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Abstract: Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the
gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to
be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which
may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a
fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side
effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients
that are able to modulate the immune system and the modification/regulation of the gut microbiota
composition have gained attention as a possible strategy to improve the conditions of these patients.
The complex interaction between nutrients and microbiota might contribute to maintaining the
homeostasis of each individual’s immune system; therefore, concurrent use of specific nutrients in
combination with traditional cancer treatments may synergistically improve the overall care of GI
cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota
modulation in improving nutritional status, postoperative recovery, and response to therapies in
patients with GI cancer.

Keywords: gastrointestinal cancers; nutritional therapy; microbiota; immunonutrition; probiotics;
immunonutrients

1. Introduction

Gastrointestinal (GI) cancers, a collective term encompassing a group of malignancies
originating in various parts of the gastrointestinal tract, account for around 20% of newly
diagnosed cancers and are responsible for over 25% of cancer-related deaths worldwide [1].
GI cancers differ in their potential to disrupt normal digestive functions and can have
significant implications for a patient’s overall health and well-being, making early detection
and appropriate treatment essential for optimal outcomes. The substantial global impact
of GI cancers underscores the critical necessity to address the multifaceted challenges
faced by these patients. Nutritional intervention and monitoring play pivotal roles in
the comprehensive care of GI cancer patients. Managing the nutritional needs of these
patients is essential not only to address the metabolic alterations associated with tumors
but also to mitigate the adverse effects of cancer treatments. Adequate nutritional support
can help optimize treatment outcomes, enhance the patient’s quality of life (QoL), and
improve their overall prognosis. This review attempts to investigate the promising avenues
of immunonutrition and microbiota modulation as innovative approaches to improve the
nutritional status and overall well-being of GI cancer patients. By addressing these aspects,
the goal is to offer insights into strategies that can complement traditional cancer treatments
and enhance the holistic care of this cancer population.
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2. Nutritional Status of GI Cancer Patients

In the realm of GI cancer care, understanding the nutritional status of patients is of
paramount importance. Patients diagnosed with cancer frequently experience malnutrition
as their tumors progress. The prevalence of malnutrition among cancer patients varies,
ranging from 20% to 70%; in patients diagnosed with upper GI cancer, its prevalence
can escalate to as high as 60.2% [2,3]. This malnutrition has been linked to increased
postoperative complications and a decline in overall QoL. Malnutrition in cancer patients is
a complex issue and can be classified into various categories, including anorexia, sarcopenia,
and cachexia. These definitions are meant to help clinicians identify and treat metabolic and
nutritional problems associated with cancer. Anorexia (loss of appetite) is quite common in
cancer and, according to Abraham et al., 69% of patients newly diagnosed with gastric or
gastroesophageal junction (GOJ) experience anorexia [4]. The primary cause of anorexia
is often an increase in pro-inflammatory cytokines or an increase in lactate which can,
in turn, modulate central nervous system neurotransmitter cascades [5,6]. Sarcopenia
is characterized by diminished muscle strength, reduced muscle mass or quality, and
decreased physical performance [7]. In GI cancer patients, among whom the prevalence of
sarcopenia exceeds 40% [8], monitoring this condition is crucial as it significantly influences
postoperative outcomes and is associated with a higher risk of complications [9,10]. Cancer
cachexia, a syndrome characterized by loss of weight, muscle, and fat mass that cannot
be reversed through conventional nutritional interventions, creates a proinflammatory
environment leading to heightened energy expenditure [11]. The incidence of cancer
cachexia in GI cancer patients varies widely, ranging from 15% in prostate cancer to as
high as 90% in pancreatic cancer, with an overall occurrence between 40% and 80% [12,13].
GI cancer patients, in general, are at an elevated risk of experiencing cancer cachexia,
often diagnosed too late for effective prevention or treatment of muscle and weight loss,
resulting in heightened morbidity and mortality, reduced QoL, and suboptimal therapeutic
outcomes [14].

Malnutrition in GI cancer patients has multiple underlying causes. The metabolic
alterations induced by tumors and the adverse effects of cancer treatments can lead to a
spectrum of nutritional challenges, including decreased appetite, difficulty swallowing,
taste and smell changes, weight loss, fatigue, and a decline of QoL [2,15,16]. GI mucosa
is sensitive to chemotherapy cytotoxicity: DNA damage, apoptosis, and inflammation
of the healthy mucosa disrupt the GI architecture [17] by decreasing the mucosal area
available for nutrient absorption and impairing the immune response [18]. This condition
can be defined as gastrointestinal mucositis (GI-M) [19,20]. Consequently, patients who
develop GI-M are at a significantly higher risk of secondary complications, especially
nutritional deficiencies [21]. In addition, psychological distress and anxiety significantly
influence dietary intake [22]. The connection between malnutrition and psychological
distress has been evidenced in cancer patients. Those experiencing weight loss and other
malnutrition-related symptoms often report heightened levels of psychological distress,
manifested as increased fatigue, insomnia, heightened anxiety, and depression, ultimately
exacerbating the progression of their illness [23]. When considered collectively, these
factors can significantly impact the nutritional status of GI cancer patients and individuals
who have undergone surgery as well as those currently undergoing radiotherapy and
chemotherapy [24] (Figure 1).
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Figure 1. Underlying causes of malnutrition in GI cancers. Nutritional alterations are due to various 
factors: reduction in energy intake and poor physical activity; consequences of chemoradiotherapy 
such as nausea, vomiting, taste changes, and cancer-related causes such as systemic inflammation 
and difficulty absorbing nutrients (due to destruction of the GI architecture). Alterations in the GM 
composition may be attributed to all three factors described (image created with Biorender.com). 
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sessing malnutrition in cancer patients. They support the provision of adequate and effec-
tive nutritional therapy, particularly for people who face problems with nutrition [2,25]. 
While the precise timing for initiating nutrition support is not yet fully defined, it is rec-
ommended to commence intervention before malnutrition becomes well established [2]. 
In cases where patients are severely malnourished and actively undergoing treatment, 
nutritional support should be implemented immediately to address their nutritional 
needs. GI cancer patients undergoing radiotherapy can benefit from early and intensive 
nutritional intervention, which will improve their nutritional status and QoL [26,27]. Nu-
tritional therapy in GI patients should, at first, comprise an adequate calorie and protein 
intake, essential to preserve lean body mass, promote wound healing, and support the 
body’s immune function. High-calorie, high-protein foods should be included in the diet, 
along with small, frequent meals [28,29]. Secondly, it is important to manage digestive 
symptoms, since GI cancers and their post-surgical treatments can lead to nausea, vomit-
ing, diarrhea, constipation, and loss of appetite [30]. 

