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Abstract: Associations of omega-3 fatty acids (n-3) with allergic diseases are inconsistent, perhaps
in part due to genetic variation. We sought to identify and validate genetic variants that modify
associations of n-3 with childhood asthma or atopy in participants in the Vitamin D Antenatal Asthma
Reduction Trial (VDAART) and the Copenhagen Prospective Studies on Asthma in Childhood
2010 (COPSAC). Dietary n-3 was derived from food frequency questionnaires and plasma n-3 was
measured via untargeted mass spectrometry in early childhood and children aged 6 years old.
Interactions of genotype with n-3 in association with asthma or atopy at age 6 years were sought for
six candidate genes/gene regions and genome-wide. Two SNPs in the region of DPP10 (rs958457 and
rs1516311) interacted with plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively)
and with plasma n-3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) in associationwith
atopy. Another DPP10 region SNP, rs1367180, interacted with dietary n-3 at age 6 years in VDAART
(p = 0.009) and with plasma n-3 at age 6 years in COPSAC (p = 0.004) in association with atopy. No
replicated interactions were identified for asthma. The effect of n-3 on reducing childhood allergic
disease may differ by individual factors, including genetic variation in the DPP10 region.

Keywords: omega-3; polyunsaturated fatty acids; asthma; allergy; genotype

1. Introduction

Increases in the prevalence of allergic diseases, including aeroallergen sensitization
and asthma, have co-occurred over recent decades with dietary changes in industrialized
countries. These changes have included reductions in omega-3 polyunsaturated fatty acid
(n-3 PUFA) intake [1]. N-3 PUFA has well-described anti-inflammatory and pro-resolving
immunologic effects [2]. These findings suggest a potential causal role of PUFA in allergic
disease pathobiology. However, reported associations of PUFA with atopy and asthma in
childhood have been inconsistent [3,4].
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Although the diet is the primary source of PUFA, bioactive metabolites can be pro-
duced endogenously from α-linolenic acid and linoleic acid via several desaturation and
elongation steps. Human genetic variants in this pathway have been previously linked to
both PUFA levels and to differential associations between PUFA and several non-allergic
diseases, including cholesterol and triglyceride levels, cancer, and heart disease [5]. When it
comes to allergic diseases, investigations of the role of genetic variation in PUFA metabolism
have focused almost entirely on the genes FADS1 and FADS2, which encode rate-limiting
steps in both n-3 and omega-6 (n-6) PUFA metabolic pathways [6–12]. Emerging evidence
also implicates ELOVL6, which encodes another enzyme involved in PUFA metabolism, in
asthma pathophysiology [13].

In this ancillary observational study of data from the Vitamin D Antenatal Asthma
Reduction Trial (VDAART), we tested the hypothesis that the effects of n-3 PUFA on the
risk of childhood atopy and asthma are modified by host genotypes. We investigated target
genes including, but not limited to, the FADS region. We sought replication of the key
findings in the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC)
birth cohort.

2. Materials and Methods

Study Participants and Setting: Detailed methods are provided in the Supplementary
Materials. Analyses were performed using data from the VDAART clinical trial (https:
//clinicaltrials.gov/ct2/show/NCT00920621, accessed on 4 May 2023) and replication
of the findings was sought in data from the COPSAC clinical trial. VDAART [14] is
a double-blind placebo-controlled multi-site study on the effects of prenatal vitamin D
supplementation on asthma and allergy in offspring. The study protocol was approved
by the institutional review boards at each participating institution and at Brigham and
Women’s Hospital. COPSAC [6] is a Danish birth cohort study on the development of
asthma and allergies. The COPSAC2010 study was approved by the local ethics committee
with a separate approval for the vitamin D administration during pregnancy RCT, by the
Danish Data Protection Agency, and by the Danish Health and Medicines Authority. All
participants provided written informed consent.

Dietary n-3 PUFA (VDAART): Food frequency questionnaire (FFQ) responses were
used to estimate daily calorie and n-3 PUFA intake (eicosapentaenoic acid (EPA) + do-
cosahexaenoic acid (DHA)) when the offspring were 3 and 6 years old [15,16]. To account
for total energy intake, nutrient density was calculated for each nutrient by dividing
the nutrient intake by the total calorie intake and all analyses of nutrient densities in-
cluded estimated calorie intake as a covariate [17]. n-3 nutrient density was analyzed as a
continuous variable.

