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Abstract: Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-density
lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular risk and cause
premature death. The most frequent cause of the disease is a mutation in the LDL receptor (LDLR)
gene. Diabetes is also associated with an increased risk of cardiovascular disease and mortality. People
with FH seem to be protected from developing diabetes, whereas cholesterol-lowering treatments
such as statins are associated with an increased risk of the disease. One of the hypotheses to explain
this is based on the toxicity of LDL particles on insulin-secreting pancreatic β-cells, and their uptake
by the latter, mediated by the LDLR. A healthy lifestyle and a relatively low body mass index in
people with FH have also been proposed as explanations. Its association with superimposed diabetes
modifies the phenotype of FH, both regarding the lipid profile and cardiovascular risk. However,
findings regarding the association and interplay between these two diseases are conflicting. The
present review summarizes the existing evidence and discusses knowledge gaps on the matter.
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1. Introduction
1.1. Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-
density lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular
risk and cause premature death [1]. The most frequent mutations are found in the LDL
receptor gene (-LDLR- responsible for LDL uptake), though other genes involved in LDL
metabolism can also cause the disease, such as apolipoprotein B 100 (APOB), apolipopro-
tein E (APOE) or proprotein convertase subtilisin/Kexin-type 9 (PCSK9) [2,3]. Heterozy-
gous FH (HeFH) (one affected allele) is the usual presentation form, with a prevalence of
1/250 [4], higher in isolated regions [5–7]. LDL-c concentrations in people with HeFH are
often twice those of the general population [8]. Homozygous FH (HoFH) is infrequent
(1/160,000–1/300,000) but more severe, with LDL-c concentrations exceeding 500 mg/dL
from birth. Without treatment, subjects with HoFH develop atherosclerosis before the
age of 20 and die before 30 [9]. The diagnosis of FH is usually made based on LDL-c
concentrations, family history, and the presence of corneal arcus, xanthomas, or xanthelas-
mas [8]. Although affected individuals have a higher cardiovascular risk than the general
population [10], subjects with the same mutation show enormous phenotype variability.
These differences might be explained by other factors such as the type of mutation [11],
age [12], gender [10,13], or the existence of other concomitant diseases [14].
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1.2. Diabetes Mellitus

Diabetes mellitus (DM) is a group of metabolic disorders defined by increased blood
glucose concentrations. The most frequent types of DM are type 1 diabetes (-T1DM-
mediated by autoimmune destruction of pancreatic ß cells and absolute insulin deficiency),
type 2 diabetes (-T2DM- caused by progressive loss of insulin secretion in the context of
insulin resistance) and gestational DM (first diagnosed during pregnancy), but there are
also other, less frequent forms of the disease, such as monogenic DM or drug-induced
DM [15]. A correct classification of DM is important since both treatment and follow-up
depend on it. The prevalence of DM has doubled since the 1990s [16]; nowadays, there are
about 537 million subjects with DM around the world (mostly T2DM), and this is expected
to continue increasing in the near future [17]. Its complex physiopathology involves
modifiable factors such as weight, diet, or physical activity [18], and non-modifiable factors
such as genetics, age, or gender [19]. Patients have an increased all-cause mortality [20],
but about 50% die because of cardiovascular complications [21], especially women [22],
and people with long-standing disease [23,24]. This cardiovascular risk is enhanced in
the presence of other risk factors such as smoking, hypertension, or dyslipidemia that
contribute to endothelial damage and the progression of atherosclerosis [25].

The prevalence of DM is generally lower in people with FH than in the general
population [26], suggesting a relationship between glucose and lipid metabolism. The aim
of this paper is to summarize the existing evidence and contribute to the understanding of
the complex underlying mechanisms that relate DM and HF.

2. Familial Hypercholesterolemia and Diabetes: Molecular Causes
2.1. Genetics of FH

FH is the most common monogenic disorder. It has high penetrance (90%) and autosomal
dominant inheritance [1] and is caused by mutations in genes related to LDL metabolism.

HeFH is mainly caused by loss-of-function mutations in LDLR (85–90%) or APOB
(5%), or gain-of-function mutations in PCSK9 (1–3%) [27]. Mutations have also been
identified in APOE [3] and in the adaptor protein type 1 gene (LDLRAP1), the latter
with autosomal recessive inheritance [28]. However, 10–40% of patients with a clinical
phenotype of FH have negative genetic tests, probably representing severe polygenic forms
of hypercholesterolemia [29].

HoFH is a more severe form that involves two mutations in the aforementioned genes.
According to the combination of mutations, HoFH is classified into the following: true
homozygotes (two equal mutations in both alleles of the same gene, mostly in LDLR);
compound heterozygotes (a different mutation in each allele of the same gene); double
heterozygotes (two different mutations in different genes); autosomal recessive hyper-
cholesterolemia (mutations in LDLRAP1) [9]. The phenotype of HFHo will depend on
the degree of residual LDLR activity, which is defined by the genetic defect. Indeed, in
some cases, the LDLR protein is almost absent (less than 2%), leading to the most extreme
phenotypes [30].

LDLR is the most frequently affected gene in HF and more than 3000 mutations have
been described so far, most of them disease-causing or pathogenic [2]. Traditionally, muta-
tions were classified into classes I to V, with class I mutations being the most severe, where
no protein synthesis is present (large rearrangements, insertions, nonsense frameshifts, or
splicing mutations). Classes II-IV include alterations in LDLR transport, LDLR binding,
internalization, or recycling of LDLR, corresponding to in-frame, missense mutations, or
small deletions [27]. Currently, there is a tendency to simplify this classification into class 1
and non-class 1 mutations [31], which would correspond to null or defective alleles, respec-
tively, and this correlates with the severity of the individual phenotype. Null LDLR allele
carriers present with very high LDL-c concentrations, premature coronary heart disease
and poor response to treatment [32]. However, LDL-c concentrations have been shown to
improve cardiovascular risk prediction more than the genetic defect per se. A cohort study
in 12,245 FH LDLR mutation carriers showed that the classification of pathogenic LDLR
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variants according to LDL-c concentration percentile was indeed more accurate than class 1
vs. non-class 1. The relative risk of major cardiovascular events ranged from 2.2 in subjects
with an LDL-c concentration below the 75th percentile to 13 when the LDL-c concentration
was above the 98th percentile of the cohort [33].