The dose of nutritional therapy is based on the patient’s energy and nutrient require-
ments. The recommended energy intake for cancer patients is 25–30 kcal/kg/day. Protein 
intake should be above 1 g/kg/day and above 1.5 g/kg/day if possible [15,31]. 

Effectively managing symptoms is a crucial aspect of cancer care from the time of 
diagnosis to treatment. These factors not only impact the well-being of GI cancer patients 
but also have substantial implications for treatment outcomes.  

Avoiding spicy or greasy foods, eating smaller portions, and consuming more fre-
quent meals of easily digestible foods are dietary modifications that can help relieve these 
symptoms and improve nutrient absorption. Vomiting or diarrhea may also result in fluid 

Figure 1. Underlying causes of malnutrition in GI cancers. Nutritional alterations are due to various
factors: reduction in energy intake and poor physical activity; consequences of chemoradiotherapy
such as nausea, vomiting, taste changes, and cancer-related causes such as systemic inflammation
and difficulty absorbing nutrients (due to destruction of the GI architecture). Alterations in the GM
composition may be attributed to all three factors described (image created with Biorender.com).

3. Nutritional Strategies for GI Cancers Patients Care

Clinical management guidelines emphasize the importance of screening and assessing
malnutrition in cancer patients. They support the provision of adequate and effective
nutritional therapy, particularly for people who face problems with nutrition [2,25]. While
the precise timing for initiating nutrition support is not yet fully defined, it is recommended
to commence intervention before malnutrition becomes well established [2]. In cases where
patients are severely malnourished and actively undergoing treatment, nutritional support
should be implemented immediately to address their nutritional needs. GI cancer patients
undergoing radiotherapy can benefit from early and intensive nutritional intervention,
which will improve their nutritional status and QoL [26,27]. Nutritional therapy in GI
patients should, at first, comprise an adequate calorie and protein intake, essential to
preserve lean body mass, promote wound healing, and support the body’s immune function.
High-calorie, high-protein foods should be included in the diet, along with small, frequent
meals [28,29]. Secondly, it is important to manage digestive symptoms, since GI cancers
and their post-surgical treatments can lead to nausea, vomiting, diarrhea, constipation, and
loss of appetite [30].

The dose of nutritional therapy is based on the patient’s energy and nutrient require-
ments. The recommended energy intake for cancer patients is 25–30 kcal/kg/day. Protein
intake should be above 1 g/kg/day and above 1.5 g/kg/day if possible [15,31].

Effectively managing symptoms is a crucial aspect of cancer care from the time of
diagnosis to treatment. These factors not only impact the well-being of GI cancer patients
but also have substantial implications for treatment outcomes.

Avoiding spicy or greasy foods, eating smaller portions, and consuming more fre-
quent meals of easily digestible foods are dietary modifications that can help relieve these
symptoms and improve nutrient absorption. Vomiting or diarrhea may also result in
fluid loss; therefore, adequate hydration to support overall bodily functions should be

Biorender.com


Nutrients 2023, 15, 4408 4 of 21

implemented. Drinking water, clear broths, herbal teas, and consuming hydrating foods
like fruits and vegetables can help meet hydration needs [32]. Certain micronutrients may
be compromised in GI cancer patients due to reduced intake or absorption. Then, the
healthcare team may recommend specific supplements to address deficiencies, such as
vitamins (e.g., vitamin D, B vitamins) and minerals (e.g., iron, zinc), based on individual
needs [33,34] (Figure 2). At last, in cases where oral food intake is insufficient or not
possible, artificial nutritional may be required [35]. This includes enteral nutrition (EN)
(delivery of nutrients through the GI tract, either orally or via a feeding tube), parenteral
nutrition (PN) (delivery of nutrients directly into the bloodstream), nutrition counseling,
and oral nutritional supplements (ONS). If the patient can eat but is malnourished or at
risk of malnutrition, interventions to increase food intake or ONS are recommended. If
the patient is undernourished, medical nutrition (EN or PN) is indicated [15]. After hospi-
talization, or when palliation is the main purpose of nutritional intervention, EN should
be preferred, except when intestinal obstruction, ileus, severe shock, intestinal ischemia,
high-flow fistula, or severe intestinal bleeding occurs [10]. Optimal preoperative nutritional
support for at least 10 days has been reported to reduce the risk of postoperative surgical
site infection (SSI) in patients with gastric cancer [36]. Clinicians should plan individualized
nutritional interventions during screening, evaluation, and treatment processes and should
not hesitate to prefer the EN and/or PN route when nutritional goals cannot be achieved
with an oral diet alone [37] (Figure 2).
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Figure 2. Nutritional Care Workflow for GI Cancer Surgery Patients. (1) The first step in planning
nutritional care for surgical cancer patients involves screening and assessment of nutritional status.
(2) This is followed by a nutrition diagnosis that commonly includes identifying conditions such as
malnutrition, cachexia, or sarcopenia in cancer patients. (3) At least, the appropriate nutrition therapy
(enteral nutrition, parental nutrition, oral nutritional supplement, or nutrition counseling) should be
determined. (4) Postoperatively and during the discharge period, patients are closely monitored, and
it is beneficial to reevaluate their nutritional status (image created with Biorender.com).

