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Abstract: Objective: Metabolic Syndrome (MetS) affects hundreds of millions of individuals and
constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the
core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance,
fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array
of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known
about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms
responsible for their effect. Methods: We explored the impact of a metabolic enhancer (ME), consisting
of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity,
hepatic steatosis and atherogenic serum profile in mice. Results: Here we show that a diet-based
ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis
in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation,
thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-
induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME
were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that
ME exerts it protective effect partly in a PCSK9-dependent manner. Conclusions: Our findings
suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and
cardiovascular risk and that they show similar effects as exercise training.

Keywords: NASH; NAFLD; PCSK9; ROS ER stress

1. Introduction

Metabolic Syndrome (MetS) consists of a cluster of interrelated risk factors, including
obesity, hypertension, insulin resistance and dysglycemia, dyslipidemia and non-alcoholic
fatty liver disease (NAFLD), and is among the leading causes of death worldwide [1–3].
Obesity is believed to be at the core of most metabolic abnormalities that fall under the
MetS umbrella [2,4]. Approximately 75% of obese individuals are also afflicted by NAFLD,
a condition often considered to be a hepatic manifestation of the MetS [2,5]. NAFLD is
characterized by an accumulation of triglycerides in the liver that exceeds 5% of total liver
weight and is comprised of non-alcoholic fatty liver (NAFL) and non-alcoholic steato-
hepatitis (NASH). While NAFL is essentially restricted to fat accumulation in the liver,
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NASH includes inflammation and evidence of hepatocyte injury. It is well established
that NASH, characterized by hepatocyte injury/death, inflammation and fibrosis of the
liver; can progress to cirrhosis, a terminal condition [5]. Limited evidence exists delineating
the exact molecular mechanisms driving the progression of hepatic lipid accumulation;
however, a multiple hit hypothesis suggests that oxidative stress, lipid peroxidation, Kupf-
fer cell activation and adipocytokine alterations are central to this disease process [5].
Several studies also highlight the importance of endoplasmic reticulum (ER) stress in the
development of NAFLD [6–11].

It is well-established that conditions associated with MetS drive systemic pro-oxidant
and pro-inflammatory states, subsequently promoting hepatocyte lipid accumulation and
injury [5,12–14]. An increase in the production of reactive oxygen species (ROS), as a result
of cellular metabolic activities, can induce hepatocyte injury by damaging lipids, proteins
and DNA in several cellular components including mitochondria. A persistent imbalance
in the production of ROS and antioxidant molecules leads to enhanced lipid peroxidation,
cytokine production and contributes to hepatocellular injury and fibrosis [15,16]. Further-
more, ROS production promotes the migration of pro-fibrogenic myofibroblast-like cells,
originating from hepatic stellate cells, portal fibroblasts, or bone marrow derived cells,
which is a critical process for the advancement of hepatic fibrosis observed in advanced
NAFLD [17]. Reciprocally, excess free fatty acids trigger hepatic lipotoxic injury by facili-
tating the generation of several lipotoxic metabolites and molecules, including ROS [18].
Furthermore, altered redox homeostasis is sufficient to lead to ER stress, a major cellular
stress pathway known to exacerbate the production of ROS [13].

In hepatocytes, pathological conditions that cause ER stress trigger the unfolded
protein response (UPR) to regulate protein synthesis, glucose and lipid metabolism, as well
as Ca2+ homeostasis [6]. The signaling cascades of the UPR comprise three master-regulator
pathways, (i) the inositol-requiring enzyme 1 (IRE1)—X-box binding protein 1 (XBP1) arm,
which is necessary for hepatic lipid metabolism through regulation of very low density
lipoproteins (VLDL) secretion and lipogenesis [7–9]; (ii) the protein kinase RNA (PKR)-like
ER kinase (PERK)—activating transcription factor (ATF) 4 arm regulates de novo lipogenesis
via sterol regulatory element-binding protein (SREBP)-1 and fatty acid synthase (FAS) [10];
while (iii) ATF6 mediates de novo lipogenesis via SREBP-2 [11]. Protective at its core, UPR
activation reduces secretory protein loading, enhances ER protein folding and increases
clearance capacity of misfolded proteins from the ER. However, prolonged and/or severe
ER stress contribute to NASH, inflammation and fibrosis, thereby leading to liver injury
and dysfunction [6].

