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Abstract: A high-fat diet (HFD) during pregnancy promotes fat accumulation and reduces docosahex-
aenoic acid (DHA) levels in the liver of the offspring at postnatal ages, which can depend on fetal sex.
However, the prenatal mechanisms behind these associations are still unclear. Thus, we analyzed if
an HFD alters DHA content and the expression of molecules related to fatty acid (FA) metabolism in
the fetal liver. Female C57BL/6 mice were fed a control diet or HFD for 4–6 weeks before pregnancy
until the gestational day (GD) 17.5. A subgroup of each diet received DHA (100 mg/Kg) orally from
GD 6.5 until 16.5. On GD 17.5, maternal livers, placentas, and livers from male and female fetuses
were collected for FA profiling with gas-chromatography and gene expression of molecules related
to FA metabolism using qPCR. PPAR-α protein expression was evaluated using Western blot. The
gene expression of placental FA transporters was also assessed. An HFD increased eicosapentaenoic
acid (EPA) and decreased DHA levels and protein expression of PPAR-α in the fetal livers of both
sexes. DHA increased the gene expression of Ppara, Cpt1, and Acsl1 in the livers of female fetuses.
Therefore, an HFD reduces DHA levels and PPAR-α, a master regulator of gene expression, in the
fetal liver. In turn, the livers of female fetuses seem to be more sensitive to DHA action.

Keywords: pregnancy; high-fat diet; docosahexaenoic acid; maternal liver; placenta; fetal liver

1. Introduction

Independent of glucose levels, maternal lipids contribute to excess fetal fat accretion
and adiposity at birth in pregnancies involving people with obesity [1]. Moreover, there is
evidence that a high maternal body mass index is related to lipid accretion in the livers of
newborns, suggesting an early start in the events involving the genesis of non-alcoholic
fatty liver disease (NAFLD) [2]. This condition is considered the hepatic manifestation of
metabolic syndrome, increasing the risk of type 2 diabetes and cardiovascular diseases
threefold and eightfold, respectively [3]. Its origin involves multiple hits, starting with
hepatic lipid accumulation that can lead to hepatocellular damage and, finally, to hepatic
failure, cirrhosis, and cancer [4]. Sex dimorphism seems to be an important factor for the
predisposition to NAFLD being more prevalent in males than females in childhood and
adulthood [5,6].

Experimental animal models have shown that gestational obesity and obesogenic diets
promote hepatic fat accumulation, affecting lipid metabolic pathways, such as de novo
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lipogenesis and β-oxidation (FAO), pointing out that alterations in maternal metabolism
and fetal bioavailability of fatty acids (FAs) contribute to the development of metabolic
disorders in the offspring [7–9]. In adults, it has been observed that hepatic peroxisome
proliferator-activated receptor-alpha (PPAR-α) plays a central role in maintaining hepatic
lipid metabolism homeostasis because it regulates the expression of thousands of genes
involved in lipogenesis, such as the sterol regulatory element binding protein 1c (Srebf1)
transcriptional factor, acetyl-CoA carboxylase (Acaca), and fatty acid synthase (Fasn), in
addition to genes related to FAO, including long-chain acyl-CoA synthetase (Acsl), carnitine
palmitoyltransferase 1 (Cpt1), and acyl-CoA oxidase (Acox) [10]. Interestingly, in adults, it
has been observed that the depletion of n-3-PUFA may alter the activation of peroxisome
proliferator-activated receptor-alpha (PPAR-α), determining an imbalance in fatty acid
β-oxidation in favor of its accumulation in the liver [11].

In the fetal liver, it has been described that low CPT-1 activity and scarce β-oxidation
make it susceptible to lipid excess [12]. Interestingly, gestational obesity induced by a
saturated-fat-rich diet decreased gene expression of Cpt1 and Acox in the livers of male rat
fetuses [13]. On the other hand, the consumption of a high-fat diet (HFD) enriched with
dietary n-3 polyunsaturated fatty acids (PUFAs), such as α-linolenic acid (C18:3n-3, ALA),
eicosapentaenoic acid (C20:5n-3, EPA), and docosahexaenoic acid (C22:6n-3, DHA) in dams,
leads to a reduction in lipid accumulation in the fetal liver, suggesting that the composition
of the maternal diet is fundamental in the prevention or worsening of this condition [14].

Long-chain PUFAs (LCPUFAs), such as arachidonic acid (C20:4n-6, AA) and DHA,
are critical for fetal growth during pregnancy since they participate in the formation and
maturation of the brain and other organs during fetal development. In this regard, the
supply of FA to the fetus depends entirely on maternal consumption, placental transport,
and metabolism [15]. The maternal liver is central for understanding fetal FA bioavail-
ability because it synthesizes triglycerides that are packaged into VLDL, which bind to
receptors in the placental membranes and are transferred to the fetus [16–19]. Both obesity
during pregnancy and rodent animal models of maternal obesity induced by an HFD show
increased placental expression of proteins associated with FA transport and metabolism,
suggesting an abnormal ability to transfer FA [18,19].