Preoperative nutrition and exercise intervention have been reported to provide periop-
erative functional improvement in esophagogastric cancer surgery patients [38]. According
to the ESPEN guideline, routine postoperative nutritional support should be considered
for surgical cancer patients (especially those undergoing upper GI cancer surgery) at mod-
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erate or severe nutritional risk [15]. Postponing a regular oral diet after major surgery is
associated with an increased rate of infectious complications and a longer recovery [39].

Several studies have highlighted the critical role of adequate nutrition in mitigating
postoperative complications, maintaining immune function, reducing treatment toxicity,
enhancing overall survival rates, shortening length of stay (LOS) in hospital, and facilitating
the timely administration of adjuvant oncologic therapy [40–44].

Following surgery, colorectal cancer (CRC) patients receiving oral nutritional supple-
ments (ONS) demonstrated notable enhancements; however, no significant alterations were
observed in metrics like body weight and body mass index (BMI) [45]. Nevertheless, a ran-
domized trial showed that the use of ONS administration after GI cancer surgery may have
positive outcomes on patients’ body weight and BMI [46]. Likewise, patients administered
with ONS three months following GC surgery experienced significantly less reduction in
body weight and exhibited a notably higher BMI compared with patients who received
nutrition counseling alone [45]. A prospective randomized controlled study showed that
patients experienced a decline in nutritional status after discharge, highlighting the critical
role of postoperative nutritional supplementation in enhancing nutritional status, QoL,
and reducing morbidity among surgical patients [47]. The European Society for Clinical
Nutrition and Metabolism (ESPEN) practice guideline recommends an enhanced recovery
after surgery (ERAS) program for all cancer patients undergoing surgery [15]. ERAS is
an evidence-based, multicomponent perioperative protocol that aims at reducing stress
and promoting a return to function [48]. Within the scope of this program, each patient
should be assessed for malnutrition, and additional nutritional support should be applied
if necessary. Nutritional components of ERAS are avoiding fasting, preoperative fluid, and
carbohydrate overload, and recommencement of oral diet on the first postoperative day.
The aim is to minimize the metabolic response to surgery [15].

Considering all these data, it becomes crucial that each step of the process for GI
cancer surgery patients, starting from preoperative nutritional screening and extending
to post-discharge nutritional support, is overseen by a healthcare professional. Adequate
nutritional care should be meticulously planned for each patient (Figure 2).

However, long-term prospective studies of GI cancer patients’ preoperative and post-
operative nutritional care in larger populations are necessary.

4. Immunonutrition and Gut Microbiota Modulation

Cancer and its treatment can weaken the immune system, making patients more
susceptible to infections and impairing their ability to combat the disease. Moreover,
GI surgical procedures trigger a natural inflammatory response in the body, which is
intended to be protective and create an environment conducive to recovery. This response
primarily aims to facilitate energy production, restore cardiovascular balance, promote
tissue repair and wound healing, and ultimately ensure the state of well-being of the patient.
However, there are instances when this inflammatory response becomes dysregulated,
leading to the release of proinflammatory cytokines, endothelial dysfunction, glycocalyx
damage, activation of neutrophils, and subsequent damage to tissues and multiple organ
systems [49]. In such cases, patients undergoing GI surgery may experience postoperative
complications such as anastomotic dehiscence and surgical site infections, or even face
severe consequences due to an amplified and uncontrolled inflammatory reaction [50].

Immunonutrition in GI cancer care is designed for complementing traditional cancer
treatments by supporting the immune system, boosting the host’s cancer-related immune re-
sponse, reducing inflammation, promoting tissue repair, and improving overall nutritional
status [51].

Interestingly, inflammation is closely linked to alterations in the gut microbiota (GM)
and their metabolites, particularly short-chain fatty acids (SCFAs). As a counterbalance to
the immune response, the human GM appears to play a significant role in the development
of post-surgery complications [52]. Furthermore, the GM is integral in the absorption,
storage, and utilization of energy derived from dietary intake [53]. It contributes to food
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regulation intake by influencing hormones related to metabolic function and brain re-
gions associated with eating behavior [54]. In addition, it has beeen proven that the GM
plays critical roles in protecting the integrity of the GI mucosa and the maintenance of its
homeostasis [55]. GI cancers and also their treatments, such as chemotherapy, have been
consistently demonstrated to induce changes in the GM composition and functions [56],
contributing to GI-M severity and to malnutrition onset [57,58]. In this context, dietary
interventions aimed at fostering a healthy GM before therapy and enhancing its resilience
during and after therapy show potential as therapeutic strategies for GI-M and its related
symptoms [59,60].

The maintenance of a functional gut barrier and of host homeostasis is granted by the
action of beneficial bacteria like Bifidobacterium spp., Faecalibacterium prausnitzii, Lactobacillus
spp., and the production of SCFAs, particularly butyrate. SCFAs stimulate the regeneration
of epithelial cells, the production of mucus and antimicrobial peptides, and modulate
T regulatory (Treg) cells [61,62]. Dendritic cells located in the lamina propria release
transforming growth factor-β (TGF-β) in response to commensal antigens, activating
Treg cells to secrete interleukin-10 (IL-10) and TGF-β, promoting a more immune-tolerant
phenotype [63]. In addition, dietary and microbiota-derived ligands of the aryl hydrocarbon
receptor (AhR) stimulate innate lymphoid cell 3 (ILC3) to produce IL-22, which plays a vital
role in preserving intestinal barrier function [64]. Another hallmark of intestinal balance is
a thicker mucus layer, acting as a barrier between luminal bacteria and epithelial cells.