In the liver, proprotein convertase subtilisin/kexin 9 (PCSK9) levels impact the expres-
sion of genes involved in lipid metabolism, such as low-density lipoprotein receptor (LDLR),
very low-density lipoprotein receptor, apolipoprotein B48, apolipoprotein A, and cluster
of differentiation 36 (CD36) [19]. Recent studies have also highlighted the involvement of
PCSK9 in the pathogenesis of NAFLD [20–22]. Clinical and pre-clinical evidence suggests a
relationship between PCSK9 expression and hepatic steatosis [20,21,23]. Pursuant to these
findings, PCSK9 knockout mice develop diet-induced hepatocyte lipid accumulation and
injury [24]. Mounting evidence also demonstrates that there exists an association between
ER stress and PCSK9 expression [25–27]. We have previously shown that ER stress can
modulate the expression of PCSK9 in cultured hepatocytes [25] and that the loss-of-function
PCSK9Q152H variant is retained in the ER and protects against liver injury by increasing
protein stability of the ER chaperones, including the glucose-regulated proteins of 78 kDa
and 94 kDa (GRP78 and GRP94) [26,27]. Therefore, PCSK9 is thought to mitigate various
mechanisms of hepatic steatosis and liver injury.

Currently, there are no approved therapies for the treatment of NAFLD and the rec-
ommended management strategies include a combination of lifestyle modifications and
weight management; however, physical activity guidelines are often met with poor ad-
herence in obese populations [28,29], and sustained energy restriction is similarly difficult
to maintain. Given the multi-factorial nature of the development of NAFLD/NASH, the
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specific mechanisms underpinning the beneficial impact of exercise on liver function are not
fully elucidated [30]. Exercise training can lead to improvements in insulin resistance [31],
reduction of SREBP-1c in circulating peripheral blood [32], improvements in fatty acid
transport-, lipogenesis-, and β-oxidation-associated genes [30,33] and may reverse abnor-
mal liver mitochondria [34]. The role of the PCSK9 pathway and exercise in the context of
NAFLD has not yet been elucidated. The emerging pharmaceutical strategies for NASH
are aimed at improving metabolic function, reducing steatosis, improving inflammation
and halting or reversing fibrosis [28]. A growing body of evidence also illustrates a di-
verse array of naturally occurring antioxidants that attenuate MetS-associated NAFLD
phenotype. Multiple cellular pathways involved in the development of NASH and fibrosis
are regulated by a variety of naturally occurring metabolism-enhancing agents [35,36].
However, little is known about the (i) combination of these compounds on hepatic health
and (ii) molecular mechanisms responsible for their effect. Here we explore the impact of
a metabolic enhancer (ME), consisting of 7 naturally occurring mitochondrial enhancing
agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice.
To this end we demonstrate that ME improved hepatic lipid homeostasis, attenuated obe-
sity and improved atherogenic serum parameters in a PCSK9-dependent manner. Taken
together, this 7-ingredient supplement designed to, in part, target mitochondrial function
and facilitate weight loss, may function in a mechanistically similar manner to exercise.