Plasma n-3 PUFA (VDAART and COPSAC): Participants in VDAART and COPSAC
provided plasma samples for metabolomics analysis at age 3 and 6 years (VDAART)
and 18 months and 6 years (COPSAC). Metabolomic profiling by mass spectrometry was
performed at Metabolon, Inc. (Research Triangle Park, Morrisville, NC, USA). A summary
variable was created for n-3 plasma PUFA by taking the sum of EPA and DHA. Plasma n-3
was analyzed as a continuous variable after log-normalization and standardization.

Clinical Outcomes and Covariates: Asthma and atopy were ascertained at age 6 years
as described in the Supplementary Materials, with atopy criteria based on aeroallergen-
specific IgE measurements in both cohorts and skin testing data additionally available for
the COPSAC participants.

Genotyping and Candidate Gene Selection: Genotyping was performed in VDAART
and COPSAC participants using the Illumina Infinium HumanOmniExpressExome Bead
chip. We selected the candidate genes/gene regions FADS region, ELOVL2, ELOVL5,
DPP10, PTGES, and PTGS2 based on evidence of associations with both PUFA and with
asthma and allergy, with details available in the Supplementary Materials.

Statistical Analysis: Model covariates were selected a priori. Covariates in the analyses
of the VDAART data were sex, race (black vs. non-black), study center, VDAART treatment

https://clinicaltrials.gov/ct2/show/NCT00920621
https://clinicaltrials.gov/ct2/show/NCT00920621
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assignment and the top four genotype PCs. Covariates in COPSAC data were sex, COPSAC
treatment assignment and the top four genotype PCs. Analyses of dietary n-3 PUFA were
additionally adjusted for estimated daily calorie intake. We performed logistic regression
analyses under an additive genetic model including the main and interaction effects of
genotype and n-3 PUFA. These analyses were performed on SNPs within 50,000 base pairs
of candidate genes/gene regions in the targeted analysis, and on a genome-wide basis.
Findings were considered statistically significant on a genome-wide basis if they reached a
level suggestive of statistical significance (p < 1 × 10−5) in VDAART and reached a level
of statistical significance with p < 0.01 and the same direction of association in COPSAC.
The candidate gene analysis results were considered statistically significant if they yielded
p < 0.01 in VDAART and p < 0.05 in COPSAC with the same direction of association. We
also applied a more stringent false discovery rate (FDR) correction for multiple testing.
Removal of statistically significant SNPs within 1000 kB regions that were in high LD
(r2 > 0.05) was performed by LD clumping.

3. Results
3.1. Plasma and Dietary n-3 PUFA

A total of 626 and 575 VDAART participants had available genotype and dietary
n-3 measurements at ages 3 and 6 years, respectively (Figure 1). Of these, 231 (37%
of 626) also had plasma n-3 measurements at age 3 years and 366 (64% of 575) at age
6 years. Dietary n-3 levels were similar between subjects with and without available plasma
n-3 (t-test p = 0.24 at age 3 years and 0.94 at age 6 years). Plasma n-3 and dietary n-3
measurements exhibited small but statistically significantly correlations at both ages 3
and 6 years (Pearson rho = 0.14, p = 0.04 at age 3 years; rho = 0.21, p < 0.001 at age 6 years;
linear regression adjusted for daily calorie intake p = 0.02 at age 3 years and p < 0.01 at age
6 years, Figure S1), similar to previously reported small-to-moderate correlations between
circulating and dietary PUFA [18]. Accordingly, we analyzed plasma and dietary n-3
separately in subsequent analyses.
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Of the 87 food frequency questionnaire items, several food items exhibited correlations
with plasma and/or dietary n-3 measurements, including eggs (Spearman rho range
0.06–0.20), non-fried fish (Spearman rho range 0.19–0.26) and fried fish (Spearman rho
range = 0.05–0.17, Figure S2).

3.2. Subject Characteristics

Baseline characteristics of the VDAART study subjects are displayed in Tables 1 and 2
and were balanced between subjects with plasma or dietary n-3 values above vs. below
the median, although dietary n-3 at age 3 years was more likely to be above the median in
black than white subjects (Table 1). There was limited overlap between asthma and atopy
phenotypes; out of 199 subjects with atopy, 42 (21%) also had asthma.