When dysbiosis occurs, the lower abundance of beneficial bacteria and higher abun-
dance of pathobionts (i.e., Clostridium difficile and Escherichia coli) promote production of
inflammatory factors such as radical oxygen species (ROS), nitric oxide (NO), proinflam-
matory cytokines, and cyclo-oxygenase 2 (COX-2) [65,66]. The decrease in thickness of the
mucus layer and cellular tight junction expression results in a compromised intestinal bar-
rier function, allowing bacterial products, like lipopolysaccharides (LPSs), to leak from the
intestinal lumen into the lamina propria. LPSs bind to toll-like receptors (TLRs), triggering
macrophages to generate tumor necrosis factor-α (TNF-α). TNF-α promotes the prolifera-
tion of T helper cell type 1 (Th1) and the release of pro-inflammatory cytokines, including
TNF-α and interferon-γ (IFN-γ), ultimately causing inflammation. This inflammatory pro-
cess further undermines the integrity of the intestinal barrier. Additionally, the reduction in
IL-10-producing Treg cells contributes to the inflammation within the intestine [67]. Finally,
dysbiosis may increase colonic epithelial cells’ exposure to carcinogens [68]. Notably, the
GM influences the host’s response to cancer therapy. Germ-free and antibiotic-treated mice
showed reduced responses to immunotherapy and chemotherapy by CpG oligonucleotides,
due to impaired function of myeloid-derived cells in the tumor microenvironment [69].
On the other hand, Barnesiella intestinihominis has been reported to have an adjuvant ef-
fect on cyclophosphamide (CTX)-induced tumor immunity by promoting infiltration of
IFN-γ-producing γδT cells in cancer lesions [70].

Finally, studies report that the GM is involved in the management of cancer, as the
composition of the GM can modulate the effect of anticancer drugs. Neoadjuvant chemora-
diotherapy (nCRT) has become a standard treatment for locally advanced rectal cancer
(LARC), with only 15–27% of patients achieving a pathological complete response and
20–40% achieving little to no response. Aiming to elucidate the mechanism underlying the
response of LARC to nCRT, Teng et al. showed that GM-mediated nucleotide synthesis can
modulate the response of LARC patients to nCRT. Multi-omics data integration showed
that Bacteroides vulgatus-mediated nucleotide biosynthesis was associated with nCRT resis-
tance in LARC patients, and non-responsive tumors were characterized by up-regulation
of genes related to DNA repair and nucleoside transport [71].

Given these results, a more balanced microbiota obtained through microbiota manip-
ulation may have positive contributions in preventing cancer formation and increasing
response to medical treatment [72,73]. Therefore, managing the immune response during
the post-surgical period, both in the short and long term, with a focus on the interaction
between GM and inflammation (a bidirectional signaling axis regulating immune response,
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GI balance, and body weight through appetite control, energy storage, and expenditure),
presents an advantageous strategy.

4.1. Immunonutrients Supplementation

Among nutritional interventions, immune-enhancing nutrient formulas, also called
immunonutrients, can be supplemented via EN, PN, and ONS. The most common im-
munonutrients are arginine, glutamine (Gln), omega-3 (ω-3) fatty acids, nucleotides, or
RNA, which have been seen to modulate inflammatory responses and increase protein
synthesis following surgical procedures [74,75]. The advantages obtained from immunonu-
trient consumption encompass various mechanisms, among them GM modulation. Studies
indicate that arginine treatment in mice results in a beneficial alteration of the Firmicutes-
to-Bacteroidetes ratio to favor Bacteroidetes, along with decreased expression of nuclear
factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidyl inositol
3-kinase/protein kinase B (PI3K/Akt) signaling pathways [76]. Notably, Bacteroidetes pro-
mote intestinal innate and mediated immunity, including the secretion of immunoglobulin
A (IgA) and various cytokines [76,77]. These findings are particularly significant in the con-
text of diseases like Crohn’s disease (CD) and ulcerative colitis (UC), where Bacteroidetes’
presence is diminished, potentially contributing to the reduced anti-inflammatory effect
observed during colitis [78,79]. Similarly, ω-3 fatty acids can modulate the abundance
of gut microorganisms. Recent studies suggest that dietary supplementation with ω-3
polyunsaturated fatty acids increases the abundance of various health-promoting bacteria,
including butyrate producers from genera such as Bifidobacterium, Roseburia, Lactobacillus,
and the mucin specialist Akkermansia muciniphila [80–82]. Interestingly, in a cross-sectional
study of breast cancer survivors, higher blood levels of docosahexaenoic acid (DHA) were
positively associated with an increased abundance of Bifidobacterium in the GM, particularly
in participants without a history of chemotherapy [83]. Nevertheless, the influence of
immunonutrient use on microbiota is still inadequately investigated, highlighting the need
for further research to comprehensively understand the impact of immunonutrition in
prevent dysbiosis, especially in the context of GI cancer care. According to the ESPEN
guidelines, oral or enteral immunonutrient administration is recommended for upper
GI cancer surgery patients in preoperative and postoperative nutritional care [15]. How-
ever, more research is needed to assess the efficacy of immunonutrient-enriched formula
supplementation compared with standard oral and enteral nutrition in the perioperative
period [10]. In a recent meta-analysis, enteral immunonutrition was found to be both safe
and effective in reducing overall complications, particularly infectious complications, and
it also led to a shortened hospital stay. This positive outcome was observed in patients
undergoing surgery for GI cancers, including GC, CRC, esophageal cancer, periampullary
cancer, and pancreatic cancer [84].