APOB was the second gene identified to be associated with FH, also called familial
defective APOB [34]. It is less frequent than FH caused by LDLR mutations, and there are
currently about 35 pathogenic mutations described, generally located in the LDLR-binding
domain of apolipoprotein B (apoB) [27]. The most common is the R3500Q mutation, which
accounts for 5–10% of FH cases in northern Europe [35]. Patients with this form of FH
present with less severe phenotypes than LDLR mutation carriers and have lower LDL-c
concentrations and less cardiovascular events [36].

FH type 3 is caused by gain of function mutations in PCSK9 [37], and there are about
30 pathogenic variants reported [27]. The phenotype is variable, with variants such as p.
(Asp374Tyr), which causes an extreme FH phenotype with very high LDL-c concentrations
and premature coronary heart disease [38], and other mutations affecting distinct domains
of the protein, leading to milder phenotypes and better response to treatment [39].

In patients with an FH phenotype but no mutation identified, a polygenic mechanism
should be considered, caused by the aggregation of common LDL-c-raising genetic vari-
ants or single nucleotide polymorphisms (SNPs), which can be studied using validated
polygenic risk scores [40,41].

There are other genes that are no longer considered to cause FH, such as STAP1, which
seemed to be associated with the disease, but subsequent in vitro and family segregation
studies have shown that it does not cause FH [42,43].

2.2. Genetics of Type 2 Diabetes

Regarding the genetics of DM, there are both monogenic forms, including neonatal
diabetes mellitus and maturity-onset diabetes of the young (MODY), and the following
polygenic forms: T1DM or T2DM [44]. Neonatal diabetes is caused mainly by paternally in-
herited duplications in chromosome 6q24 that cause overexpression of paternally imprinted
genes, mutations in KATP channels, potassium inwardly rectifying channels, subfamily
J, member 11 (KCNJ11) or ATP Binding Cassette Subfamily C Member 8 (ABCC8) genes,
among others [45]. Mutations in the hepatocyte nuclear factor 1-α (HNF1A), 4-α (HNF4A),
1-ß (HNF1B/TCF2) and glucokinase (GCK) genes are responsible for most of the cases of
MODY [46].

The development of T2DM depends on both environmental [47] and genetic causes.
The genetics of T2DM are very complex, and genome-wide association studies and whole-
genome sequencing have shown more than seventy genes related to the pathogenesis of
the disease [48,49]. A large number of SNPs have been described in more than 400 distinct
genomic regions [50]. The heritability of T2DM ranges from 20 to 80% [51], the highest
concordance corresponding to monozygotic twins [52]. Despite the huge number of risk
SNPs identified, each one accounts only for a small effect on the risk of T2DM, around
10–20% increase per risk allele [44]. Because of this, various genetic risk scores have been
developed to evaluate the cumulative effect of multiple SNPs and to identify individuals
with a high genetic risk of T2DM [53,54].

The genes with the most reported risk variants are KCNJ11, peroxisome proliferator-
activated receptor gamma (PPARG), HNF1B/TCF2 and wolfram syndrome 1 (wolframin)
(WFS1), confirmed by genome-wide association studies [55]. Other genes related to T2DM
are insulin receptor substrate 1 gene (IRS1) and IRS-2, ABCC8, Phosphatase and Tensin
Homolog (PTEN), Zinc Transporter-8 Gene (SLC30A8), GATA Binding Protein 6 (GATA6),
ISL LIM Homeobox 1 (ISL-1), Transcription Factor 7-like 2 (TCF7L2), Insulin-like Growth
Factor 2 mRNA-Binding Protein 2 (IGF2BP2), among many others [48,50,56].

The effects of variants in these genes can lead to impaired insulin response, decreasing
insulin sensitivity, loss of the ß cell morphology, generate oxidative stress in the pancreas,
destruction of pancreatic β-cells altering insulin biosynthesis, causing insulin receptor dys-
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function, etc. [48,56]. Due to the polygenic feature, many genes and their SNPs contribute
to an enhanced risk of T2DM, which together with environmental triggers, like obesity,
leads to the development of the disease [51].

2.3. Genetic Studies Assessing the Link between Hyperlipidemia and Type 2 Diabetes

Mendelian randomization studies suggest that there is an overlap between the risks
of DM and hyperlipidemia. Indeed, after combining and analysing existing information
provided by three large consortia, Fall et al. report a significant association between gene
variants determining higher LDL-c and a lower risk of T2DM, whereas the association with
variants determining HDL-c and triglycerides was less clear [57,58]. When constructing the
risk scores, the authors excluded SNPs associated with adiposity, which they considered
a possible confounder. White et al. used a modified approach in a dataset combining
several genome-wide association studies, including 188,577 individuals with measured
blood lipids and 34,840 with T2DM. A 130 SNP score was developed for LDL-c (explaining
7.9% of its variance), and 140 SNP scores, for HDL-c and triglycerides. For each SD
(38 mg/dL) estimated increase in LDL-c, the risk of T2DM was reduced by 21% (R 0.79
(0.71–0.88)). For triglycerides, every 89 mg/dL estimated increase was also associated with
a reduction in T2DM (OR 0.83 (0.72–0.95)), as was the case for every 16 mg/dL estimated
increase in HDL-c (OR 0.83 (0.76–0.90)) [59]. Although the protective effect of triglycerides
seems somewhat unexpected, other studies in different ethnic groups agree with this
finding [60,61].