Therefore, we hypothesize that an obesogenic diet can alter the FA content, mainly
DHA, and reduce the protein expression of PPAR-α, affecting the gene expression of
molecules related to lipid metabolism in the fetal liver. Then, we analyzed the modifications
induced by an HFD on FA composition in the maternal liver, placenta, and fetal liver from
male and female offspring. In addition, we explored if the DHA content is associated with
the expression of PPAR-α in fetal livers.

2. Materials and Methods

Animals: Thirty-two eight-week-old C57BL/6 female mice were fed with a control
diet (CD, RMH 3000 LabDiet, containing 15% of kilocalories (Kcal) in fat, 59% of Kcal in
carbohydrates, and 26% of Kcal in protein) or HFD (D12341, ResearchDiet, containing 45%
of Kcal in fat, 35% of Kcal in carbohydrate, and 20% of Kcal in proteins). The animals were
kept in the Central Bioterium of the Faculty of Medicine at the University of Chile in a
temperature-controlled room at 20 ± 1 ◦C, in 12 h light and 12 h dark cycles, with access to
water and food ad libitum. The Institutional Ethics Committee at the University of Chile
(CICUA) approved all protocols for the care and use of animals (Protocol CBA-1040).

Experimental design (Figure 1): Female mice were fed the respective diets for
4–6 weeks until HFD animals gained 20% of their initial body weight. Then, the estrous
cycle was monitored via vaginal smears daily. On the morning of the proestrus phase,
female mice were placed with male mice with proven fertility. The next morning was
considered as gestational day (GD) 0.5. The body weight and food intake were recorded
weekly. From GD 6.5 until GD 17.5, a subgroup of CD and HFD dams was supplemented
orally with DHA (D2534, Sigma Aldrich, St. Louis, MO, USA) at a dose of 100 mg/Kg/day
dissolved in sunflower oil (sc-215936, Santa Cruz Biotechnology, Dallas, TX, USA) as the
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vehicle conforming CD-DHA (n = 7) and HFD- DHA (n = 7) groups, respectively. Control
groups received isovolumetric amounts of sunflower oil conforming CD-vehicle (n = 6) and
HFD-vehicle (n = 8). At GD 17.5, an oral glucose tolerance test was performed in all dams.
Then, they were anesthetized with isoflurane and euthanized via cardiac puncture. Fetuses
and placentas were obtained via laparotomy, dried, and weighed. Then, the fetal liver was
removed and weighed. In total, forty-two (15 females and 27 males) fetuses were obtained
in CD-vehicle group, 44 (25 females and 19 males) in CD-DHA group, 50 (20 females and
30 males) in HFD-vehicle group, and 46 (23 females and 23 males) in HFD-DHA group.
All analyses were performed in one or two fetuses per sex in each litter to avoid the litter
effect. Maternal liver and adipose tissues were also collected and weighed. Each organ was
snap-frozen in liquid nitrogen and stored at −80 ◦C. Maternal blood was centrifuged at
10,000 rpm for 10 min to obtain serum.
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volume of distilled water and 25 μL of 1 M Tris-HCL pH 8.0. Then, 5 μL was used to 
identify the Sry gene with PCR and resolved in a TAE gel at 2%. 

Lipid profile and insulin: Triglyceride, total cholesterol, and high-density cholesterol 
(HDL) levels were measured using an enzymatic method (Biosystem, Barcelona, Spain). 
Insulin concentrations were determined using enzyme-linked immunoassays according 
to the manufacturer’s instructions (10-1247-10, Mercodia Mouse Insulin ELISA, Uppsala, 
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Oral glucose tolerance test (OGTT): after 4 h of fasting, a basal blood sample was
taken by cutting the tip of the tail to measure glycemia with a glucometer (OneTouch®

UltraMini®, Johnson & Johnson, New York, NY, USA) and insulin. A glucose solution
dissolved in water (2 g/kg) was then administered orally by gavage, and glycemia was
measured at 15, 30, 60, and 90 min. At basal and after 15 min of glucose administra-
tion, 30 µL of blood was taken, centrifugated at 10,000 rpm for 10 min at 4 ◦C, and
the plasma was separated for insulin measurement. In the basal sample, the Homeo-
static Model Assessment for Insulin Resistance (HOMA-IR) was determined as follows:
HOMA-IR = [Insulin (U/L) × Blood glucose (mmol/L)]/22.5 [20].