In studies involving patients undergoing laparoscopic colorectal resection, preoper-
ative and postoperative immunonutrient supplementation was associated with a lower
incidence of SSI compared with those who received nutrition counseling alone [85]. Sim-
ilarly, preoperative EN immunonutrition has been proven effective in preventing SSI in
CRC patients without malnutrition [86].

However, when comparing standard ONS with ω-3-enriched ONS in CRC surgery
patients,ω-3-enriched ONS did not significantly affect postoperative complications, LOS,
postoperative blood loss, the need for intensive care, or hospital readmission [87].

On the other hand, Adiamah et al. reported a 48% risk reduction of postoperative
infectious complications in patients receiving preoperative immunonutrition. This interven-
tion also led to shortened LOS of 1.5 days, although it did not impact other complications
or mortality [40].

Similarly, Probst et al. found that perioperative immunonutrition reduced infectious
complications, general complications, and LOS, with no effect on mortality [88]. Further-
more, a pilot trial assessing perioperative nutritional supplementation in GI cancer patients
demonstrated a feasible enrollment fraction of 49% and revealed a higher proportion of
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infectious complications in the control group, emphasizing the importance of infectious
complications as a relevant outcome of interest in such studies [89].

Furthermore, a retrospective study by Franceschilli et al. suggested that the combina-
tion of preoperative immunonutrition within the context of the ERAS protocol for patients
with normal nutritional status undergoing laparoscopic total gastrectomy (LTG) reduced
postoperative complications [90].

In the case of malnourished patients, enteral immunonutrition affected postopera-
tive complications and LOS. However, for patients without malnutrition, the content of
nutritional support did not significantly impact complications or LOS [91].

Studies have shown that early postoperative enteral immunonutrition enriched with
nutrients like arginine, ω-3 fatty acids, and RNA positively influenced surgical wound
healing and immune function in patients undergoing gastrectomy for GC [92,93].

Additionally, immunonutrition has been reported as a safe and feasible nutritional
therapy that positively modulates immune responses after esophagectomy [93]. However,
in another randomized controlled trial, no significant immunomodulatory effect was
observed when comparing immunonutrient-rich EN with standard EN [94].

Lastly, in GI cancer surgery patients, the switch from standard intravenous fluid
to immune-enhancing EN reduced infectious complications by two-thirds, while non-
infectious complications saw a 13.5% reduction. This result suggests that a nutritional
intervention modulating the host immune response may positively influence the rela-
tionship between immune support and postoperative infections [95]. PN administration
of immunonutrients gave similar results. In an interventional clinical study, GI cancer
surgery patients were assigned to two different groups: one group received postoperative
total parenteral nutrition (TPN), and the other group received TPN along with a daily
supplementation of 0.4 g/kg of Gln. Following these interventions, the nutritional status
improved in both groups; however, the group receiving supplementation exhibited signifi-
cantly greater improvement and demonstrated better results in GI function assessment [96].
Lu et al. previously demonstrated that Gln-enriched TPN led to higher serum prealbumin
levels, improved nitrogen balance, and lower levels of inflammatory markers such as IL-6
and C-reactive protein (CRP) compared with standard TPN in postoperative GI cancer
patients [97]. These results suggest that Gln-enriched TPN may enhance both nutritional
and inflammatory status and potentially reduce the risk of infectious complications in these
patients. Regarding the roles of immunonutrition in modulating radio- and chemotherapy
side effects, Gln may shorten the duration of chemotherapy-induced diarrhea but does not
affect its severity [98]. A systematic review evaluating Gln intake among colon and CRC
patients found that Gln may reduce some chemotherapy-induced complications, such as
GI-M and diarrhea, and improve postoperative nitrogen balance, immunity, and wound
healing, whereas Gln had no beneficial effects on the side effects of radio-chemotherapy [99].
On the other hand, long-chain ω-3 fatty acids and fish oil are recommended to improve
body weight, food intake, and other components in patients undergoing chemotherapy
and at risk of weight loss or malnutrition [15].

Anyway, the current evidence does not provide a clear role for immunonutrition
in managing infectious episodes during chemotherapy in cancer patients [100]. Interest-
ingly,ω-3 has shown potential to enhance the effectiveness of chemotherapy through its
synergistic inhibition of cell growth [101]. Mechanistic insights into ω-3’s action were
gained through in vitro studies conducted on CRC cell lines, revealing its antiprolifer-
ative effects [102,103], promotion of apoptosis [101,104], and improved chemotherapy
efficacy [101,102].

The effect of eicosapentaenoic acid (EPA) supplementation in GI patients has been
studied with varying outcomes. In a double-blind, placebo-controlled study involving
advanced cancer patients with weight and appetite loss, daily administration of 1.8 g of
EPA C20:5ω-3 for two weeks did not result in significant improvements in appetite, fatigue,
nausea, overall well-being, caloric intake, nutritional status, or functional abilities compared
with the placebo group [105]. A clinical trial reported that dietary counseling by qualified



Nutrients 2023, 15, 4408 9 of 21

dietitians and the use of EPA-ONS in advanced CRC patients receiving chemotherapy
could help maintain weight and potentially enhance symptom control, nutritional status,
and QoL [106]. A recent study assessed the impact of perioperative EPA supplementation
in patients with localized gastric cancer, as part of a randomized clinical trial. The study
found that, overall, there was no significant survival benefit associated with perioperative
EPA. However, subgroup analyses indicated potential benefits in patients who received
neoadjuvant chemotherapy (NAC) and those with nodal metastasis [107]. Further research
may be needed to clarify the specific patient populations that could benefit from EPA
supplementation. All these results suggest that immunonutrition can help GI cancer
patients in many ways, from perioperative care to symptom reduction and immune system
support (Figure 3).
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Figure 3. Overview of the potential benefits of immunonutrition and microbiota modulation in gas-
trointestinal cancer patient care. The combined effect of nutritional intervention and gut microbiota
modulation can comprehensively improve patient care by reducing infection complications, shorten-
ing the hospital stay, improving the overall nutritional status, ameliorating the host immune response,
and enhancing the effects of conventional anticancer treatments. At the intracellular level, an antipro-
liferative effect, an increase in apoptosis, and the inhibition of cancer invasion after nutritional and
microbiota modulation interventions were described (image created with Biorender.com).