Table 1. Association of plasma and dietary n-3 at age 6 years with baseline characteristics. Baseline
characteristics are also shown for the overall VDAART cohort. p values are for the t-test for BMI and
otherwise for the chi-square test. Percentages may not sum to 100 due to rounding. BMI z scores are
based on the Centers for Disease Control and Prevention (CDC) growth charts.

Dietary Omega-3 Plasma Omega-3

Analyzed
Subjects
(n = 575)

≤Median
(n = 288)

>Median
(n = 287) p Value ≤Median

(n = 183)
>Median
(n = 183) p Value VDAART

Cohort (n = 806)

Sex—number (%) 0.80 0.40

Male 300 (52) 148 (51) 152 (53) 102 (56) 93 (51) 421 (52)

Female 275 (48) 140 (49) 135 (47) 81 (44) 90 (49) 385 (48)

Race—number (%) 1.00 0.50

Black 272 (48) 137 (48) 135 (47) 80 (44) 90 (49) 390 (48)

White 191 (34) 95 (33) 96 (33) 65 (36) 57 (31) 265 (33)

Other 112 (19) 56 (19) 56 (20) 38 (21) 36 (20) 151 (19)

Hispanic—number (%) 183 (32) 91 (32) 92 (32) 1.00 69 (38) 64 (35) 0.70 273 (34)

VDAART treatment
group—number (%) 0.30 0.50

4400 IU/day vitamin D 294 (51) 154 (53) 140 (49) 87 (48) 95 (52) 405 (50)

400 IU/day vitamin D 281 (49) 134 (47) 147 (51) 96 (52) 88 (48) 401 (50)

Study Center—number (%) 0.40 0.90

Boston 137 (24) 65 (23) 72 (25) 48 (26) 49 (27) 240 (30)

St. Louis 243 (42) 130 (45) 113 (39) 72 (39) 67 (37) 292 (36)

San Diego 195 (34) 93 (32) 102 (36) 63 (34) 67 (37) 274 (34)

Maternal education—number (%) 0.50 0.70

<High school 75 (13) 37 (13) 38 (13) 29 (16) 24 (13) 100 (12)

High school or
technical school 161 (28) 84 (29) 77 (27) 55 (30) 54 (30) 241 (30)

Some level of college education 133 (23) 72 (25) 61 (21) 42 (23) 38 (21) 192 (24)

College graduate or
higher 206 (36) 95 (33) 111 (39) 57 (31) 67 (37) 273 (34)

Birth by cesarean
section—number (%) 166 (29) 89 (31) 77 (27) 0.30 52 (28) 48 (26) 0.70 239 (30)

Preterm birth < 37 weeks’
gestation—number (%) 50 (9) 28 (10) 22 (8) 0.50 19 (10) 11 (6) 0.20 71 (9)

Exclusive breastfeeding for first 4
months of life—number (%) 185 (34) 87 (32) 98 (37) 0.30 61 (36) 67 (39) 0.60 247 (33)

BMI (kg/m2) at age 6 years—mean
(SD) 17 (2.8) 17 (2.6) 17 (2.9) 0.40 17 (2.6) 17 (2.8) 0.30 17 (2.9)

BMI z score at age 6 years—mean
(SD) 0.54 (1.16) 0.62 (1.05) 0.45 (1.26) 0.11 0.55 (1.22) 0.45 (1.17) 0.42 0.57 (1.19)

Missing data: breastfeeding missing for 38 subjects; BMI missing for 112 subjects.
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Table 2. Association of plasma and dietary n-3 at age 3 years with baseline characteristics. Baseline
characteristics are also shown for the overall VDAART cohort. p values are for the t-test for BMI and
otherwise for the chi-square test. Percentages may not sum to 100 due to rounding. BMI z scores are
based on the Centers for Disease Control and Prevention (CDC) growth charts.