2. Materials and Methods
2.1. Animal Studies

PCSK9−/− mice were generated as previously described and were a generous gift
from Dr. Nabil G. Seidah [37]; whereas, C57BL/6J mice were purchased from Jackson
Laboratories (Stock No: 000664). All mice were housed in a 12 h light-dark cycle at ambient
room temperature of 22 ◦C with free access to food and water. For studies examining
the effect of diet-based ME on hepatocyte lipid accumulation and diet-induced obesity,
6-week-old male PCSK9−/− and/or C57BL/6J mice were randomly placed on either a high
fat diet (HFD; TD.06414, Envigo) containing 60% energy from fat or normal control diet
(NCD; 2918, Envigo) (n = 6–10 per group). Following 6 weeks of HFD feeding, mice were
placed on custom-formulation HFD containing 7 metabolic regulatory and mitochondrial
enhancing agents, collectively termed ME, for an additional 4 weeks. ME components
included seven well-established metabolic modulators as follows: green tea extract [38–41]
(0.375% w/w), green coffee bean extract [42–45] (0.25%), alpha lipoic acid [46–49] (α-LA;
0.1%), forskolin [50–52] (0.005%), coenzyme Q10 [53–56] (CoQ10; 0.25%), beet root ex-
tract [57,58] (1%) and vitamin E [59–63] (0.20%). The diet was provided to the researchers
at The Research Institute of St. Joseph Hospital (Hamilton, ON, Canada) by Exerkine
Corporation (Hamilton, ON, Canada) in a blinded manner. Studies aimed at comparing
the effect of exercise and ME were performed at the McMaster University Medical Centre
(MUMC, Hamilton, ON, Canada). The group of mice exposed to a HFD and exercise served
as a control group to compare the impact of conventional exercise with that of the ME
on diet-induced obesity. Briefly, select groups of mice performed structured endurance
exercise consisting of 5 min acclimation, 10 min warm up and 45 min exercise session
3 days a week (on alternate days) for the duration of the study. Following the completion of
animal studies, de-identified samples were analyzed at The Research Institute of St. Joseph
Hospital (Hamilton, ON, Canada). Samples were unblinded after analysis was completed.
Findings of the experiments conducted at MUMC were independently validated in a cohort
of PCSK9−/− and C57BL/6J mice at The Research Institute of St. Joe’s Hamilton, using
custom rodent diet formulation and experimental protocol identical to the studies carried
out at MUMC.
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2.2. Hydroxyproline Assay

Fresh serum (100 µL) was mixed with an equal volume of 10 N concentrated NaOH and
subsequently hydrolyzed for one hour. Samples were then neutralized with an equivalent
volume of 10 N HCL and centrifuged for 5 min to remove undesired debris. Supernatants
were mixed with reaction mixture and oxidation reagent mix as per manufacturer’s protocol
(Abcam, Cambridge, UK; ab222941).

2.3. Immunohistochemical (IHC) Staining

Paraffin blocks were cut into 4 µm thick sections, deparaffinized and dehydrated
in 3 changes of xylene and 100% v/v ethanol, respectively. Following an endogenous
peroxidase block, sections were then blocked in 5% v/v normal serum matching the species
of secondary antibodies and incubated in primary antibodies for 18 h at 4 ◦C. Following
incubation, the slides were exposed to biotin-labeled secondary antibodies (Vector Labora-
tories). Streptavidin-labeled horseradish peroxidase (HRP) solution (Vector Laboratories)
and the developing solution (Vector Laboratories) were used to visualize the antibody
staining. Slides were dehydrated and mounted in synthetic mounting medium (Electron
Microscopy Sciences). Subsequently representative images were taken at 20× and 40×
using a Nikon ECLIPSE Ci-L microscope (Nikon Instruments Inc., Melville, NY), equipped
with a Nikon DS-Ri2 camera (Nikon Instruments Inc., Melville, NY, USA). All antibodies
and working dilutions are listed in Supplemental Table S1.

2.4. Immunofluorescent (IF) and Histological Staining

Tissues embedded in optimal cutting temperature (OCT) compound were cut into
10 µm cryosections, fixed for 1 h using 4% w/v paraformaldehyde, permeabilized for
15 min with 0.025% v/v Triton X-100 and subsequently blocked with 5% w/v bovine
serum albumin (BSA). Slides were then incubated with the appropriate primary antibody
overnight at 4 ◦C and stained with the appropriate Alexa Fluor-labeled secondary antibody
(ThermoFisher Scientific, Waltham, MA, USA) and stained with DAPI (Sigma-Aldrich,
St. Louis, MO, USA). For experiments aimed at examining hepatic lipid content, sections
were prepared by the Core Laboratory at the McMaster University Medical Centre and
stained with Oil-Red-O as described previously [64]. Slides were then mounted with
Permafluor (ThermoFisher Scientific) and visualized using a light microscope (Nikon,
Minato City, Tokyo) or a fluorescent microscope (EVOS-FL, ThermoFisher Scientific). All
antibodies and working dilutions are listed in Supplemental Table S1.

2.5. Immunoblots

Immunoblot analysis was performed as previously described [65]. Briefly, tissue
lysates were prepared using SDS lysis buffer containing a protease inhibitor cocktail (Roche,
Basel, Switzerland). Protein concentrations were determined using a modified Lowry assay
(Bio-Rad). Equivalent amounts of protein were resolved by SDS-PAGE and subsequently
transferred to nitrocellulose membranes (Bio-Rad). The membranes were then blocked
in 5% w/v skim milk, incubated with primary antibodies for 18 h at 4 ◦C, followed by
HRP-conjugates secondary antibodies. Secondary antibodies were detected using enhanced
chemiluminescence reagent (Amersham) and exposed using Konica Minolta X-ray film
processor. All antibodies and working dilutions are listed in Supplemental Table S1.