4.2. Calorie Restriction and Fasting

Calorie restriction (CR) is recognized for its anti-inflammatory effects mediated by
various mechanisms, demonstrating a beneficial influence on the prevention and treatment
of conditions characterized by hyper-inflammatory responses. CR is a nutritional interven-
tion that restricts energy intake by 25–30% without causing malnutrition or deprivation of
essential nutrients. Since most dietary energy comes from carbohydrates, energy restriction
indirectly leads to carbohydrate restriction. Accordingly, calorie restriction is assumed to
regulate effector immune activities that use glucose as the primary substrate [108]. Given
that glucose is the primary fuel for cancer cells, calorie restriction emerges as a promising
nutritional therapy for individuals with cancer. CR holds potential in exerting anticancer
effects by triggering molecular pathways that enhance cellular defenses, support DNA
repair, and mitigate oxidative damage [109]. An important aspect of calorie restriction
during cancer treatments is fasting, which prompts distinct responses in cancer cells com-
pared with normal cells [110]. In normal cells, fasting leads to a reduction of proteins and
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enzymes related to cell growth, such as insulin-like growth factor 1 (IGF-1), mammalian
target of rapamycin (mTOR), protein kinase A (PKA), and protein kinase B (PKB/AKT).
This outcome induces growth arrest or reduction in healthy cells, promoting cell survival
and enhancing cellular protection against chemotherapeutic agents—a phenomenon also
referred to as differential stress resistance (DSR). In cancer cells, fasting induces differential
stress sensitization (DSS), rendering them more susceptible to chemotherapeutic agents
and promoting increased cell death [111]. The dual impact of fasting-induced autophagy in
cancer underscores its potential diverse applications in cancer treatment. CR holds promise
in enhancing treatment effectiveness by modulating autophagy and preserving normal cells.
Studies have demonstrated that combining autophagy inhibition with calorie restriction
reduces tumor growth more effectively than individual treatments [111,112]. Fasting is
suggested as a procedure to halt cancer development and tumor growth by suppressing
pathways that activate tumor growth and activating pathways that inhibit tumor growth
in tumor cells, thus preventing disease progression [113,114]. However, it is crucial to
emphasize that these outcomes were observed with prolonged fasting (>48 h). Additionally,
research indicates that short-term fasting can sensitize cancer cells to chemotherapeutic
agents, enhancing the efficacy of radiation and chemotherapy [115,116]. Clinical studies
involving cancer patients undergoing chemotherapy have demonstrated that fasting, even
in the short term, is safe and well tolerated, potentially improving treatment outcomes and
enhancing QoL, although in some cases, fasting may have no notable effect [117–119].

Some of the positive effects of CR and fasting may be related to the impact of diet on
adult stem-cell function [120]. CR enhances intestinal stem cells (ISCs) and neighboring
niche cell numbers and increases stem cells’ self-renewal capacity in response to reduced
mTOR signaling from Paneth cells [121]. CR decreases PI3K/AKT signaling pathways by
reducing circulating insulin/IGF-1 levels and suppresses cell survival in a colon-derived
human cancer cell line (SW620), accompanied by increased expression levels of forkhead
box O (FOXO) target genes [121]. In addition, CR inhibits colon tumor cell (MC38) growth
by regulating NF-κB activation and inflammation-related gene expression [122]. Similarly,
fasting induces ISC self-renewal, mediated by peroxisome proliferator-activated receptor δ
(PPARδ) triggered by the oxidation of free fatty acids released from adipose tissue. This
depends on the nutrient-sensing capacity of the ISCs [120]. Further, Deng et al. showed
that fasting reduced leptin-receptor-positive (Lepr+) cell numbers and, thus, serum leptin
levels. This leads to a decrease in insulin-like growth factor 1 (Igf1) secreted by Lepr+ cells.
As a result, the proliferation of ISCs and progenitor cells is reduced during fasting. It is
noteworthy that Lepr+ mesenchymal cells (MCs) perceive dietary changes. However, no
apoptotic cells were detected in MCs of intestinal crypts after fasting, indicating that Lepr+
cells decrease independently of apoptosis [123]. Unlike other stem cells, intestinal stem cells
coexist with the intestinal microbiota population but live separately in their own integrity.
Therefore, the relationship between the microbiota and ISCs needs to be considered. Gut
microbes can be devastating, given the vital role of the long-term integrity and functionality
of ISCs and progenitor cells. By causing biological damage, the GM promotes the regenera-
tion of the epithelial layer. This leads to defense against pathogens and immunomodulatory
effects [124]. Interestingly, fasting has the potential to exert immunomodulatory effects by
modulating the microbiome. In mice, it was demonstrated that restricting caloric intake led
to GM alterations, specifically an increase in Lactobacillus spp., believed to offer protection
against invading pathogens and to lower inflammatory cytokine levels, and a decrease
in Streptococcacae, known inducers of mild inflammation [125]. Additional probiotic
treatment could further amplify the beneficial effects of fasting. In a pilot study involving
overweight individuals, a 1-week fasting diet followed by a 6-week probiotic intervention
resulted in increased GM diversity and abundance of mucin-degrading bacteria, notably
Akkermansia muciniphila, with the probiotic formula bolstering specific administered gut
microbial populations [126].