Dietary Omega-3 Plasma Omega-3

Analyzed
Subjects
(n = 626)

≤Median
(n = 313)

>Median
(n = 313) p Value ≤Median

(n = 116)
>Median
(n = 115) p Value VDAART

Cohort (n = 806)

Sex—number (%) 0.63 0.74

Male 325 (52) 166 (53) 159 (51) 60 (52) 63 (55) 421 (52)

Female 301 (48) 147 (47) 154 (49) 56 (48) 52 (45) 385 (48)

Race—number (%) 0.03 0.26

Black 299 (48) 135 (43) 164 (52) 54 (47) 54 (47) 390 (48)

White 201 (32) 115 (37) 86 (27) 41 (35) 33 (29) 265 (33)

Other 126 (20) 63 (20) 63 (20) 21 (18) 28 (24) 151 (19)

Hispanic—number (%) 206 (33) 113 (36) 93 (30) 0.11 38 (33) 47 (41) 0.25 273 (34)

VDAART treatment
group—number (%) 0.07 0.84

4400 IU/day vitamin D 312 (50) 168 (54) 144 (46) 58 (50) 55 (48) 405 (50)

400 IU/day vitamin D 214 (50) 145 (46) 169 (54) 58 (50) 60 (52) 401 (50)

Study Center—number (%) 0.51 0.18

Boston 157 (25) 79 (25) 78 (25) 22 (19) 24 (21) 240 (30)

St. Louis 256 (41) 134 (43) 122 (39) 56 (48) 42 (37) 292 (36)

San Diego 213 (34) 100 (32) 113 (36) 38 (33) 49 (43) 274 (34)

Maternal education—number (%) 0.61 0.18

<High school 84 (13) 44 (14) 40 (13) 11 (10) 18 (16) 100 (12)

High school or
technical school 184 (29) 94 (30) 90 (29) 32 (38) 27 (24) 241 (30)

Some level of college education 142 (23) 64 (20) 78 (25) 35 (30) 24 (21) 192 (24)

College graduate or
higher 216 (35) 111 (36) 105 (34) 38 (33) 46 (40) 273 (34)

Birth by cesarean
section—number (%) 180 (29) 90 (29) 90 (29) 1.00 41 (35) 35 (30) 0.51 239 (30)

Preterm birth < 37 weeks’
gestation—number (%) 49 (8) 31 (10) 18 (6) 0.07 11 (9) 6 (5) 0.32 71 (9)

Exclusive breastfeeding for first 4
months of life—number (%) 196 (33) 94 (32) 102 (35) 0.50 36 (34) 34 (31) 0.77 247 (33)

BMI (kg/m2) at age 3 years—mean
(SD) 16.6 (1.7) 16.6 (1.8) 16.5 (1.7) 0.52 16.9 (2.1) 16.5 (1.8) 0.12 16.6 (1.8)

BMI z score at age 3 years—mean
(SD) 0.37 (1.14) 0.39 (1.17) 0.35 (1.12) 0.64 0.58 (1.24) 0.32 (1.17) 0.10 0.40 (1.16)

Missing data: mode of delivery missing for 1 subject; breastfeeding missing for 40 subjects; BMI missing for
63 subjects.

We sought replication of the VDAART results using data from 583 participants in
the COPSAC study with available genotype data and plasma n-3 measurements at either
age of 18 months or 6 years. The frequency of atopy and asthma outcomes in VDAART
and COPSAC participants are provided in Table 2. Dietary n-3 measurements were not
available in COPSAC. Of note, all COPSAC participants were white, while VDAART
participants were racially diverse (21% white, 40% black, 39% other race, Table 3). We
stratified findings in VDAART by black vs. non-black race both as a sensitivity analysis
of significant results and to seek associations that may be missed in the whole-sample
analysis due to genetic heterogeneity. Dichotomous stratification by black vs. non-black
race was selected to preserve sample size and because, based on the distribution of the top
two genotype principal components, this variable better reflected genetic variation than
white vs. non-white race (Figure S3).
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Table 3. Characteristics of VDAART and COPSAC participants with genotype and either plasma or
dietary n-3 data available. Numbers (%) are displayed for each characteristic. Minor allele frequencies
(MAF) and Hardy–Weinberg Equilibrium (HWE) p values for relevant genotypes are shown, where
HWE p > 1 × 10−6 indicates no deviation from expected Mendelian genetic proportions and is a
routine quality control genotyping requirement.