2.6. Quantitative Real-Time PCR

Quantitative real-time PCR was performed as described previously [24]. To sum-
marize, total RNA was isolated using an RNA purification kit (ThermoFisher Scientific)
according to the manufacturer’s instructions. A total of 2 µg of RNA was reverse tran-
scribed using a High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific).
PCR amplification was performed using fast SYBR Green (Applied Biosystems, Waltham,
MA, USA). Relative transcript expression levels were calculated using the ∆∆CT method
and normalized to 18S [66]. All primer sequences are listed in Supplemental Table S2.
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2.7. Quantification of Hepatic Triglyceride Content

Hepatic triglyceride content was quantified as described previously [64]. Briefly, equal
amounts of liver tissue were lysed in a mixture of hexane/2-propanol (Sigma-Aldrich) and
incubated on an orbital shaker at 37 ◦C for 5 h. Lysates were then centrifuged for 5 min at
12,000 rpm to isolate the lipid-containing liquid fraction. Lipid content was quantified using
a colorimetric triglyceride assay (Wako Diagnostics, Mountain View, CA, USA) according
to the manufacturer’s instructions.

2.8. Steatosis Score

Steatosis grade was determined by a trained anatomical pathologist (JB) according to
the guidelines summarized in Supplemental Table S3. The pathologist was blinded during
the quantification process and the code was revealed after data analysis was complete.

2.9. ELISAs and Alanine Aminotransaminase (ALT) Assay

Circulating levels of PCSK9 (MPC900, R&D), ApoB (ab230932, Abcam) and ApoA1
(ab238260, Abcam) levels were measured using a commercially available mouse ELISA kits.
Plasma ALT was measured using a commercially available colorimetric assay (ab241035,
Abcam). All assays were performed according to the manufacturer’s instructions.

2.10. Statistical Analysis

Data are presented as mean ± standard deviation and were analyzed using the un-
paired Student’s t-test or one-way ANOVA with Tukey multiple comparison testing, where
p < 0.05 considered significant. Details of biological replicates are listed in figure legends.
The graphical abstract was created with BioRender.com (agreement number TS25DLOLAJ).

3. Results
3.1. ME Inhibits Diet-Induced Weight Gain and Hepatocyte Lipid Accumulation

Previous evidence demonstrated that individual components of the ME used in this
study improve lipid metabolism and attenuate diet-induced obesity [35,36], and the specific
supplement combination used in the current study confirmed the combined efficacy of
the ME [67]. In line with these findings, we confirmed that dietary supplementation with
ME attenuated HFD-induced weight gain (Figure 1A,B; * p < 0.05, n = 5–6). Additionally,
the size and weight of inguinal, gonadal, and brown adipose tissue (IAT, GAT, BAT) were
significantly smaller for the ME supplementation group (Figure 1C,D; * p < 0.05, n = 5–6).
Consistent with gross morphological observations, ME resulted in smaller adipocyte size
and lipid droplet content in GAT and BAT, respectively (Figure 1E).

Given that the liver plays an important role in lipid metabolism and that hepatic
steatosis is commonly associated with obesity [5,14], we next examined the livers of mice
fed HFD+ME vs. HFD+Exercise group. Consistent with observation in adipose tissue,
ME supplementation reduced hepatic weight and improved morphologic appearance of
the liver compared to the HFD-fed mice (Figure 2A,B; * p < 0.05, n = 5–6). Strikingly,
analysis of hepatocyte lipid (steatosis) content revealed that the addition of ME to the HFD
reduced steatosis to a similar extent as observed in the HFD+Exercise group (Figure 2C–E;
p < 0.05, n = 5–6). Parameters for determination of steatosis grade are summarized in
Supplementary Table S3. In line with these observations, quantitative real-time PCR
analysis also showed that ME and exercise both attenuated the expression of known drivers
of hepatocyte lipid accumulation, including SREBP1, adipocyte differentiation-related
protein (ADRP), hepatocyte nuclear factor 1 α (HNF1α) (Figure 2F; p < 0.05, n = 5). Overall,
these observations demonstrated that in addition to its anti-obesogenic effect, ME also
mitigated hepatic steatosis.
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Figure 1. Metabolic enhancer protects against diet-induced weight gain and adiposity. (A) Mean
body weight and (B) macroscopic appearance of wild-type mice fed either NCD, HFD, or HFD+ME
(n = 5). (C) Mean weight and (D) macroscopic appearance of the representative IAT, GAT, and BAT
(n = 5). (E) H&E staining of the GAT and BAT. Scale bars, 100 µm. All data are shown as mean ± SD.
*, denotes p < 0.05 by one-way ANOVA with Tukey multiple comparison testing using Prism 6
(GraphPad, San Diego, CA, USA).