Genotyping of fetal sex: The tail of each fetus was placed in 250 µL of 50 mM NaOH
and heated at 98 ◦C for 30 min. Then, 125 µL of the solution was mixed with the same
volume of distilled water and 25 µL of 1 M Tris-HCL pH 8.0. Then, 5 µL was used to
identify the Sry gene with PCR and resolved in a TAE gel at 2%.

Lipid profile and insulin: Triglyceride, total cholesterol, and high-density cholesterol
(HDL) levels were measured using an enzymatic method (Biosystem, Barcelona, Spain).
Insulin concentrations were determined using enzyme-linked immunoassays according
to the manufacturer’s instructions (10-1247-10, Mercodia Mouse Insulin ELISA, Uppsala,
Sweden). The intra-assay coefficient of variation was less than 2.0% for the lipid profile
and 5.0% for insulin. The limit of detection for insulin was 200 pg/mL.

Fatty acid profile: Quantitative extraction and separation of total lipids was carried
out according to Bligh and Dyer [21]. Briefly, liver (200 mg for dams and 100 mg for fetuses)
and placenta (100 mg) samples were homogenized with 1 mL of internal standard (methyl
tricosanoate, C23; Nu-Chek Prep Inc., Elysian MN, USA), 2 mL of chloroform, and 2 mL
of methanol. Sodium biphosphate 0.2 M was added and centrifuged (3000 rpm × 10 min)
to collect the lipid phase. The saponifiable lipids were derivatized to methyl esters via
alkaline hydrolysis (NaOH saturated in methanol 0.5 M) and then acidified with BF3 (12%
in methanol). The FA profile was performed using gas–liquid chromatography (7890A,
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Agilent Technologies, Santa Clara, CA, USA) with a capillary column (HP-88, 100 MX
0.250 mm; ID 0.25 um, Agilent Technologies, Santa Clara, CA, USA). Values are expressed
as mg per 100 g FAME.

RNA isolation, cDNA synthesis, and quantitative PCR: In total, 25 mg of the maternal
and fetal livers, placenta, or adipose tissue was homogenized in 1 mL of TRI Reagent
(T9424, Sigma-Aldrich, St. Louis, MO, USA). RNA was isolated with E.Z.N.A Total RNA
kit with DNAse (OBR6834-02CH and OBE1091-02, Omega-Bio-Tek, Norcross, GA, USA)
according to the manufacturer’s instructions. The cDNA was synthesized from 1 µg of
RNA using a High-Capacity cDNA Reverse Transcription Kit (4,368,814, ThermoFisher
Scientific, Waltham, MA, USA). Real-time quantitative PCR was performed using Fast
SYBR® Green PCR Master Mix (4,385,612, Applied Biosystems, Waltham, MA, USA) in
AriaMx Real-time PCR System (Agilent Technologies, Santa Clara, CA, USA). Expression
levels were determined using the Pfaffl method with normalization to Rpl30 and Pplp0
expression. Sequences of specific primers are shown in Supplementary Table S1.

Western blot analyses: Proteins from fetal liver samples (25 mg) were isolated in
radioimmunoprecipitation assay (RIPA) buffer (R0278, Sigma-Aldrich, St. Louis, MO,
USA) containing protease inhibitor cocktail (P8340, Sigma-Aldrich, St. Louis, MO, USA),
orthovanadate, and phenylmethylsulfonyl fluoride (PMSF). Samples were centrifuged at
10,000× g for 10 min. Twenty micrograms of total protein was separated on 12% poly-
acrylamide gels under reducing conditions. Proteins were transferred to a nitrocellulose
membrane, blocked with 5% milk for 1 h, and probed overnight with the primary antibody
PPAR-α (1:2000, SC-398394, Santa Cruz Biotechnology, Dallas, TX, USA). Protein bands
were developed with ClarityTM Western ECL Substrate (Bio-Rad Laboratories, Hercules,
CA, USA) and photographed with ChemiDoc XRS+System (Bio-Rad Laboratories, Hercules,
CA, USA). Results were analyzed by measuring the pixel intensities of bands using the
Image Lab 6.0 (Bio-Rad Laboratories, Hercules, CA, USA) program. Relative protein levels
were calculated using β-actin (1:10,000, SC-69879, Santa Cruz Biotechnology, Dallas, TX,
USA) as an internal control. All Western blots were performed in duplicate.

Statistical analysis: Data are expressed as mean ± standard error of the mean (SEM).
Two-way ANOVA following the Sidak post-test was used to test the effects of diet and DHA
treatments. The effects of the diet and treatments on food intake and body weight before
and during pregnancy were analyzed with repeated-measures ANOVA. The association
between PPAR-α protein expression and DHA content in the fetal liver was evaluated
with Pearson’s correlation test. All analyses of the offspring were performed separately for
males and females. Statistical analysis was performed with GraphPad Prism version 9.4.1
(GraphPad Software, San Diego, CA, USA). p < 0.05 was considered statistically significant.