3. Familial Hypercholesterolemia and Glucose Metabolism: Risk of Diabetes
3.1. Epidemiological Studies

In 2019, the worldwide prevalence of DM was 9.3%, higher in men (9.6 vs. 9%) and in
high-income countries (10.4 vs. 4%) [17]. Most epidemiological studies in FH subjects have
shown a lower DM prevalence than in the general population (see Table 1). In a Dutch
cohort with more than 14,000 FH subjects, only 2.8% had DM [62], whereas a British cohort
showed an even lower prevalence (0.8%) [63], and intermediate results were described
in 263 French-Canadian patients with FH [64]. Recently, a Spanish study with more than
1700 subjects with FH found a T2DM prevalence close to 6%, around one third of the
national average [65]. However, another recently published Spanish study, performed on
the island of Gran Canaria, showed an unexpectedly high prevalence of DM in HeFH LDLR
mutation carriers (25%) [66]. Other studies show a high prevalence of DM too, above 20%,
but in patients with only clinical diagnosis of FH without genetic confirmation [67,68].

Table 1. Prevalence of diabetes in representative populations with FH.

Author, Year Country N Sample Characteristics Diagnostic Criteria of FH Diabetes (%)

Ferrières, 1995 [64] Canada 263 French Canadian HeFH patients Genetic test (LDLR mutation)
Men with CHD 1.9%

Women and men
without CHD 0%

Vuorio, 1997 [69] Finland 179 55 HeFH with CHD and 124
HeFH without CHD Genetic test (LDLR mutation) 9 and 0%,

respectively
Neil, 1998 [63] UK 1185 HeFH Simon Broome Criteria 1.2% men

0.5% women
Fuentes, 2015 [70] Spain 3823 2558 HeFH vs. 1265 unaffected

relatives Genetic test (LDLR mutation) 2.3%

Saavedra, 2015 [71] Canada 188 HeFH Genetic test (PCSK9-InsLEU
or LDLR mutations)

4 and 2%,
respectively

Besseling, 2015 [26] Netherlands 63,320 25,137 HeFH vs. 38,183
unaffected relatives

Genetic test (APOB, PCSK9
or LDLR mutations) 1.75%

Skoumas, 2017 [72] Greece 280
90 HeFH vs. 112 familial

combined
hyperlipidemia vs. 78 controls

Clinical criteria or genetic test 2%

Climent, 2017 [65] Spain 1732 HeFH Definite or probable
DLCN criteria 5.9%

Sun, 2018 [68] China 289 HeFH Definite or probable
DLCN criteria 20.1%

Sánchez-Hernández, 2021 [66] Spain 68 p.[Tyr400 Phe402del]
LDLR carriers Genetic test (LDLR mutation) 25%

Mehta, 2021 [73] Mexico 336 332 HeFH and 4HoFH Definite, probable, or possible
DLCN criteria 11.3%

DM: diabetes mellitus, BMI: body max index, CHD: coronary heart disease, HeFH: Heterozygous familial
hypercholesterolemia, HoFH: Homozygous familial hypercholesterolemia, DLCN: Dutch Lipid Clinical Network.
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Regarding the relationship between FH mutations and DM, the results are not con-
sistent. Patients with mutations in APOB, with a less severe phenotype, had a higher
prevalence of T2DM (1.91%) than LDLR mutation carriers, and amongst these, the most
severe phenotype (receptor-negative) had the lowest prevalence of DM (1.12%) [26]. In
accordance with these findings, PCSK9 InsLEU mutation carriers had a higher prevalence
of DM and a lower incidence of coronary heart disease. However, other studies have not
found an association between mutation type and DM [74,75].

3.2. Lipid-Lowering Treatment and Risk of Diabetes

In recent years, many drugs have been developed to treat hypercholesterolemia, and
several studies have shown that they could alter glucose tolerance, highlighting the link
between cholesterol and glucose metabolism (see Table 2).
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Table 2. Studies assessing the association between lipid-lowering drugs and disorders of glucose metabolism.

Author, Year N Characteristics/Therapy Mean Follow-Up Mean Results Statistical Measures (OR, HR or RR) (95% CI)

Sattar, 2010 [76] 91,140 Meta-analysis. All statins 4 years NODM 9% OR 1.09 (1.02–1.17)

Waters, 2013 [77] 15,056 Atorvastatin 80 mg vs. atorvastatin 10 mg or
simvastatin 20–40 mg 4.9 years 0–1 NODM risk factors: NODM 3.22% vs. 3.35%

2–4 NODM risk factors: NODM 14.3% vs. 11.9%
HR 0.97 (0.77–1.22)
HR 1.24 (1.08–1.42)

Cederberg, 2014 [78] 8749 Non-diabetic patients. All statins vs. control 5.9 years
NODM 11.2% vs. 5.8%

High and low dose simvastatin
High dose atorvastatin

HR 1.46 (1.22–1.74)
HR 1.44 (1.23–1.68) and 1.28 (1.01–1.62)

HR 1.37 (1.14–1.65)

Khan, 2019 [79] 163,688
Non-diabetic patients. Intensive therapy

(PCSK9i or statins) vs. less intensive therapy
(placebo/usual care)

4.2 years NODM 6.1% vs. 5.8% RR 1.07 (1.03–1.11)

Ko, 2019 [80] 2,162,119

Duration of statin use (<1 year vs. 1–2 years
vs. >2 years)

Cumulative dosing of statin (low-tertile
vs. middle-tertile vs. high-tertile)

3.9 years NODM 8.2% vs. 14.6% vs. 19.8%
NODM 6.7% vs. 11.5% vs. 18.6%

HR 1.25 (1.21–1.28) vs. 2.22 (2.16–2.29)
vs. 2.62 (2.56–2.67)