3.2. ME Attenuates UPR Activation, Apoptosis and Liver Injury to a Similar Extent as Exercise

Activation of ER stress and dysregulation of the UPR are implicated in the pathogenesis
of NAFLD and NASH [6,13]. Thus, we next examined the expression of protein markers
associated with ER stress and apoptosis in mice fed NCD, HFD, HFD+ME, as well as mice
fed HFD in combination with the exercise regiment. Consistent with the observed increase
in hepatic lipid content, IF staining revealed an attenuation of ER stress markers GRP78
and GRP94 in the livers from HFD+ME and HFD+Exercise mice (Figure 3A). Additionally,
real-time PCR analysis and immunoblotting demonstrated a decrease in the expression
of markers of ER stress and apoptosis, GRP78, GRP94, spliced XBP1, IRE1α, ATF4, PERK,
C/EBP homologous protein (CHOP) and cleaved caspase 1 [68] in the livers from HFD+ME
and HFD+Exercise mice (Figure 3B,C; p < 0.05, n = 5). Similarly, ME attenuated the
expression of GRP78 and GRP94 in GAT and BAT (Supplemental Figure S1).
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one-way ANOVA with Tukey multiple comparison testing using Prism 6 (GraphPad).
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Figure 3. Metabolic enhancer and exercise independently attenuate diet-induced ER stress (A) Im-
munofluorescent staining of GRP78 and GRP94 in the livers of mice fed NCD or HFD supplemented
with either ME or exercise. (B) Quantitative real-time PCR analysis of hepatic mRNA abundance
of indicated ER stress response genes (n = 5–6). (C) Immunoblot of hepatic protein abundance of
indicated proteins (n = 3). Scale bars, 200 µm. All data are shown as mean ± SD. *, denotes p < 0.05
by one-way ANOVA with Tukey multiple comparison testing using Prism 6 (GraphPad).
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Given that NASH can result in progressive hepatic fibrosis and end stage liver cir-
rhosis [5,14], we next examined the expression of markers of fibrosis and hepatic injury in
the livers from HFD+ME and HFD+Exercise mice. IF staining revealed a reduction in the
expression of fibronectin in the livers from these mice (Figure 4A). Hepatic fibrosis was
also confirmed using picro-sirius red (PSR) and trichrome, which are conventional stains
used for the study of hepatic fibrosis known to stain collagens. Consistent with fibronectin
staining, an increase in PSR and trichrome staining was observed in mice treated with HFD,
but not in mice treated with HFD+ME compared to the NCD control group (Figure 4B
and Supplemental Figure S2). A circulating marker of fibrosis (hydroxyproline) was also
examined; treatment with ME led to a numeric reduction in hydroxyproline compared to
the HFD group (Supplemental Figure S3). In line with an attenuation of liver injury, ME
and exercise were both able to reduce serum levels of ALT in mice fed HFD (Figure 4C;
p < 0.05, n = 8–12). Additionally, apoptosis and inflammation were reduced in the livers
from HFD+ME and HFD+Exercise mice (Figure 4D,E; p < 0.05, n = 5). Similar results were
also observed using a TUNEL assay for apoptotic cells (Supplemental Figure S4). Collectively,
these data suggest that the hepatoprotective effect of ME contributes to the improved liver
function and reduction in hepatic injury, an effect similar to that seen with exercise.
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Figure 4. Metabolic enhancer and exercise independently protect against diet-induced liver injury.
(A) Immunofluorescent staining of fibronectin in the livers of mice fed NCD or HFD supplemented
with either ME or exercise. (B) Quantification of picro-sirius red (PSR) and trichrome staining
livers. (C) Analysis of serum ALT activity (n = 8–11). (D,E) Quantitative real-time PCR analysis of
mRNA hepatic abundance of indicated genes (n = 5–6). Scale bars, 200 µm. All data are shown as
mean ± SD. *, denotes p < 0.05 by one-way ANOVA with Tukey multiple comparison testing using
Prism 6 (GraphPad).
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3.3. ME Improves Pro-Atherogenic Serum Profile