3. Results
3.1. Maternal Characterization

To characterize the effects of an HFD and DHA administration on maternal weight
gain and metabolic parameters, we evaluated weight gain, food intake, weight of fat depots
and liver, circulating glucose and insulin levels, lipid profile, and liver lipid content.

3.1.1. Biometrics Parameters and Food Intake

From 4 weeks of the diet, dams in the HFD group gained more weight than controls,
although the food intake was lower at 4 weeks of the diet (Figure 2A,B). All dams increased
their body weight during the gestational period without differences due to diet or DHA
supplementation (Figure 2C). The HFD increased the weight of subcutaneous, mesenteric,
and retroperitoneal fat depots compared with groups fed with the CD (Figure 2D–F).
After normalization by body weight, fat depots remain higher in the HFD rather than
the CD (Supplementary Table S2). On the other hand, no changes were observed in
maternal liver weights (Figure 2G). DHA administration did not induce changes in any
biometric parameters.
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Figure 2. Characterization of dams fed with a control diet (CD) or high-fat diet (HFD) and treated 
with vehicle (sunflower oil) or docosahexaenoic acid (DHA) during pregnancy. (A,B) Pregestational 
weight gain and food intake; (C) gestational weight gain; (D–F) subcutaneous, retroperitoneal, and 
mesenteric fat depots; (G) maternal liver weight. Values are means ± SEM. Two-way ANOVA fol-
lowed by Sidak’s post-test was performed to calculate the differences. *** p < 0.001 and * p < 0.05 
between CD and HFD. M = mating. 

3.1.2. Metabolic Parameters 
There were no differences between groups in maternal serum levels of basal glycemia 

during the oral glucose tolerance test (OGTT) or its area under the curve, basal serum 
insulin levels, and HOMA-IR (Figure 3A–D). Similar observations were found in the lipid 
profile (Figure 3E–G). On the other hand, a main effect of diet was observed in the intra-
hepatic fat content (Figure 3H). 

Figure 2. Characterization of dams fed with a control diet (CD) or high-fat diet (HFD) and treated
with vehicle (sunflower oil) or docosahexaenoic acid (DHA) during pregnancy. (A,B) Pregestational
weight gain and food intake; (C) gestational weight gain; (D–F) subcutaneous, retroperitoneal, and
mesenteric fat depots; (G) maternal liver weight. Values are means ± SEM. Two-way ANOVA
followed by Sidak’s post-test was performed to calculate the differences. *** p < 0.001 and * p < 0.05
between CD and HFD. M = mating.

3.1.2. Metabolic Parameters

There were no differences between groups in maternal serum levels of basal glycemia
during the oral glucose tolerance test (OGTT) or its area under the curve, basal serum
insulin levels, and HOMA-IR (Figure 3A–D). Similar observations were found in the
lipid profile (Figure 3E–G). On the other hand, a main effect of diet was observed in the
intrahepatic fat content (Figure 3H).
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Figure 3. Maternal metabolic parameters at gestational day (DG) 17.5. (A,B) Glucose levels and
area under the curve (AUC) during an oral glucose tolerance test (OGGT); (C) fasting insulin serum
concentration; (D) homeostatic model assessment (HOMA-IR); (E–G) fasting triglycerides, cholesterol
and HDL; (H) percentage of intrahepatic fat content. Values are means ± SEM. Two-way ANOVA
followed by Sidak’s post-test was performed to calculate the differences.
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3.2. Fetal Biometry Characterization

To evaluate the effects of an HFD and DHA treatments on the fetal growth of male
and female fetuses, biometric parameters, including placental, fetal body weight, and liver
parameters, were measured. Moreover, placental efficiency was calculated as fetal and
placental weight ratio.

Fetal and placental weight, the fetal–placental weight ratio, and liver weight were
not affected by the diet in both sexes (Figure 4A–H). However, the HFD decreased the
liver–fetal weight ratio in females (p = 0.017). On the other hand, DHA increased fetal and
liver weight in males (Figure 4A,D). In females, a main effect of DHA was observed in fetal
weight and the fetal–placental weight ratio, which were increased in the group with the
HFD (p = 0.012 and p = 0.016, respectively) (Figure 4A,G).
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Figure 4. Biometric measurements in fetuses from dams fed with a control diet (CD) or high-fat diet
(HFD) and treated with vehicle (sunflower oil) or docosahexaenoic acid (DHA) during pregnancy.
Fetal and placental weight, fetal–placental weight ratio, liver weight, and liver–body weight ratio
in male (A–D) and female fetuses (E–H). Values are means ± SEM. Two-way ANOVA followed by
Sidak’s post-test was performed to calculate the differences. b p < 0.05 between HFD-vehicle and
HFD-DHA groups.