Although the effects of calorie restriction and fasting on cancer are promising, cancer-
related clinical conditions such as malnutrition, cachexia, a possibly weakened immune
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system, and susceptibility to infection should be taken into account when evaluating the
effectiveness of long-term fasting interventions alone in cancer treatment [110]. Therefore,
to avoid adverse effects on immune function, it is crucial to implement caloric restriction
and fasting interventions in cancer patients in a controlled manner and to maintain balance
by maintaining adequate caloric intake.

4.3. The Role of Biotics

One promising avenue for GI cancer patients care is the modulation of the GM using
biotics (probiotics, prebiotics, and synbiotics) (Figure 3). Specific probiotic strains of Bifi-
dobacteria, Lactobacilli, E. coli, Propionibacterium, Bacillus, and Saccharomyces can beneficially
modulate TLR activation by reducing the activation of MAPK and NF-κB pathways and
the production of pro-inflammatory cytokines [127]. It is assumed that the Bifidobacterium
longum subsp. longum GT15 strain aims to maintain normal healthy functions by respond-
ing to pro-inflammatory cytokines. In addition, overexpression of heat shock protein 20
(Hsp20), which is known to play a role in reducing inflammation, reduces TNF-α expres-
sion. In the B. longum subsp. longum GT15 strain exposed to TNF-α, the transcription
of the BLGT_RS00625 gene encoding for Hsp20 increased five-fold, suggesting that this
mechanism may be one of the pathways used by Bifidobacteria to reduce inflammation [128].

Moreover, a distinct group of Gram-positive bacteria can predominantly produce
bacteriocins, a group of bacterial peptides, which display antimicrobial activity against
other bacteria [129]. Bacteriocin producers include various genera, such as Pediococcus, Leu-
conostoc, Lactococcus, Enterococcus, Streptococcus, Lactobacillus, and Bifidobacterium [130,131].
Bacteriocins selectively target pathogens, but not commensal GM [132], and exert cytotoxic
activity against cancer cells [133,134]. Intriguingly, some bacteriocins exhibit immunomod-
ulatory properties, thus participating in the maintenance of a balanced crosstalk between
GM and immunity [135]. Indeed, bacteriocins secreted by Bacillus subtilis were described
as stimulators of innate immune response via IL-1β, IL-6, TNF-α, and NO production in
both in vitro cells and mouse peritoneal macrophages [136]. The enhanced phagocytosis of
macrophages correlated with the TLR4 and the NF-κB and MAPK signaling pathways [137].
Treatment of human peripheral blood mononuclear cells (PBMCs) with acidocin A, a bacte-
riocin, resulted in increased production of multiple cytokines and chemokines, including
macrophage inflammatory protein (MIP)-1α, MIP-1β, IL-6, and TNF-α [138]. Moreover,
Lactobacillus plantarum genes encoding production or secretion of bacteriocins were reported
to enhance production of IL-10 over IL-12 and TNF-α induction in dendritic cells (DCs)
and in PBMCs [139,140].

Other immune-modulatory functions exerted by the commensal Bacteroides fragilis are
the secretion of polysaccharide A that is recognized by the heterodimer TLR2/TLR1 in
cooperation with Dectin-1 and induces the cAMP response element-binding protein (CREB)-
dependent expression of anti-inflammatory genes [141]. Bacteroides fragilis can also suppress
the Th17 responses by promoting Tregs through TLR2 signaling [142]. Also, Lactobacillus
reuteri, Lactobacillus murinus, and Helicobacter hepaticus can increase the proportion of IL-10
producing Tregs in mice [143–147].

A randomized, double-blind, placebo-controlled trial in CRC patients undergoing
colon–rectal resection demonstrated the benefits of probiotics. Patients received a com-
bination of Lactobacillus and Bifidobacteria strains, which included Lactobacillus acidophilus,
Lactobacillus lactis, Lactobacillus casei spp., Bifidobacterium longum, Bifidobacterium bifidum,
and Bifidobacterium infantis twice a day for six months. This intervention led to a decrease in
pro-inflammatory cytokines and a significant reduction in post-surgical complications [148].
Another randomized controlled prospective study involving CRC patients administered a
compound of eight bacterial cultures, including various Lactobacillus and Bifidobacterium
strains, showed promising results. Treated patients exhibited a lower frequency of post-
surgical complications, reduced operative and postoperative LOS, and a lower mortality
rate in a six-month postoperative follow-up compared with untreated patients [149]. In a
recent study, 100 CRC patients receiving supplementation with a probiotic containing Bifi-
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dobacterium infants, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus showed
dysbiosis alleviation and increased production of SCFA compared with controls [150]. A
quantitative meta-analysis involving 14 studies and 1566 patients demonstrated a signifi-
cant benefit of probiotics and synbiotics administration in both pre-and post-surgical care,
especially reducing postoperative infections [151]. Moreover, no significant results were
reported in randomized, double-blind controlled studies on patients undergoing ileostomy,
performed to prevent further damage associated with anastomotic leak in CRC patients,
with perioperative administration of Lactobacillus plantarum CJLP243 [152], or of a probiotic
mix (Lactobacillus acidophilus DSM 24735, Lactobacillus acidophilus DSM 24735, Lactobacil-
lus plantarum DSM 24730, Lactobacillus plantarum DSM 24730, Lactobacillus paracasei DSM
24733, Lactobacillus paracasei DSM 24733, Lactobacillus delbrueckii subsp. bulgaricus DSM 2,
Bifidobacterium breve DSM 24732, Bifidobacterium longum DSM 24736 113, Bifidobacterium
longum DSM 24736, Bifidobacterium infantis DSM 24737, Streptococcus thermophilus DSM
24731) [153]. More studies are needed to assess the efficacy of the treatment and subsequent
inclusion of probiotics administration in a protocol before ileostomy [152]. Similar findings
were observed in gastric adenocarcinoma patients undergoing radical gastrectomy, where
probiotics administration reduced levels of inflammatory markers [154].