Mounting evidence indicates that NAFLD is strongly associated with increased risk
of cardiovascular disease [69,70]. For that reason, we next examined the serum profile of
mice fed NCD, HFD, HFD+ME, as well as mice fed HFD in combination with exercise
regimen. Both ME and exercise attenuated serum PCSK9 and ApoB (a circulating marker
of LDL cholesterol), while ApoA1 levels remained unchanged (Figure 5A–C; p < 0.05,
n = 6–12). Consistent with these observations, the mRNA expression of PCSK9 and SREBP2
were also downregulated in the livers from HFD+ME and HFD+Exercise mice (Figure 5D;
p < 0.05, n = 5). In line with the reduction in the expression of PCSK9 and SREBP2, IF
staining revealed maintenance of the expression of LDLR in the livers from HFD+ME
and HFD+Exercise mice as compared to WT mice vs. the lower abundance in the HFD
mice (Figure 5E).
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Figure 5. Metabolic enhancer and exercise independently attenuate diet-induced pro-atherogenic
serum profile. (A–C) Serum content of circulating PCSK9, ApoA1, and ApoB (n = 8–11). (D) Quan-
titative real-time PCR analysis of hepatic mRNA abundance of indicated genes (n = 5–6). (E) Im-
munofluorescent staining of LDLR in the livers of mice fed NCD or HFD supplemented with either
ME or exercise. Scale bars, 200 µm. All data are shown as mean ± SD. *, denotes p < 0.05 by one-way
ANOVA with Tukey multiple comparison testing using Prism 6 (GraphPad).
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To further examine the correlation between PCSK9 and the metabolic profile observed
in mice fed HFD, we also utilized a model of diet-induced obesity in PCSK9−/− mice [24].
Similar to our previous observations in WT mice, ME significantly reduced weight gain and
adiposity in PCSK9−/− mice (Figure 6A,B; p < 0.05, n = 5). The ME also improved gross
morphological appearance of hepatic tissue from PCSK9−/− mice (Figure 6C,D). In line
with these observations, IHC staining revealed that HFD+ME increased LDLR expression
in the livers from C57BL/6J mice, while no changes were observed in the livers from
PCSK9−/− mice (Figure 6E,F; p < 0.05, n = 5–6). Similarly, IHC staining and quantitative
real-time PCR analysis revealed that ME significantly reduced the expression of CD36 in
livers from C57BL/6J in response to HFD, while this effect was attenuated in the livers
from PCSK9−/− mice (Figure 6E,F, Supplemental Figure S5; p < 0.05, n = 5–6). Given that
both LDLR and CD36 are downstream targets of PCSK9 [19], these findings suggest that
ME exerts its protective effect partly in a PCSK9-dependent manner.
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Figure 6. Metabolic enhancer increases hepatic LDLR in a PCSK9-dependent manner. (A) Mean body
weight and (B) mean weight of liver, IAT, GAT, and BAT (n = 5). (C) Macroscopic appearance of
livers from Pcsk9−/− mice fed either NCD, HFD, or HFD+ME (n = 5). (D) H&E staining of livers.
(E) Immunohistochemical staining of hepatic LDLR and CD36. Scale bars, 100 µm. All data are shown
as mean ± SD. *, denotes p < 0.05 by one-way ANOVA with Tukey multiple comparison testing using
Prism 6 (GraphPad).
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4. Discussion