VDAART [14]
(n = 575)

COPSAC [6]
(n = 583)

Male sex 327 (52) 300 (51)

White race 204 (33) 583 (100)

Black race 303 (48) 0 (0)

Other race 121 (19) 0 (0)

Asthma 107 (18) 37 (6)

Atopy 199 (55) 34 (6) by skin testing
89 (15) by serum specific IgE

Offspring atopy risk in recruitment population Elevated genetic risk General population

rs958457 MAF 0.23 0.24

rs958457 HWE p value 0.91 1.00

rs1516311 MAF 0.08 0.21

rs1516311 HWE p value 0.13 0.55

rs1367180 MAF 0.26 0.19

rs1367180 HWE p value 0.11 0.60
Missing data: atopy status unknown in 274 VDAART and 102 (skin prick)/110 (IgE) COPSAC subjects. Asthma
status unknown in 35 VDAART and 28 COPSAC subjects.

3.3. Associations of n-3 PUFA with Asthma and Atopy

Plasma n-3 at age 6 years was inversely associated with asthma in the analyses adjusted
for sex, race, study center and VDAART treatment assignment (adjusted logistic regression
OR = 0.45, 95% CI 0.23–0.82, p = 0.01), but was not associated with atopy (OR 0.85, 95%
CI 0.54–1.32, p = 0.48). Dietary n-3 at age 6 years exhibited inverse but non-significant
associations with both asthma (OR = 0.97, 95% CI 0.93–1.01, p = 0.15) and atopy (OR = 0.98,
95% CI 0.95–1.01, p = 0.21) in models additionally adjusted for total daily calorie intake.
At age 3 years, neither plasma nor dietary n-3 were associated with asthma or atopy
(all p > 0.05). In COPSAC participants, plasma n-3 at age 18 months or 6 years was not
associated with either asthma or atopy (all p > 0.05 in logistic regression models adjusted
for sex and treatment assignment).

3.4. Targeted Analysis

In the SNP x n-3 interaction analyses limited to six targeted genes selected based on the
literature review (FADS, ELOVL2, ELOVL5, DPP10, PTGES, and PTGS2), out of 6025 SNPs
that entered into the analysis, a total of 174 SNPs passed our predetermined significance
threshold (p < 0.01) in VDAART for the outcome of asthma (61 SNPs interacted with dietary
n-3 at age 3 years; 9 with dietary n-3 at age 6 years; 40 with plasma n-3 at age 3 years;
64 with dietary n-3 at age 6 years), and 92 SNPs were significant for the outcome of atopy
(21 SNPs interacted with dietary n-3 at age 3 years; 28 with dietary n-3 at age 6 years;
35 with plasma n-3 at age 3 years; 8 with dietary n-3 at age 6 years). Of the SNPs passing
significance thresholds in VDAART (p < 0.01), 21 also passed the significance threshold
in COPSAC (p < 0.05; 9 and 11 SNPs interacted with n-3 at age 18 months in association
with atopy as defined by aeroallergen skin testing, respectively, and 1 SNP interacted with
n-3 at age 6 years in association with atopy by skin testing). To reduce multiple testing
of highly correlated SNPs, LD clumping was performed using an r2 threshold of 0.05
such that pairs of SNPs within a 1000 kB window with r2 > 0.05 were clumped together
and the most statistically significant among them was carried forward while the others
were excluded. This identified a total of seven independent SNPs that passed the p value
significance thresholds in both cohorts, including six in the region of the gene DPP10 and
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one in the region of the gene ELOVL2. Of these seven SNPs, three demonstrated concordant
directions of association in both VDAART and COPSAC participants in covariate-adjusted
logistic regression models of n-3 associations with clinical outcomes, stratified by genotype
(Table 4). All three replicated SNPs were in the region of the gene DPP10, and all exhibited
associations with the outcome of atopy as defined by IgE testing in VDAART and skin
testing in COPSAC, with no significant interactions found with the outcome of asthma.
While all three replicated SNPs met our prespecified criteria for statistical significance, they
were no longer statistically significant after more stringent correction for multiple testing
(FDR > 0.05).