HR 1.06 (1.02–1.10) vs. 1.74 (1.70–1.79)
vs. 2.52 (2.47–2.57)

Choi, 2018 [81] 2483 5–10 mg rosuvastatin vs. 10–20 mg and atorvastatin vs.
2–4 mg pitavastatin 3 years NODM 10.4% vs. 8.4% vs. 3% HR Rosuvastatin vs. Pitavastatin: 3.9 (1.8–8.7)

HR Atorvastatin vs. Pitavastatin: 2.6 (1.2–5.9)

Freeman, 2001 [82] 5974 All statins 3.5–6.1 years NODM 2.3% Pravastatin therapy HR 0.70 (0.50–0.99)

Hiramitsu, 2010 [83] 120 Ezetimibe 12 weeks HbA1c: −3.4%; p = 0.05

Dagli, 2007 [84] 100 High-dose pravastatin (40 mg) vs. combination
low-dose pravastatin (10 mg) plus ezetimibe (10 mg) 6 months HOMA IR: 3.16 vs. 2.05; p = 0.01

Her, 2010 [85] 76 Atorvastatin 20 mg vs. rosuvastatin 10 mg vs.
atorvastatin 5 mg plus ezetimibe 5 mg 8 weeks HbA1c: +3% vs. +1.2% vs. −0.4%; p = 0.03

Takeshita, 2013 [86] 32 Ezetimibe vs. placebo in NAFLD patients 6 months HbA1c: 6.5% vs. 6%; p = 0.041

Sabatine, 2017 [87] 27,564 EVOLOCUMAB vs. placebo 2.2 years NODM 8% vs. 7.6% HR 1.05 (0.94–1.17)

de Carvalho, 2017 [88] 68,123 Meta-analysis: PCSK9i vs. placebo 78 weeks
Mean difference in FBG 1.88 (0.91–2.68) mg/dL;

p < 0.001
HbA1c 0.032% (0.011–0.050); p <0.001

NODM
RR 1.04 (0.96–1.13); p = 0.427

Chen, 2019 [89] 65,957 Meta-analysis: PCSK9i vs. placebo

Global NODM
ALIROCUMAB

Homogeneous statin use
ALIROCUMAB and EVOLOCUMAB vs. ezetimibe

RR 0.97 (0.91–1.02)
RR 0.91 (0.85–0.98)
RR 2.14 (1.12–4.07)
RR 0.60 (0.37–0.99)

Leiter, 2022 [90] 3621 Bempedoic acid vs. placebo 1 year
NODM 0.3% vs. 0.8%; p > 0.05

T2DM: HbA1c −0.12% vs. 0.07%; p < 0.0001
pre-T2DM: HbA1c −0.06% vs. −0.02; p < 0.0004

Masson, 2020 [91] 3629 Meta-analysis: bempedoic acid vs. placebo 4–52 weeks NODM OR 0.66 (0.48–0.90)

Handelsma, 2010 [92] 216 Colesevelam vs. placebo in
pre-T2DM patients 16 weeks FBG: −4.0 mg/dL vs. −2.0 mg/dL; p = 0.02

HbA1c: −0.12% vs. −0.03%; p = 0.02

OR: odd ratio; HR: hazard ratio; RR: risk ratio; CI: confidence interval; NODM: new-onset diabetes mellitus; HbA1c: glycosylated hemoglobin; HOMA-IR: insulin-resistance index;
NAFLD: non-alcoholic fatty liver disease; PCSK9i: PCSK9 inhibitors; FBG: fasting blood glucose; T2DM: type 2 diabetes.
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3.2.1. Statins

Statins are the treatment of choice for hypercholesterolemia, both in primary and
secondary prevention [93,94]. They inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMG-CoA reductase), increase LDLR expression, and reduce plasma LDL-c
concentration by over 50% [95]. New-onset DM (NODM) has a prevalence of 9–12% and is
one of most recognized side effects of statins [76,96]. Risk increases with age in women [97],
and in people with more than two risk factors for DM (impaired fasting plasma glucose,
hypertriglyceridemia, hypertension, obesity, or the metabolic syndrome) [77,78]. The risk
of DM seems to be independent of LDL-c concentrations [76,79] and varies according to
statin type and dose, as well as exposure time [80,98]. Nevertheless, this association with
NODM should not discourage health professionals from prescribing these drugs, given
their proven cardiovascular benefit, especially in high-risk individuals [99,100]. Simvastatin,
atorvastatin, and rosuvastatin have shown more glucose impairment, while pitavastatin has
a lower risk of NODM compared with atorvastatin and rosuvastatin [81,96,101]. Pravastatin
has also shown favourable results, probably related to its lower liposolubility and limited
potency [82]. However, FH subjects seem to be protected against these diabetogenic
effects [70].

3.2.2. Ezetimibe

Ezetimibe inhibits intestinal absorption of cholesterol by blocking the Niemann-Pick
C1 like1 (NPC1L1) transporter [102], and is frequently used as a concomitant treatment
to statins. Its relationship with glucose metabolism is controversial. Several studies have
shown that fasting plasma glucose, glycosylated haemoglobin (HbA1c) and insulin sensi-
tivity improve with ezetimibe treatment, both in DM and non-DM individuals [103,104].
This drug also improves inflammation markers and obesity and reduces waist circumfer-
ence [83]. Based on these positive results, a possible compensatory effect on the diabetogenic
effects of statins has been studied. Dragi et al. found that the combination of low-dose-
pravastatin plus ezetimibe improved insulin resistance and inflammation compared with
high-dose-pravastatin alone [84]. In 2018, a meta-analysis concluded that patients who used
low-dose-statins plus ezetimibe for more than 3 months had lower fasting plasma glucose
compared with those treated with high-dose statins [105]. Nevertheless, no differences
in the HOMA-IR index were found when two statins in monotherapy were compared
with a combination of low-dose-statin plus ezetimibe [85]. No significant differences were
found either, in a recent study that compared statins alone versus their combination with
ezetimibe in glucose intolerant patients followed for 7 years [106]. Other studies have
found neutral [107] or deleterious effects on glycemic metabolism with ezetimibe, with an
increase in HbA1c and hepatic long-chain fatty acids in patients with non-alcoholic fatty
liver disease [86].