3.3. Fatty Acid Composition

The maternal liver and placenta are central in the FA transfer to the fetus, and the
fetal liver receives a considerable part of the nutrients transported by the placenta; we
determined the FA profiling, including saturated FA (SFA), monounsaturated FA (MUFA),
n-3 PUFA, and n-6 PUFA in the maternal liver and placenta.

3.3.1. Maternal Liver Fatty Acid Composition

A main effect of the diet was observed in the distribution of the different SFAs, MUFAs,
n-3 PUFAs, and n-6 PUFAs (Supplementary Table S3). In this regard, the HFD increased the
amount of lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and total SFA. The
concentrations of oleic acid (C18:1n-9, OA), eicosanoic acid (C20:1), and total MUFA were
also higher in dams fed with the HFD than in the CD. Similarly, the HFD increased linoleic
acid (C18:2n-6, LA), eicosadienoic acid (C20:2n-6), the gamma-linolenic acid (C18:3n-6,
GLA) to LA ratio, and total n-6 PUFA concentration, but it reduced docosapentaenoic acid
(C22:5n-3, n-3 DPA) and the n-3 to n-6 PUFA ratio. Finally, DHA supplementation did not
modify the concentration of any SFA, MUFA, or n-6 and n-3 PUFA. An interaction between
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HFD and DHA was observed in the EPA to ALA ratio, which was increased in the group
with the HFD (p = 0.017) (Supplementary Table S3).

3.3.2. Placenta Fatty Acid Composition

In placentas from male and female fetuses, a main effect of the HFD was observed
in SFAs and MUFAs with lower levels of lignoceric acid (C24:0) and erucic acid (C22:1
n-9) in the HFD compared with the CD (Supplementary Tables S4 and S5). Moreover, in
females, the main effect of DHA treatment was an increased palmitoleic acid (C16:1 n-7),
whereas in males, DHA treatment increased dihomo-γ-linolenic acid (C20:3n-6, DGLA),
mainly in the HFD group (p < 0.001, Supplementary Table S4). In placentas from female
fetuses, an interaction between HFD and DHA was observed on lignoceric acid, erucic acid,
AA, and total n-6 PUFA levels (Supplementary Table S5). Moreover, the main diet effects
were found in n-3 PUFA levels, of which EPA was higher in fetuses of both sexes from the
HFD compared with the CD (Figure 5A,D). Then, the EPA to ALA ratio was also higher
in the HFD group (Supplementary Tables S4 and S5). On the other hand, DPA was lower
in the HFD compared with the CD (Figure 5B,E). DHA was lower in males and tended to
be lower in females (p = 0.072) (Figure 5C,F). In females, an interaction between diet and
DHA treatment was observed in DHA levels (Figure 5F). Similar observations were found
in ALA, total n-3 PUFA, and total PUFA. A main effect of diet was also observed in the
n-3/n-6 ratio in females in the HFD compared with the CD (Supplementary Table S5).
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Figure 5. Composition of n-3 polyunsaturated fatty acids in the placentas and livers of male and 
female fetuses from dams fed with a control diet (CD), high-fat diet (HFD), and treated with vehicle 
(sunflower oil) or docosahexaenoic acid (DHA) during pregnancy. Levels of eicosapentaenoic acid 
(C20:5 n-3, EPA), docosapentaenoic acid (C22:5 n-3, DPA), and docosahexaenoic acid (C22:6 n-3, 
DHA) in placentas (A–F) and fetal livers (G–L). Values are means ± SEM. Two-way ANOVA fol-
lowed by Sidak’s post-test was performed to calculate the differences. 
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In the male liver, the main effects of the diet were observed in the levels of lignoceric 

acid, GLA, and the GLA to LA ratio, which was lower in fetuses from dams fed with the 
HFD than the CD (Supplementary Table S6). In female fetuses, we found a main effect of 
diet with lower levels of erucic acid in the HFD compared with the CD (Supplementary 

Figure 5. Composition of n-3 polyunsaturated fatty acids in the placentas and livers of male and
female fetuses from dams fed with a control diet (CD), high-fat diet (HFD), and treated with vehicle
(sunflower oil) or docosahexaenoic acid (DHA) during pregnancy. Levels of eicosapentaenoic acid
(C20:5 n-3, EPA), docosapentaenoic acid (C22:5 n-3, DPA), and docosahexaenoic acid (C22:6 n-3, DHA)
in placentas (A–F) and fetal livers (G–L). Values are means ± SEM. Two-way ANOVA followed by
Sidak’s post-test was performed to calculate the differences.
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3.3.3. Fetal Liver Fatty Acid Composition