Table 4. SNPs that interacted with n-3 regarding allergic outcomes with concordant directions of
associations in both VDAART (p < 0.01) and COPSAC (p < 0.05) in the region of DPP10. Adjusted
odds ratios and 95% confidence intervals from genotype-stratified logistic regression models are
displayed for the associations of n-3 with atopy. Covariates in analyses of VDAART data were
sex, race (black vs. non-black), study center, VDAART treatment assignment and the top four
genotype PCs. Covariates in COPSAC data were sex, COPSAC treatment assignment and the top
four genotype PCs.

Interaction
p Value 0 Minor Alleles 1 or 2 Minor Alleles

CHR ID VDAART
n-3

n-3 Time
Point Outcome Minor

Allele
VDAART
Results

COPSAC
Results
(Atopy
by IgE)

COPSAC
Results
(Atopy
by SPT)

VDAART
Results

COPSAC
Results
(Atopy
by IgE)

COPSAC
Results

(Atopy by
SPT)

2 rs1367180 Dietary 6 years Atopy T
VDAART:

0.009
COPSAC:

0.004

0.63
(0.46,
0.84)

p = 0.002

0.77
(0.56,
1.05)

p = 0.10

0.73
(0.46,
1.19)

p = 0.22

1.20
(0.91,
1.60)

p = 0.21

1.26
(0.80,
2.00)

p = 0.32

2.56 (1.19,
5.50)

p = 0.02

2 rs958457 Plasma 18
months
in COP-
SAC/3
years in

VDAART

Atopy G
VDAART:

0.007
COPSAC:

0.01

2.21
(0.76,
7.07)

p = 0.16

1.24
(0.90,
1.71)

p = 0.19

0.99
(0.59,
1.66)

p = 0.96

0.10
(0.01,
0.60)

p = 0.02

0.74
(0.49,
1.10)

p = 0.14

0.39 (0.17,
0.89)

p = 0.03

2 rs1516311 Plasma Atopy A
VDAART:

0.003
COPSAC:

0.02

1.59
(0.65,
4.04)

p = 0.32

1.05
(0.80,
1.36)

p = 0.74

0.90
(0.56,
1.42)

p = 0.64

0.02
(0.001,
0.31)

p = 0.01

0.68
(0.32,
1.41)

p = 0.30

0.22 (0.05,
0.91)

p = 0.04

Abbreviations: SPT = skin prick test.

SNPs rs958457 and rs1516311, both DPP10 intron variants, exhibited interactions with
plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively) and with plasma n-
3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) associated with the outcome
of atopy. Specifically, individuals with at least one minor allele (G for rs958457, n = 61
in VDAART and n = 188 in COPSAC; A for rs1516311, n = 31 in VDAART and n = 92 in
COPSAC) exhibited a negative association of n-3 with atopy and individuals homozygous
for the major allele (rs958457: n = 84 in VDAART and n = 243 in COPSAC; rs1516311:
n = 114 in VDAART and n = 339 in COPSAC) exhibited a positive association of n-3 with
atopy (Table 4, Figure 2). These two SNPs demonstrated a small positive correlation with
one another (allele dosage Pearson rho = 0.32, p < 0.01).

The third significant SNP, rs1367180, 21,399 bases upstream of DPP10, exhibited an
interaction with dietary n-3 at age 6 years in VDAART (p = 0.009) and with plasma n-3 at
age 6 years in COPSAC (p = 0.004). Specifically, individuals with at least one minor allele
(T, n = 163 in VDAART and n = 151 in COPSAC) exhibited a positive association of n-3
with atopy and individuals homozygous for the major allele (n = 197 in VDAART and
n = 301 in COPSAC) exhibited a negative association of n-3 with atopy (Table 4, Figure 2).
This DPP10 region SNP did not exhibit a significant interaction with plasma n-3 for atopy
in VDAART (p = 0.20 for all subjects, p = 0.23 for black subjects, p = 0.23 for non-black
subjects), although similar directions of association were observed, particularly among
non-black subjects (Figures 2 and 3A).
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Figure 2. Associations of n-3 and atopy in VDAART and COPSAC participants stratified by rs958457
and rs1516311 genotypes (A) and rs1367180 genotype (B). Odds ratios, 95% confidence intervals and
p values for interaction tests from covariate-adjusted logistic regression analyses under an additive
genetic model are provided. Abbreviations: SPT = skin prick test.