The discrepancies in the results could be explained by the small number of participants
in some studies, insufficient follow-up, or the presence of other lipid-lowering drugs that
could act as confounders.

3.2.3. PCSK9 Inhibitors (PCSK9-i)

Inhibition of the PCSK9 enzyme prevents LDLR degradation after cellular internal-
ization, reducing LDL-c by about 60%. Approved in 2015, monoclonal antibodies against
PCSK9 (alirocumab and evolocumab) have shown a favourable safety profile with few side
effects [108], but the consequences on glucose metabolism are still not clear. Despite the
fact that most clinical studies have not found an association between PCSK9-i and NODM
or worsening of pre-existing DM [87,109].

A large study including more than 96,000 individuals followed for 1.5 years found a
small but significant increase in plasma glucose and HbA1c but not a higher incidence of
NODM in those treated with PCSK9-i [88]. In 2020, a meta-analysis found that alirocumab
was associated with a reduction in the risk of DM and, when compared with ezetimibe
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in monotherapy, evolocumab was also associated with this risk reduction. However,
when used in combination with statins, an increased risk of NODM was found in the
PCSK9-i group, even though the use of statins was equivalent between the experimental
and active comparator arms [89]. It seems that the combination with other lipid-lowering
drugs (especially statins) could change the studies’ results due to the discrepancies in
background treatment between groups. Furthermore, mendelian randomization studies
must be interpreted carefully. As is the case for other lipid-lowering drugs, follow-up is
often limited and could be insufficient to see an effect on glucose metabolism [110].

3.2.4. Bempedoic Acid

Bempedoic acid is a newly developed drug that inhibits adenosine triphosphate citrate
lyase, increasing LDLR expression and reducing LDL-c [90]. In the phase 3 “CLEAR” stud-
ies, bempedoic acid was associated with a reduced incidence of DM and an improvement in
fasting blood glucose and HbA1c in week 12 in pre-DM or DM subjects, without increasing
NODM risk for 1 year [90,91]. A recent meta-analysis found a reduction of 34% in NODM
risk [91].

3.2.5. Other Cholesterol-Lowering Drugs

Nicotinic acid (B3 vitamin) reduces triglyceride and LDL-c concentrations and raises
high-density lipoprotein cholesterol (HDL-c) by up to 35% [111]. It is associated with
an increased risk of NODM and higher fasting plasma glucose and HbA1c, especially in
predisposed individuals, with a dose-dependent effect [112]. Niacin has other side effects,
such as flushing, and does not reduce cardiovascular events in secondary prevention [113],
so its use is currently limited.

Bile acid sequestrants (resins) reduce bile acid reabsorption and increase hepatic
LDLR, lowering LDL-c by 15–25%. They improve the glucose profile but do not cause
hypoglycemia in T2DM subjects. Similar results have been found with different resins
and in both pre-DM and healthy individuals [92,112,114]. Although they have a moderate
lipid-lowering effect, they could be useful in subjects with DM because of their dual effects
on lipid and glucose metabolism.

3.3. Genetics and Metabolism

The cause of the lower prevalence of DM in FH subjects found in most studies is
not clearly known yet. In vitro, long exposure to fatty acids has been associated to β-
cells dysfunction and reduced insulin secretion, especially when coexisting with hyper-
glycemia [115,116]. Moreover, in vitro studies have shown that intracellular cholesterol
accumulation also induces apoptosis of pancreatic β-cells [117]. LDL particle uptake
causes β-cell death in a dose-dependent manner, and this toxicity can be counteracted by
HDL, very LDL (VLDL) particles, or antioxidants [118]. Supporting these findings, poly-
morphisms in ATP-binding cassette transporter 1 gene (ABCA1), involved in cholesterol
efflux and HDL synthesis, have been associated to obesity, the metabolic syndrome, and
DM [119,120]. On the β-cell, HDL particles have an anti-inflammatory effect and participate
in cholesterol efflux [121]. Higher HDL-c levels are associated with less hyperglycemia and
HDL particle size is inversely correlated to T2DM risk in the general population [122].

A large meta-analysis of genetic association studies assessing the effects of cholesterol-
lowering variants in or near NPC1L1, HMGCR, PCSK9, ABCG5/G8 and LDLR showed
an overall increased risk of DM with an odds ratio of 1.19–2.42 for every 1 mmol/L
(38.6 mg/dL) reduction in LDLc [110]. However, there was rather high heterogeneity in
the meta-analysis, suggesting gene-specific associations with DM. Indeed, the highest risk
of T2DM was associated with variants in or near NPC1L1, whereas the HMGCR locus was
associated with body mass index and waist-to-hip ratio, and PCSK9, with higher fasting
and two-hour glucose concentrations [110].

The lipotoxicity hypothesis could, at least partially, explain how statins increase
NODM and how FH reduces the risk of DM. The rise in LDLR increases LDL particle
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uptake by pancreatic β-cells, thereby promoting dysfunction and apoptosis, especially
in those with baseline glucose disturbances. On the other hand, genetic mutations that
prevent cholesterol input, like FH, could be protective and explain the inverse relationship
between mutation severity and DM prevalence [123]. However, clinical studies do not
clearly reflect this theory. No differences in insulin, C peptide, or fasting plasma glucose
concentrations have been found comparing FH with non-FH subjects, regardless of their
insulin sensitivity [124–126]. Indeed, in some studies, FH has even been associated with an
increased risk of impaired glucose metabolism [7,127].