In the male liver, the main effects of the diet were observed in the levels of lignoceric
acid, GLA, and the GLA to LA ratio, which was lower in fetuses from dams fed with the
HFD than the CD (Supplementary Table S6). In female fetuses, we found a main effect of
diet with lower levels of erucic acid in the HFD compared with the CD (Supplementary
Table S7). Also, DHA had a main effect in male fetuses, with lower levels of behenic acid
(C22:0). In this regard, in the HFD group, palmitoleic acid and total MUFA were lower in
fetuses from mothers that received DHA compared with those that did not receive it. An
interaction between diet and DHA was observed in OA and total MUFA (Supplementary
Table S7). Interestingly, the HFD had a main effect on EPA, which was higher in the HFD
than in the CD in both male and female fetuses (Figure 5G–J). However, DHA was lower in
fetuses of both sexes from dams fed with the HFD (Figure 5I,L). Moreover, in males, total
PUFA and n-3 PUFA were lower in the HFD than in the CD (Supplementary Table S6).

3.4. Gene Expression

Pro-inflammatory environments have been associated with abnormal maternal–fetal
FA transfer [22]. Then, we analyzed the mRNA expression of pro-inflammatory cytokines,
including tumoral necrosis factor alpha (Tnfa), interleukin-6 (Il6), and monocyte chemoat-
tractant protein-1 (Mcp1), in the maternal adipose tissue and liver to test if an HFD and
DHA administration could explain the changes observed in FA composition in fetal livers.
Moreover, we tested in the placenta the gene expression of endothelial lipase (Lipg) because
of its role in the hydrolysis of triglycerides to release FAs to be transported, the fatty acid
transporter 4 (Scl27a4) and fatty acid translocase (Cd36), due to their participation in FA
transport; in addition, we included major facilitator superfamily domain containing 2A
(Mfsd2a) given its relevance and specificity in the transport of DHA [23]. In the fetal
liver, we assessed the expression of genes encoding for proteins related to regulators of FA
metabolism, such as peroxisome proliferator-activated receptor alpha (Ppara) and acetyl-
CoA carboxylase alpha (Acaca); genes associated with lipogenesis, such as sterol regulatory
element binding transcription factor (Srebf), acyl-CoA oxidase (Acox), and fatty acid syn-
thase (Fasn); and those related to FAO, such as carnitine palmitoyltransferase I (Cpt1),
long-chain acyl-CoA synthetase 1 (Acsl1), and acyl-CoA oxidase (Acox) [24]. Moreover,
5-lipoxygenase (5-Lox) participates in the biosynthesis of pro-resolving lipid mediators
derived from DHA [25].

The gene expression of proinflammatory cytokines such as Il6, Tnfa, and Mcp1 was not
different between groups in the maternal liver (Supplementary Figure S1A). Similar results
were observed in maternal adipose tissue, except for the expression of Mcp1, which had an
interaction effect between diet and DHA, with lower levels in DHA compared with vehicle
in the HFD group (Supplementary Figure S1B). In placentas from male fetuses, the HFD
showed a main effect of diet that caused a decrease in the mRNA expression of Mfsd2a
and Lipg. Moreover, a main effect of DHA treatment was observed in the expression
of Lipg (Figure 6A). The gene expressions of Scl27a4, Cd36, Cpt1, Ppara, Il-6, Tnfa, and
Mcp1 were similar between groups (Supplementary Figure S1C). On the other hand, in
placentas from female fetuses, no differences were found in gene expression (Figure 6C
and Supplementary Figure S1D). No effects of diet or DHA treatment were observed in
the mRNA expression of lipogenic and FAO enzymes in male fetal livers (Figure 6B and
Supplementary Figure S1E). In contrast, in female fetuses, a main effect of DHA treatment
with higher levels of Ppara, Cpt1, and Acsl1 was found (Figure 5D). No effects of diet or
DHA treatment were observed in the mRNA expression of 5-Lox in male and female fetal
livers (Supplementary Figure S1E,F).
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Figure 6. Gene expression of placental fatty acid transporters and regulators of fatty acid metabolism
in the fetal livers of male and female fetuses from dams fed with a control diet (CD), high-fat diet
(HFD), and treated with vehicle (sunflower oil) or docosahexaenoic acid (DHA) during pregnancy.
Gene expression of Mfsd2a, Lipg, Scl27a4, and Cd36 in placentas from male and female fetuses (A,C).
Gene expression of Ppara, Cpt1, and Acsl1 in the livers of male and female fetuses (B,D). Values
are means ± SEM. Two-way ANOVA followed by Sidak’s post-test was performed to calculate the
differences.