In addition to aeroallergen skin prick testing, COPSAC participants underwent
aeroallergen-specific IgE measurement. There were 491 COPSAC participants with data
available on atopy by skin testing, 475 with available IgE measurements and 430 with both.
There were 34 participants who met the criteria for atopy by skin testing and 89 by IgE
measurement. Most (28 of 34, 82%) of those who met the criteria for atopy by skin testing
also met the criteria for atopy by IgE measurement. A smaller proportion of COPSAC
subjects exhibited atopy as defined by at least one positive skin prick test compared to
those with atopy as defined by at least one elevated allergen-specific IgE test (6% vs. 15%,
Table 3). Analyses of the association between omega-3 and atopy by allergen-specific IgE
in COPSAC participants, stratified by genotypes for the three significant DPP10 region
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SNPs (rs958457, rs1516311 and rs136718), yielded similar results to those for the outcome
of atopy by skin prick testing (Table 4, Figure 2).
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Figure 3. Associations of n-3 with atopy stratified by significant DPP10 region SNP genotypes
and by race in VDAART participants. (A) Associations of plasma omega-3 at age 6 years with
atopy, stratified by rs1367180 genotype. (B) Associations of dietary omega-3 at age 6 years with
atopy, stratified by rs1367180 genotype. (C) Associations of plasma omega-3 at age 3 years with
atopy, stratified by rs958457 genotype. (D) Associations of plasma omega-3 at age 3 years with atopy,
stratified by rs1516311 genotype. Interaction p values from logistic regression analyses under an
additive genetic model are shown. p = NA indicates insufficient sample size for analysis.

Omega-6 PUFA could mechanistically compete with n-3 or confound associations
between n-3 and atopy. Therefore, we performed sensitivity analyses adjusting for omega-6
PUFA and found that all three significant interactions between DPP10 region SNPs and n-3
on atopy were preserved (all p < 0.01).

In the analyses stratified by race in VDAART, associations were largely preserved,
although the interaction terms reached a nominal level of statistical significance only in
non-black subjects for the interaction of n-3 at age 6 years and rs1367180 (p = 0.01, p range
otherwise 0.05–0.11 in race-stratified analyses with sample sizes insufficient to estimate
interaction of n-3 and rs1516311 in black subjects, Figure 3). However, the analyses stratified
by race had a limited sample size and should be regarded as exploratory.

In the main effect adjusted linear and logistic regression models, none of the three
replicated DPP10 region SNPSs were associated with either plasma n-3, dietary n-3 or atopy
(p > 0.05 for all analyses in VDAART and COPSAC), with the following exception: rs948457
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was inversely associated with atopy based on IgE testing in COPSAC (OR = 0.62, 95%
CI 0.40–0.97, p = 0.04).

A DPP10 SNP rs11693320 that was previously reported to interact with n-3 PUFA
regarding lung function (FVC) [19] exhibited no significant interactions with n-3 PUFA for
either atopy or asthma (all p > 0.05), nor was a FADS region SNP (rs1535) that was previously
found to interact with dietary n-3 intake associated with incident childhood asthma [8]
and with prenatal fish oil supplementation associated with offspring asthma [6]. The
three significant DPP10 SNPs identified in our analysis correlated poorly with rs11693320
(allele dosage Pearson correlation range −0.06–0.03, all p > 0.05; linkage disequilibrium r2

range 0.001–0.006). Likewise, these SNPs exhibited poor correlation in the data from the
1000 Genomes Project (R2 range = 0.002–0.004), suggesting that these two SNPs are not in
linkage disequilibrium [20].

We found no other significant interactions between n-3 and other candidate genes
or gene regions including FADS, ELOVL2, ELOVL5, PTGES and PTGS2. For the asthma
outcome, there were no candidate gene SNPs that reached our threshold for significant
replication in the VDAART and COPSAC cohorts.

3.5. Genome-Wide Analysis

Manhattan plots of genome-wide association study results are shown in Figure S4.
In the genome-wide association analyses of interactions with n-3, no SNPs reached our
threshold for significant replication in the VDAART and COPSAC cohorts for either atopy
or asthma outcomes.