MetS comprises a cluster of interrelated diseases, characterized by abdominal obesity,
dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction; and is a
major public health concern with a prevalence of 20–45% [3] throughout all epidemio-
logical studies. Collectively, cross-sectional and interventional studies demonstrate that
each component of MetS is favourably influenced by interventions that include physical
activity [71]. While exercise can both prevent and mitigate several components of MetS it
remains underutilized by a large proportion of the general public [71,72]. For that reason,
alternative and complementary interventional strategies are a potential solution that may
bridge this gap. A growing body of evidence also illustrates that a diverse array of naturally
occurring antioxidants, phytosterols and mitochondrial enhancing agents can improve a
number of physiological, biochemical and metabolic parameters, thereby contributing to
an attenuation of pathologies associated with MetS [35,36]; however, mechanistic studies
to evaluate the specific modes of action and interactive effects of combining such agents
is currently lacking. In line with previous observations, we confirmed that a diet-based
ME decreased body weight and adiposity in mice [67]. Additionally, we demonstrated
an attenuation of hepatocyte lipid accumulation in mice fed diet-based ME. In line with
these observations, we show that the specific ME used herein reduced hepatic ER stress,
fibrosis, apoptosis and inflammation, thereby improving overall liver health. In addition
to its hepatoprotective effect, ME ameliorated the HFD-induced pro-atherogenic profile.
Moreover, our data suggest that the ME exerts its protective effect on the atherogenic serum
profile in a PCSK9-dependent manner.

The accumulation of visceral adipose tissue, characteristic of MetS, drives systemic
pro-oxidant and pro-inflammatory states [12,73]. Epidemiological, clinical and animal stud-
ies have reported the role of oxidative stress in the pathogenesis of obesity and associated
diseases, such as NAFLD [12,13]. In addition to oxidative stress, ER stress is also linked
to various features associated with NAFLD and can occur independently or as a result
of increased ROS production [13,14]. Herein, we demonstrate that a dietary supplement,
consisting of seven naturally occurring compounds (some with antioxidant properties)
mitigates ER stress, inflammation, apoptosis and liver injury. These findings are consistent
with the previously demonstrated ability of the components of the ME to reduce hepatocyte
lipid accumulation by attenuating these pathological processes. Studies showed that (-)-
epigallocatechin-3-gallate (EGCG), one of the major components of green tea extract, dimin-
ished HFD-induced hepatocyte lipid accumulation in mice [39,74]. Similarly, green coffee
bean extract attenuated hepatocyte lipid accumulation and ER stress; an effect that was
attributed to high chlorogenic acid found in unprocessed coffee beans [43,75]. Likewise,
powerful endogenous antioxidants such as CoQ10 and α-Lipoic acid both inhibited hep-
atocyte lipid accumulation and liver injury in rodent studies [56,76]. Among the various
compounds found in red beetroot extract, betalains are widely accepted to possess strong
anti-oxidative, anti-apoptotic and anti-inflammatory properties [57]. Dietary forskolin has
also been shown to attenuate oxidative stress, inflammation and hepatic injury [51]. Vita-
min E possesses anti-oxidative, anti-obesogenic, anti-hyperglycemic and anti-inflammatory
properties [77,78]. In a clinical setting, the use of vitamin E as a monotherapy or in combi-
nation with other agents resulted in improved liver biochemistry and histology in patients
with NAFLD and NASH [79,80]. Overall, our data suggests that a combination of the
aforementioned ME components has a significant protective effect against hepatic ER stress,
apoptosis and inflammation. In adipose tissues, our research group recently demonstrated
that treatment with the ME led to an upregulation of white and brown adipose tissue mRNA
transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and
fat metabolism. Increased mitochondrial oxidative phosphorylation protein expression and
in vivo fat oxidation was also observed in white adipose depots [79]. Importantly, however,
a net reduction in food consumption was also observed in the HFD+ME group compared to
the HFD group. Appetite suppression therefore likely represents an additional mechanism
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by which the ME described in this study acts to reduce the overall lipotoxic phenotype
observed in the ME+HFD group [79].