GI surgery includes several other interventions, such as hepatectomy with extrahepatic
bile duct resection, esophagectomy, and pancreatoduodenectomy, which may result in bac-
terial translocation to mesenteric lymph nodes (MLNs) and from there to the bloodstream.
Since the presence of bacteria in MLNs is directly associated with postoperative infections,
it has been observed how a pre-operative administration of synbiotics can improve the
intestinal microenvironment and prevent postoperative infections in esophagectomy [155].
Hepatectomy that implies extrahepatic bile duct resection and pancreatoduodenectomy is
discussed below [156].

In esophageal cancer, where NAC is recommended as a standard treatment before
surgery [157], it has been observed in a randomized control trial that the co-administration
of synbiotics reduces the toxicity provoked by the chemotherapy treatment and prepares
the intestinal environment for highly invasive surgery, with lower bacterial translocation to
the MLN and to the bloodstream [158].

In more severe conditions, patients with advanced stages of esophageal cancer are
also treated with prophylactic antibiotics during NAC. In a multicenter randomized study,
patients undergoing a pre-operative cycle of NAC were enrolled and randomly assigned ei-
ther antibiotic administration or a symbiotic administration combined with EN. In this trial,
synbiotics administration with EN diminished the side effects of the chemotherapy on the
intestinal tract, such as diarrhea, and resulted in an alternative treatment to antibiotics [159].

Unfortunately, synbiotics administration is not beneficial for all patients, and detecting
microbiota species in patients’ guts prior to chemotherapy may also be predictive of the
efficacy of a co-adjuvant synbiotics treatment [160]. As tested by Sugimoto et al. in a
retrospective exploratory study, Anaerostipes hadrus and B. pseudocatenulatum may mitigate
chemotherapy side effects and allow the protective role of synbiotics + EN administra-
tion during NAC [160]. Considering malignant hepatic neoplasms, hepatic resection is a
standard treatment procedure in many cases, but the mortality rate of the surgery is still
moderately high, about 3.5% [161]. A meta-analysis of a total of four studies involving
205 patients assessed that the pre-operative administration of prebiotics reduced postoper-
ative infections and the need for antibiotics [162]. However, in a more recent randomized
controlled trial, patients with resectable hepatocellular carcinoma administered with probi-
otics prior to the resection showed no beneficial results regarding bacteria translocation or
post-surgical infections [163]. Finally, in pancreatic cancer patients, where the intestinal
dysbiosis has been documented [164], the use of pre and probiotics could be a therapeutic
approach to alleviate side effects of chemotherapy/radiotherapy, but no significant results
have yet been reported. For instance, a trial involving the administration of M-20 (a bio-
therapeutic agent of soybean fermentation metabolites and microorganisms that reproduce
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the intestinal environment) to prevent cachexia in pancreatic cancer patients treated with
chemotherapy is at its early stage of recruiting (NCT04600154).

While the use of probiotics is generally safe and well tolerated in the general pop-
ulation, their application in vulnerable subpopulations requires careful consideration of
several factors, including a thoughtful probiotic selection. For this purpose, the safety
and efficacy of diverse formulations used as adjunctive probiotics in oncological surgery
have been assessed in various studies [165–168]. In a systematic review, Cogo et al. eval-
uated 21 different probiotics formulations in oncological surgery, within 36 randomized
controlled trials involving 3305 participants and six nonrandomized/observational cohort
studies [165]. Their findings support the belief that the effects of probiotics are specific
to the product and formulation, with the most promising results obtained with the post-
surgery oral supplementation of Lactobacillus acidophilus LA-5 + Lactobacillus plantarum +
Bifidobacterium lactis BB-12 + Saccharomyces boulardii in CRC patients. With regards to safety,
among the randomized controlled trials, 47% of patients did not furnish specific data on
side effects, 25% did not experience adverse events, while 28% reported common side
effects being mild and encompassing nausea and flatulence, indicating a favorable safety
profile. However, a small proportion of patients (6%) reported elevated rates of specific
complications with the probiotics arms, including pancreatic fistula and 30-day readmis-
sion [165]. These findings underscore the necessity for a cautious and ongoing evaluation
of the safety profile of probiotics, especially in the context of surgical interventions for
individuals with cancer.

5. Conclusions

In light of the intricate and multifaceted factors contributing to nutritional imbal-
ances in GI cancer patients, effective treatments necessitate a comprehensive and multi-
disciplinary approach. Immunonutrition and microbiota modulation emerge as promising
avenues to enhance nutritional status, regulate immune response, promote tissue repair,
and modulate the side effects of anticancer drugs. Bridging the nutritional gap by em-
ploying immunonutrients and microbiota modulators early during disease onset can help
stabilize weight loss, enhance treatment tolerability, reduce the decline in performance
status, prevent infections, and improve survival rates. Unfortunately, clinical practice
often involves late-stage assessments, where multiple nutritional deficiencies have already
surfaced, and cancer cachexia has become resistant to conventional treatments, potentially
yielding contradictory results. Therefore, it is imperative to acknowledge the need for more
rigorous clinical trials to thoroughly assess the impact of these interventions.
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