In vivo studies show controversial results. When comparing prediabetic wildtype vs.
LDLR knock-out (KO) mice, no differences were observed in glucose levels, although less
insulin secretion and more β-cell apoptosis were seen in LDLR KO mice [128].

In a study in PCSK9 KO and PCSK9/LDLR double knock-out mice, the former showed
reduced insulin secretion and glucose intolerance, as well as cholesteryl ester accumulation
in β-cells compared with WT mice. In the double knock-out mice, these alterations were
restored, supporting the hypothesis that LDLR, the target of PCSK9, is responsible for the
phenotype [129]. However, a later study with PCSK9 KO and PCSK9 ß-cell specific KO
mice does not show any alteration on glucose homeostasis nor in β-cell function [130].

Thus, other molecular or environmental factors are probably involved in DM risk. For
example, plasma lipoprotein(a) (Lp(a)) has been shown to be higher in HeFH compared
with the general population [131], and an inverse association has been described between
Lp(a) concentrations and the risk of T2DM [132]. However, this effect has to be confirmed,
and a mechanism explaining it is still to be found.

Regarding environmental factors, a study comparing a cohort of 2185 HeFH subjects
from the Spanish Dyslipidaemia Registry with a representative sample of the background
population showed more favorable cardiovascular risk profiles in the former. Indeed,
HeFH subjects without cardiovascular disease showed a lower body mass index and a
lower prevalence of smoking than the background populations, suggesting that the lower
prevalence of T2DM could, at least partially, be explained by a healthier lifestyle in patients
with FH [133].

4. Coexistence of Diabetes and Familial Hypercholesterolemia: Clinical Consequences
4.1. Effects on the Lipoproteins

Cardiovascular disease is the leading cause of death in people with DM. Traditionally,
DM has been considered to increase the risk of ischemic heart disease, stroke, and peripheral
arterial disease by 2–4 times [134]. Although recent studies show that contemporary
treatment for cardiovascular risk has reduced the excess mortality associated with the
disease, DM remains a very strong independent risk factor for cardiovascular morbidity
and mortality [135]. Therefore, since FH is associated with an elevated risk of premature
atherosclerosis, it is conceptually reasonable to assume that the coexistence of both DM and
FH has a strong impact on cardiovascular disease risk.

While decreased clearance of LDL particles and accumulation of LDL-c is the main de-
terminant for increased cardiovascular disease in FH, multiple interconnected mechanisms
have been involved in vascular damage caused by DM, including hyperglycemia-induced
overproduction of reactive oxygen species, accumulation of advanced glycation products,
activation of protein kinase C and chronic inflammation [136]. In addition, DM is also
responsible for a characteristic cluster of lipid disorders with high atherogenic potential,
known as diabetic dyslipidemia. Although diabetic dyslipidemia and FH share hyperbetal-
ipoproteinemia as the fundamental mechanism for atherogenesis, the mechanisms behind
them and their biochemical expression are different.

The hallmarks of diabetic dyslipidemia are hypertriglyceridemia and decreased
HDL-c, whereas LDL-c concentrations are normal or only slightly increased. Although the
mechanisms of diabetic dyslipidemia are not completely understood, it is accepted that
insulin resistance is its main underlying element [137]. Under physiological conditions,
insulin inhibits lipolysis in adipose tissue and activates lipoprotein lipase, an enzyme
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involved in the plasma clearance of triglycerides from VLDL and chylomicrons. In a state
of insulin resistance, lipolysis is not inhibited, and increased circulating free fatty acids are
readily taken up by the liver and used as substrates for synthesis and subsequent release of
VLDL. Hypertriglyceridemia stimulates the enzymatic activity of cholesteryl ester transfer
protein and, during their passage through the circulation, VLDL particles transfer their
triglycerides to HDL and LDL in exchange for cholesteryl esters [137]. Triglyceride-enriched
HDL undergoes lysis by hepatic lipase, a mechanism by which they are converted into
small, dense particles with reduced antioxidant, anti-inflammatory, and anti-atherogenic
capacity compared to normal HDL. The smaller HDLs, in turn, are cleared more rapidly
from the circulation, resulting in a decrease in HDL-c and apolipoprotein A-1 (apoA-1) con-
centrations [137]. In a similar manner, LDL particles also become smaller and denser due
to a higher ratio of protein to lipid (LDL phenotype B). These LDL particles are resistant to
receptor binding, pass more readily through the arterial wall, bind to proteoglycans and are
more susceptible to oxidation [138]. On the whole, although LDL-c is not characteristically
increased, diabetic dyslipidemia is characterised by an increase in the total number of
apoB-containing particles (VLDL, IDL, and LDL).

Several studies have assessed the presence of phenotypic features of diabetic dys-
lipidemia in non-diabetic subjects with FH. LDL particles from both HoFH and HeFH
patients appear to be larger, more buoyant, and more resistant to oxidation than those from
healthy controls [139]. Thus, the qualitative properties of LDL do not seem to play a signifi-
cant role in the development of atherosclerosis in people with FH. Furthermore, patients
with FH usually have normal triglyceride concentrations. However, experimental studies
have suggested that defective LDLR promotes liver uptake of chylomicrons and remnants
and increases VLDL secretion [140,141]. In fact, disturbed triglyceride-rich lipoprotein
metabolism and, particularly, postprandial dyslipoproteinemia have been proposed as a
putative modulator of cardiovascular risk in HeFH [142]. The possible role of lipoprotein
lipase in postprandial hyperlipemia among subjects with HeFH has not been specifically
studied. However, individuals with HeFH who carry an LPL gene variant that reduces
lipoprotein lipase activity, show higher triglyceride levels and lower HDL-c levels than
non-carriers of this mutation [143]. This suggests that a decreased lipoprotein lipase activity,
as occurs in insulin resistance, could condition the phenotype of HeFH. Finally, results
have been discordant regarding serum concentrations of HDL-c in subjects with FH [141].
This is probably related to the fact that, in subjects with FH, there is an increase in both
synthesis and catabolism of HDL particles, but there may be an imbalance between both
processes that varies depending on population-specific genetic or environmental factors.
Increased apoA-1 catabolism due to increased cholesteryl ester transfer protein activity
favours the generation of small HDL particles rich in triglycerides and apolipoprotein
E [144,145]. Moreover, HDL particles in subjects with FH may show different functional
abnormalities not detectable by measuring HDL-c alone. This may include a defective
ability to reverse cholesterol transport from macrophages and impaired anti-inflammatory
and antioxidant capacity [144,145].