3.5. Protein Expression

Finally, we tested the protein expression of transcription factor PPAR-α, a master
regulator of the expression of genes associated with lipogenesis and FAO; moreover, it is
regulated by DHA [26].

In male and female fetal livers, a main effect of diet caused a decreased protein
expression of PPAR-α (Figure 7A,B). Interestingly, a positive correlation between PPAR-α
and DHA content in the fetal liver was found in both males and females (Figure 7C,D).
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lowed by Sidak’s post-test was performed to calculate the differences. Correlation coefficients were 
computed using the Pearson correlation test. 
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expression of PPAR-α in the fetal liver (A,B). Correlation between protein expression of PPAR-α 
with the content of DHA in the fetal liver (C,D). Values are means ± SEM. Two-way ANOVA fol-
lowed by Sidak’s post-test was performed to calculate the differences. Correlation coefficients were 
computed using the Pearson correlation test. 
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Figure 7. Protein expression of peroxisome proliferator-activated receptor alpha (PPAR-α) in the
fetal livers of male and female fetuses from dams fed with a control diet (CD), high-fat diet (HFD),
and treated with vehicle (sunflower oil) or docosahexaenoic acid (DHA) during pregnancy. Protein
expression of PPAR-α in the fetal liver (A,B). Correlation between protein expression of PPAR-α with
the content of DHA in the fetal liver (C,D). Values are means ± SEM. Two-way ANOVA followed by
Sidak’s post-test was performed to calculate the differences. Correlation coefficients were computed
using the Pearson correlation test.

4. Discussion

The main findings of this study are that the HFD reduced DHA and increased EPA
levels in the livers of male and female fetuses. These changes were associated with lower
protein expression of PPAR-α, whereas DHA administration increased the expression of
lipid metabolism genes such as Ppara, Acsl1, and Cpt1 in female fetuses. On the other hand,
the HFD reduced the gene expression of Lipg and Mfsd2a in placentas from male fetuses
but had no difference in placentas from female fetuses.

Maternal obesity associated with an abnormal profile of FAs, including elevated lev-
els of SFAs and n-6 PUFAs, has been associated with alterations in the lipid metabolism
in offspring in adulthood, suggesting that the origin of this phenomenon lies in an ab-
normal maternal–fetal transfer of FA due to alterations in maternal or placental lipid
metabolism [27–30]. In the present study, an HFD increased the maternal intrahepatic fat
content with a predominance of the total amount of SFA, MUFA, and n-6 PUFA levels,
usually observed in subjects with NAFLD. On the other hand, n-3 PUFA was not entirely
affected by the HFD, showing lower n-3 DPA levels and similar levels of DHA. It has been
shown that HFD increases elongase activity, which could increase the DHA synthesis rate
from n-3 DPA [31,32]. Moreover, adipose tissue is the main site for PUFA accretion during
pregnancy, and liver DHA is rapidly mobilized to placental uptake, which can explain
why the administration of DHA did not increased its content in the maternal liver [33,34].
Therefore, despite the abnormalities in FA composition in the maternal liver, the DHA
levels seem unaffected.

The maternal composition of FAs affects n-3 PUFA placental uptake, such as LA re-
duces ALA and DHA placental content. Interestingly, we observed an increase in LA in
the maternal liver, suggesting a high maternal bioavailability of this FA. This phenomenon
has been associated with limited placental uptake due to modifications in the expression
of placental transporters of n-3 fatty acid [35]. Moreover, in placentas from male fetuses
from the HFD group, we observed a reduced gene expression of Mfsd2a, a membrane
lysophospholipids transporter required to uptake DHA in the brain and placenta [36,37].
Interestingly, in the human placenta, one study found a lower gene expression of this
transporter in the placenta from male fetuses of women with obesity [38]. In the same way,
the HFD downregulated the gene expression of Lipg, which is a phospholipase A1 with a
limited ability to release sn-2–bound unsaturated FA from phospholipids. Interestingly,
DHA transport is preferentially associated with phospholipids over other lipids, so the ac-
tion of the endothelial lipase enzyme must be hydrolyzed and taken up by the placenta [39].
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On the other hand, in females, we did not observe significant HFD-induced changes in FA
composition, apart from higher EPA and lower DPA n-3 levels, suggesting a dimorphic
effect on placental FA uptake or metabolism.

Along with lower DHA levels induced by the HFD, increased levels of EPA indicated
a possible alteration in n-3 PUFA metabolism, which can be related to increased biosyn-
thesis or decreased degradation. In this regard, it has been observed that DHA can be
retroconverted to DPA and then to EPA due to peroxisomal action [40,41]. In the same way,
reduced levels of C24:0 (tetracosanoic acid) and C22:1 n-9 (erucic acid) suggest increased
FAO in peroxisomes of the placenta from the HFD group [42]. Supporting this concept, in
women with obesity, an increase in peroxisomal FAO has been observed [43]. Interestingly,
it has been observed that the induction of peroxisomal FAO serves as a mechanism for lipid
accumulation in other tissues of obese mice [44]. Therefore, alterations in FA composition
suggest that peroxisomal function can be affected by an HFD, reducing DHA bioavailability.

