate [51]. However, our results were different from findings from a
UK prospective study that revealed no significant difference in mortality rates between
deficient and replete groups [52]. A lower sample size in the specific at-risk age group
that led to the study being underpowered to detect differences may explain this finding,
compared to the finding in our study, as was stated in the discussion by the authors of this
conflicting study [52]. Studies to evaluate vitamin D supplements in elderly COVID-19
patients among the elderly population are therefore worthwhile. On one hand, the elderly
are known to be more susceptible to COVID-19 morbidity or mortality due to their poorer
health conditions and comorbid conditions [53]. On the other hand, the elderly population
has a well-recognized risk of lower 25(OH) vitamin D levels [54], they tend to have reduced
vitamin D levels due to higher medication use that may slow vitamin D production [55], as
well as having mobility issues that correspond directly to less exposure to sunlight [16].

We also found that most northern European countries, despite being less exposed to
sunlight, had lower COVID-19 mortality rates compared to the other European countries
included in this study. This is an interesting finding due to the fact that sunlight exposure is
known to be related to vitamin D production in the body [16]. Previous studies showed the
Scandinavian nations have the highest vitamin D levels and lowest COVID-19 mortality, at
least in part due to their attention to vitamin D public health education and food fortification
policy [56,57]. This raises the ongoing issue of a lack of active monitoring for the detection of
vitamin D deficiency in high-risk individuals, such as in the United Kingdom (UK). Despite
the fact that the UK Government regularly stated that the consequences of the COVID-19
pandemic would lessen during the summer months as vitamin D levels are high during
this season, there has been no funding for clinical trials of vitamin D supplementations,
especially after negative reviews that were mainly based on other data by PHE, SACN,
and NICE were taken into account [58]. The previously mentioned negative view focuses
attention on an ongoing controversy dating back to the 1950s, i.e., whether food should
be supplemented with vitamin D. Initially, as shown in the early years after the Second
World War, people in the UK showed great enthusiasm for vitamin D supplementation,
which led to childhood mortality due to vitamin D toxicity (hypercalcemia). As a result,
the UK has been more reluctant to sanction such supplementation, while it has been
increasingly used in the Scandinavian countries, such as Norway and Finland [59]. This
could explain why most of these countries, in our analysis, despite having less sunshine
than the UK, had lower RRs for COVID-19 mortality. The previously stated interpretation
was started by Meltzer et al., who studied the link between vitamin D levels and COVID-19
infection among 489 medical center patients in Chicago [60]. Having said this, maintaining
a healthy, balanced nutritional status is also important for individuals to overcome potential
COVID-19 infection [61]. In addition, the health benefits of safe outdoor activity were also
suggested [62], given that at least one of the health benefits of such activity is that it is one
of the best ways to raise vitamin D levels [63].

Our study has several limitations. First, this study is prone to residual confounding
factors, such as COVID severity and comorbidity [64]. However, a previous study showed
that vitamin D deficiency was very prevalent (93.1%) among severe–critical COVID-19
patients, and the 25(OH) vitamin D average was significantly lower among severe–critical
COVID-19 patients, compared to moderate COVID-19 patients [65]. The Boston group
supported the previously mentioned findings and suggested a link between vitamin D
deficiency and increased severity of COVID-19 [66]. In addition, due to vitamin D supple-
mentation in northern European countries [67], the latitude variable was not included in
the statistical analysis. Next, the countries’ data used in this study are also not necessarily
representative, depending on the 25(OH) vitamin D data collection in each country. Due to
the observational nature of our study, we could not provide mechanistic information with
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regard to the effect of vitamin D supplementation and COVID-19 mortality. Consequently,
our study findings could not imply causation, despite an observed correlation between low
vitamin D levels and high COVID-19 mortality. To the best of our knowledge, there is no
data from the UK on the effect of vitamin D supplementation, despite an ongoing debate
since March 2020 regarding vitamin D deficiency that disproportionally affects the black,
Asian and minority ethnic (BAME) population as reflected by excess COVID-19 mortality
in this specific community [68]. Next, no COVID-19 data by gender or race/ethnicity were
available at the time of this analysis, which is considered a limitation in the statistical
analysis. However, it should be noted that the majority of these 19 European countries
are white Caucasians. Lastly, our study is subject to residual confounding factors, such as
COVID-19 severity [35,69] and comorbidity [22].

5. Conclusions

Our study showed a strong and statistically significant association between vitamin
D deficiency (≤50 nmol/L) and the total number of COVID-19 deaths in 19 European
countries from 1 March 2020, to 14 June 2023. We further found significantly lower COVID-
19 mortality rates in countries with high average 25(OH) vitamin D levels. However,
this population study cannot suggest the role of vitamin D during COVID-19 to allow
us to make any clinical decisions. Longitudinal studies and randomized control trials to
better reveal the role of vitamin D and COVID-19 clinical outcomes are warranted. In
the meantime, the issue of vitamin D use should be debated in relation to the ongoing
discussions of national post-COVID-19 resilience against future pandemics.
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23. Basińska-Lewandowska, M.; Lewandowski, K.; Horzelski, W.; Lewiński, A.; Skowrońska-Jóźwiak, E. Frequency of COVID-19
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