As mentioned above and depicted in Figure 1, it is reasonable to think that subjects
with FH who develop DM may have alterations in lipid metabolism resulting from the
additive effect of both diseases. A few studies have compared the clinical characteristics
and lipid profiles of HeFH subjects with and without T2DM [68,74,146]. Patients with DM
were older, had a higher prevalence of hypertension, and had a higher body mass index
than patients without DM. As expected, they also had a lipid profile more characteristic
of diabetic dyslipidemia, including higher triglyceride and lower HDL-c and apoA-1 con-
centrations [68,74,146], as well as higher concentrations of markers of subclinical systemic
inflammation, such as C-reactive protein and neutrophil count [68], typical of individuals
with insulin resistance.
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Figure 1. Potential combination of the physiopathological mechanisms of diabetes and familial
hypercholesterolemia in the same individual. Diabetic dyslipidemia. Insulin resistance reduces
lipoprotein lipase activity (LPL) 1©, decreasing plasma triglyceride clearance, and promotes the
release of free fatty acids 2©, which are taken up by the liver and used for the synthesis and release of
VLDL 3©. VLDL exchange triglycerides and cholesterol esters with LDL 4© and HDL 5© through the
action of cholesteryl ester transfer protein (CETP). Triglyceride-rich HDL particles, through the action
of hepatic lipase (HL), are converted into smaller particles, with less anti-atherogenic properties,
which are cleared more rapidly in the kidney 6©. LDL particles also become smaller and denser
(LDL phenotype B), more pro-atherogenic 7©. Familial hypercholesterolemia. The genetic defect in
LDL receptor prevents its uptake and metabolism in the liver, favoring the accumulation of LDL
particles 8©. This generates an increase in the uptake of chylomicrons and remnants in the liver 9©, in
turn boosting the synthesis of VLDL.

4.2. Effects on Chronic Arterial Wall Inflammation and Endothelial Dysfunction

In recent decades, abundant scientific evidence has highlighted the preponderant role
of immunological and inflammatory mechanisms in the development and progression
of atherosclerosis. As mentioned above, inflammatory mechanisms may be particularly
important in the development of cardiovascular disease in individuals with T2DM. Epi-
demiological studies have shown that insulin resistance is associated with high concen-
trations of uric acid and a wide set of acute phase reactants and markers of endothelial
dysfunction [147,148]. In addition, obesity, commonly present among people with T2DM,
perpetuates the maintenance of a state of chronic inflammation as adipose tissue secretes a
variety of proinflammatory adipocytokines such as tumour necrosis factor α, interleukins
1, 6, and 8, resistin, adiponectin, leptin, and adipsin [149].

Increased blood concentrations of different biomarkers of systemic inflammation,
endothelial activation, and oxidative stress [150,151] have also been reported in FH subjects,
and some authors have postulated their possible role as tools for cardiovascular risk
stratification in HeFH [152]. In any case, these studies reveal that DM and FH could share
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a greater predisposition to the activation of pathways leading to arterial wall inflammation
and endothelial activation, promoting early mechanisms of atherosclerosis induction.

4.3. Effects on the Cardiovascular Risk

Contrary to theoretical assumptions and evidence from the general population, in
which the role of DM as a cardiovascular risk factor is incontrovertible, studies that have
evaluated the association between DM and cardiovascular disease in HeFH have offered
contradictory results. Over the past two decades, a considerable number of studies have as-
sessed the role of classical cardiovascular risk factors in patients with HeFH. A multi-centre
retrospective cohort study performed in the Netherlands on 2400 patients (112,943 person-
years) [153] found that, along with male gender, smoking, hypertension, low HDL-c and
Lp(a), DM was independently associated with the presence of at least one cardiovascular
event (RR 2.19; 95% CI: 1.36–3.54). Very recently, another methodologically similar study,
which evaluated 1050 Japanese patients with HeFH over 19 years, also demonstrated that
DM was an independent risk factor for a composite of major adverse cardiovascular events
(HR 1.81; 95% CI: 1.12–2.25) [154]. However, the results of cross-sectional studies were
mixed (see Table 3), and in many of them, DM was no longer significantly associated with
the presence of cardiovascular disease after adjustment for other covariates. In many of the
studies that found no association, either the population size was small or the prevalence of
DM was very low, possibly limiting the statistical power to detect the association between
DM and cardiovascular disease. In fact, a meta-analysis of 27 studies, published in 2018,
aimed at assessing the association between cardiovascular disease and several classical
risk factors, adding up to 41,831 subjects and 6629 cardiovascular events, found that DM
was indeed an independent risk factor in HeFH (OR 1.95; 95% CI: 1.33–2.57), along with
age, male sex, hypertension, body mass index, smoking, increased Lp(a), low HDL-c and a
family history of cardiovascular disease [14].