In this way, we cannot rule out that reduced levels of DHA are a consequence of
its metabolization to pro-resolving products with anti-inflammatory properties such as
resolvin D1 and D2 [45]. Regarding this, no differences were observed in the expression
of pro-inflammatory cytokines in the placenta. Concordantly, DHA supplementation
increased placental efficiency in female fetuses from dams fed with the HFD, indicating an
improvement in the placental function to support fetal growth.

In general, alterations in placental uptake and metabolism of FAs are related to ma-
ternal hyperglycemia, insulin resistance, and a pro-inflammatory state that modifies the
expression of placental transporters, lipid metabolism, and storage or impairs mitochon-
drial β-oxidation that favors peroxisomal oxidation [46]. However, despite dams showing
increased body weight and fat mass, we observed no significant changes in glucose levels,
insulin resistance, lipid profiles, and mRNA expression of proinflammatory cytokines in
adipose tissue, indicating, in our model, that the changes in the placental FA composition
result from the lipid overload induced by the HFD rather than from the maternal metabolic
disturbances, suggesting the fundamental role of a healthy diet in the placental function
independent of the maternal metabolic conditions. In this regard, evidence in humans has
shown a reduced materno–fetal transfer of DHA in normolipidemic women with obesity
compared with women with target weights [47].

The FA pattern in the placentas from both male and female fetuses is very similar to
the FA pattern found in the fetal livers, highlighting the regulatory role of the placenta
in FA maternal–fetal transfer. In adults, DHA activates PPARα, regulating the expression
of thousands of metabolic genes associated with de novo lipogenesis and FAO. In this
regard, an HFD leads to reduced levels of DHA, concomitantly with lower PPARα protein
expression in the fetal livers of both sexes. However, we did not observe changes in the
gene expression of lipogenic or FAO enzymes. However, in the male fetal liver, the ratio
of GLA/LA was lower in the HFD group, suggesting a reduced ∆-6 desaturase activity,
which has been correlated with markers of oxidative stress and early steps of NAFLD [11].
Relatively few studies have focused on studying fetal hepatic metabolism. However, a
study in rats indicates that maternal obesity induced by a diet rich in saturated fat leads to
decreased gene expression of Cpt1 and Acox in male fetuses [13], in addition to an increase
in AST, ALT, signs of inflammation, and oxidative stress in the fetal liver, both in males and
females [48].

On the other hand, the administration of DHA reduced palmitoleic acid and total
MUFA in the fetal liver with a higher effect in fetuses from dams fed with an HFD, suggest-
ing that DHA could reduce the activity of SCD1 and protect the fetus from fat accumulation
and hepatic steatosis, such as has been shown in obese mice models supplemented with
fish oil [49,50]. Interestingly, fetal hepatic levels of DHA were positively correlated with
the expression of PPAR-α in both sexes. However, DHA only increased the expression of
FAO-related genes in female fetuses, suggesting a sex-dependent sensitivity to DHA in
these genes.
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Our study has the strength of analyzing the profile of FAs in the maternal, placenta,
and fetal compartments, providing a broad landscape of the metabolic adaptations related
to FA metabolism established to support fetal development. Moreover, all measurements
in the placenta and fetal livers were performed considering the sex dimorphism because
of its crucial role in the energetic response induced by dietary challenges [51]. A possible
limitation of our study is that the ratio of male to female fetuses was not homogenous in each
litter, which limited the number of samples in some measurements. On the other hand, our
model did not show maternal metabolic alterations other than an increased fat mass because
we aimed to avoid the effects of hyperglycemia and elevated insulin levels on placental
function; therefore, this allows us to attribute our findings to dietary effects and maternal
adiposity rather than to metabolic disturbances associated with glucose metabolism.

5. Conclusions

Our results show that an HFD, independent of abnormalities in maternal glucose
metabolism, induced reduced levels of DHA in the livers of both male and female fetuses,
which seems to be associated with the altered transport and metabolism of FAs in the
placenta, mainly in male fetuses. In turn, DHA administration did not reverse all the
HFD-induced effects but reduced the levels of MUFAs in male fetuses. In contrast, in
female fetuses, DHA increased the expression of genes associated with regulating lipid
metabolism, such as Ppara, Cpt1, and Acsl1, suggesting a possible protective role against
hepatic lipid accumulation in both males and females.
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