4. Discussion

Previously reported associations between n-3 and allergic outcomes have been in-
consistent [3,4]. This may be due in part to genetic variation between study populations,
including in the region of DPP10. We identified three SNPs in the region of the gene DPP10
that were associated with differential associations of n-3 PUFA with atopy in 6-year-old
children. These findings occurred both in a racially diverse United States sample (VDAART)
and in a Caucasian sample of Danish children (COPSAC). Specifically, rs1367180, upstream
of DPP10, modified the association of n-3 at age 6 years with atopy, and rs958457 and
rs1516311 modified the association of n-3 at age 18 months (in COPSAC) and 3 years
(in VDAART) with atopy. The latter two SNPs, rs958457 and rs1516311, exhibited a small
positive correlation. Therefore, these two SNPs may not represent independently asso-
ciated SNPs but may instead mark a region of possible casual significance. The finding
of different DPP10 region SNPs modifying n-3 associations at different ages suggests the
complex regulation of expression in this region, but consistent potential import of DPP10
across childhood.

The gene DPP10 has been associated with asthma in prior studies [21–24]. It encodes
dipeptidyl peptidase-like 10, a membrane protein that binds specific voltage-gated potas-
sium channels and modulates potassium trafficking. It has been thought to possibly impact
neurologic control of smooth muscle function in asthma [19]. DPP10 has not been, to our
knowledge, previously linked directly to PUFA metabolism. However, a genotype x n-3
interaction study of pulmonary function in adults found an interaction for forced vital
capacity (FVC) between the n-3 docosahexaenoic acid (DHA) and a SNP in DPP10 [19].
This previously identified SNP differed from the SNP identified in our analysis and the
two do not appear to be in linkage disequilibrium either in our sample or using the 1000
Genomes data. This suggests that they may have independent or age-dependent effects on
the associations of n-3 fatty acids with pulmonary function or allergic diseases.

The prior literature on genetic variants as effect modifiers of n-3 associations with
allergic outcomes have focused predominantly on the FADS region. FADS1 and FADS2
encode rate-limiting enzymes in the metabolism of both n-3 and n-6 PUFA and are located
in the FADS region on chromosome 11. Multiple studies have found associations between
FADS SNPs and both PUFA levels and eczema [9–11]. Prior studies have also found that



Nutrients 2023, 15, 2416 11 of 14

the FADS genotype modifies associations of circulating PUFA or dietary PUFA intake with
hay fever [7], eczema [7,12], and asthma [6–8]. We were not able to replicate previously
reported findings of FADS variant interactions with n-3 on asthma or atopy, and this may
have been a result of our limited power due to the small sample size. Our power was
likely further reduced by the presence of genetic heterogeneity in the racially and ethnically
diverse VDAART study sample, although this feature is a strength in that it increases the
generalizability of our findings.

Our study was subject to additional limitations. Plasma n-3 measurements were based
on untargeted metabolomics profiling and may be less accurate than targeted, absolute
quantification of circulating n-3. There were significant differences between the COPSAC
and VDAART study populations beyond distributions of race/ethnicity, including differ-
ences in the earlier time point of n-3 measurement (age 18 months in COPSAC and age 3
years in VDAART). Additionally, VDAART study subjects were at elevated genetic risk of
atopy and COPSAC subjects were unselected healthy children. Finally, the COPSAC study
included a randomized clinical trial of fish oil supplementation during pregnancy, which
could impact n-3 homeostasis in offspring, although the results were adjusted for trial
treatment assignment. Greater harmonization of study populations and clinical outcomes
may have increased our ability to replicate the results. Our sample size was relatively small,
and this may have reduced the precision of our results and contributed to the failure of
our significant results to survive a more stringent correction for multiple testing. However,
given the presence of directionally consistent associations in two cohorts passing our pre-
specified threshold for statistical significance, we believe our findings are worthy of future
study. Finally, fatty acids are oxidized over time and the accuracy of our n-3 measurements
may have been reduced due to the sample storage time. However, this measurement bias
is expected to be non-differential by genotype, n-3 level and clinical outcomes.

In conclusion, while limited by the relatively small sample size and associative (not
causal) findings, our results add to the existing literature suggesting that n-3 PUFA may
be effective in reducing childhood allergic disease. This intervention may differ based on
individual factors, including genetic variation. While the emphasis in this subject area
has been on the FADS region, our data suggest that variation in the DPP10 region may
also be of relevance in precision medicine approaches to asthma management through n-3
PUFA supplementation.
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