Hepatic lipid metabolism is regulated by various transcription factors and nuclear
receptors that work in concert to maintain hepatic lipid homeostasis [81]. Recent evidence
shows that perturbations in ER stress signaling cascades can lead to an increase in hepatic
de novo lipogenesis and lipid droplet formation by upregulating the expression of key
lipogenic transcription factors [82,83]. To this end, we demonstrate that in addition to an
attenuation of ER stress and inflammation, the ME and exercise interventions each reduced
the expression of lipid regulatory genes, such as SREBP1, ADRP, HIF1α. These effects likely
occurred as a direct result of (i) attenuation of hepatic ER stress and injury, as well as the
(ii) anti-adipogenic effect of several components of ME on fatty acid synthesis, lipogene-
sis, lipolysis and β-oxidation in metabolically active tissues. EGCG and chlorogenic acid
were found to prevent hepatic steatosis by increasing lipid oxidation in the liver [75,84].
Although there currently exists limited information on the effect of forskolin on lipolysis in
the liver, in vitro and in vivo studies demonstrate that forskolin stimulates lipolysis in adi-
pose, thereby decreasing fat mass [52,85]. There also exists a well-established relationship
between vitamin E and CD36 in the context of atherogenesis, whereby vitamin E prevents
atherogenic lesion formation by inhibiting the expression of CD36 [63,86]. Consistent with
these findings, we demonstrate that ME attenuated the expression of a well-established
driver of hepatocyte lipid accumulation, CD36. Importantly, several studies have also
characterized the protective role of ME components in metabolic tissues other than liver,
which may in turn have an indirect positive impact on liver health [57,77,87].

Abundant evidence also indicates a strong association between NAFLD and increased
risk of cardiovascular disease [69,70]. Herein, we report that in addition to anti-obesogenic
and hepato-protective effects, ME and exercise improved HFD-induced pro-atherogenic
serum profile in mice. In support of this notion, pre-clinical and clinical studies have demon-
strated cardio-protective effects of several ME components [88,89]. Cui et al., showed that
green tea, rich in EGCG, improved serum lipid profile and reduced circulating PCSK9 in
human and rodent studies. Mechanistically, the authors concluded that EGCE reduced
PCSK9 abundance and LDL-C levels by downregulating the expression of HIF1α and up-
regulating the expression of hepatic LDLR [88]. These findings are consistent with previous
studies demonstrating (i) a decrease in plasma cholesterol in PCSK9−/− mice [37] as well
as (ii) a reduction in serum cholesterol in mice and non-human primates following the
treatment with an anti-PCSK9 neutralizing antibody [90]. In line with this observation, we
demonstrated that ME and exercise each independently improved serum lipid profile and
attenuated PCSK9 levels in HFD-fed mice. Vitamin E is another well-established regula-
tor of cholesterol metabolism thought to have a protective effect against CVD [61,63,86].
Studies in human subjects and rodent models of disease demonstrated that beetroot extract
is also a powerful modulator of atherogenesis capable of improving serum lipid profile
and vascular function [57]. Together, the data presented in this study suggest that in
addition to its anti-obesogenic and anti-steatotic effect, ME significantly improves serum
lipid profile and reduces levels of pro-atherogenic PCSK9, which likely attenuates the risk
of cardiovascular disease.

5. Conclusions

It has long been established that exercise is an important countermeasure for many
metabolic abnormalities associated with MetS [71]. Although there are theoretical con-
cerns that antioxidants within ME can attenuate some of the health benefits of exercise
by blunting the ROS signaling [91], the present study demonstrates that diet-based ME
and exercise independently improve adiposity and hepatocyte lipid accumulation in mice.
Mechanistically, ME and exercise reduced hepatic ER stress, fibrosis, apoptosis, and in-
flammation, thereby improving overall liver health. Because the benefits conferred by
the ME are inclusive of other metabolic tissues (i.e., adipose tissue), and that such tissues
are inter-dependent, the exact mechanism by which the ME mitigates hepatic steatosis
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remains to be determined. In addition to a reduction in diet-induced hepatic steatosis
and adiposity, Our results also show that in addition to its hepato-protective effect, the
ME improved a pro-atherogenic serum profile by lowering circulating PCSK9 and ApoB.
Thus, our findings suggest that components of ME have a positive, and likely cumulative
effect on obesity, hepatic steatosis and cardiovascular risk. Given our pre-clinical findings,
future clinical studies are needed to establish whether obese patients may benefit from ME
supplementation to improve their weight loss strategy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu15102410/s1, Table S1: List of antibodies, Table S2:
List of primers used for qRT-PCR, Table S3: Criteria used to determine steatosis grade, Figure S1:
Metabolic enhancer attenuates UPR activation in adipose tissue; Figure S2: PSR and Trichrome;
Figure S3: Hydroxyproline ELISA: Figure S4: TUNEL assay quantification; Figure S5: Metabolic
enhancer attenuates CD36 Expression.
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