In recent years, mainly due to the wide variation in established cardiovascular disease
rates, even among individuals who share the same mutation and belong to the same family,
there has been a growing interest in finding tools for cardiovascular risk stratification in
subjects with HeFH. To this end, predictive models specifically designed for HeFH have
been developed, and, strikingly, DM was not a factor to be taken into account in any of
them. The first one, the Montreal-FH-SCORE, was calculated on the basis of retrospective
data from a sample of 670 patients carrying a known FH-causing mutation in the LDLR
gene, and it combines five predictor variables (age, gender, smoking, hypertension, and
untreated HDL-c levels) [155]. In light of these findings, the authors conducted a specific
study to investigate the impact of DM on cardiovascular disease in FH, using data from
1412 patients (73 with DM) from the FH Canada Registry. Although patients with DM
had a higher prevalence of established cardiovascular disease, their results confirmed
that including DM did not improve risk prediction with respect to the Montreal-FH-
SCORE [146]. Subsequently, two mathematical models for cardiovascular risk prediction
have been developed, but, unlike the Montreal-FH-SCORE, which had the limitation of
being based on retrospective data, these were generated using prospective data from
registries that collected incident cardiovascular events. The SAFEHEART Risk Equation
was estimated using data from 2404 Spanish patients (104 with DM) with HeFH. Age,
male sex, history of previous atherosclerotic cardiovascular disease, high blood pressure,
increased body mass index, active smoking, and LDL-c and Lp(a) concentrations, but not
DM, were independent predictors of incident cardiovascular events [156]. The FH-Risk
SCORE was developed from a multinational prospective cohort of 3881 adults (152 with
DM) with HeFH and no prior history of atherosclerotic cardiovascular disease. DM was not
among the selected variables for the FH-Risk SCORE equation either, which incorporates
sex, age, HDL-c, LDL-c, hypertension, smoking, and Lp(a) concentration as independent
risk factors for 10-year atherosclerotic cardiovascular disease [157]. It should be noted that,
until the publication of these two large studies, only a few long-term prospective studies
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had been carried out to assess the occurrence of new cardiovascular events in subjects with
FH and, again, DM was not a significant risk factor in any of them [36,158,159].

Overall, the information available to date suggests that the role of DM as a cardiovas-
cular risk factor in the FH population is smaller than in the general population. However,
as their authors themselves acknowledge, due to the low prevalence among the FH pop-
ulation, even the highest quality prospective studies included small numbers of patients
with DM and may not have had sufficient statistical power to determine the true effect of
the disease [156,157]. Therefore, as has already been cautioned before [160], it is probably
premature to underestimate the role of DM, and clinical judgement should be applied to
establish the individual risk of a person with both FH and DM, considering other specific
variables related to the disease, such as type of DM, time since diagnosis, or target organ
damage, as recommended in clinical practice guidelines [161].
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Table 3. Cross-sectional studies that have assessed the association between diabetes and cardiovascular disease in subjects with heterozygous
familial hypercholesterolemia.

Author, Year Study Type * Country FH Diagnostic
Criteria ** N Diabetes (%)

Univariate
Association
OR (95% CI)

Multivariate
Association
OR (95% CI)

Adjusting Covariates

Hopkins, 2001 [162] RR USA MEDPED criteria 262 3.0 NS NS

Age, sex, BMI, smoking, waist to hip ratio,
hypertension, HDL-c, triglycerides, small LDL,
Lp(a), homocysteine, insulin, white cell count,
C-reactive protein, xanthomas, intima-medial

thickness, angiotensin-converting
enzyme I/D polymorphism

De Sauvage, 2003 [163] MC Netherlands Genetic test or definite
DLCN criteria 526 2.1 17.61 (2.25–137.8) NS

Age, sex, BMI, smoking, total-c, LDL-c, HDL-c,
triglycerides, Lp(a),

apo A1, apo B, homocysteine

Allard, 2014 [164] SC Canada Definite DLCN criteria 409 6.4 3.2 (1.9–5.6) 3.6 (2.0–6.5)
Sex, BMI, smoking, family history of premature

CVD, hypertension, LDL-c, HDL-c,
triglycerides, Lp(a)

Alonso, 2014 [165] MC Spain Genetic test 1960 3.9 Non reported NS
Sex, BMI, smoking, hypertension, HDL-c,

triglycerides, Lp(a),
type of mutation, xanthomas

Besseling, 2014 [62] NR Netherlands Genetic test 14,283 2.8 6.40 (5.21–7.86) 1.37 (1.03–1.82) Age, sex, BMI, smoking,
hypertension, lipid profile

Pereira, 2014 [166] SC Brazil Definite or probable
DLCN criteria 202 17.3 2.23 (1.05–4.75) NS

Age, sex, BMI, smoking, hypertension, sedentary
lifestyle, LDL-c, HDL-c, triglycerides, glucose,

creatinine, xanthomas, corneal arcus,
ankle-brachial index, claudication

Chan, 2015 [167] SC Australia Genetic test 390 1.3 2.74 (1.06–7.08) NS Obesity, smoking, hypertension, CKD, LDL-c,
HDL-c, triglycerides, Lp(a)

De Goma, 2016 [168] NR USA Genetic test or any set
of clinical criteria 1295 13 3.08 (2.04–4.64) 1.74 (1.08–2.82) Age, smoking, hypertension, total-c, low HDL-c

Paquette, 2016 [155] SC Canada Genetic test 670 3.3 3.5 (1.45–8.47) NS
Age, sex, BMI, smoking, hypertension, prior

statin use, total-c, LDL-c, HDL-c, triglycerides,
VLDL-c, non-HDL-c, Lp(a), apoB

Paquette, 2017 [169] MC Canada Genetic test 1388 4.5 3.28 (1.92–5.619 NS
Age, sex, BMI, smoking, hypertension, prior

statin use, total-c, LDL-c, HDL-c, triglycerides,
VLDL-c, non-HDL-c, Lp(a), apo B

Galema Boers, 2017 [170] SC Netherlands
Genetic test or definite

or probable DLCN
criteria

821 4 4.39 (2.15–8.97) NS
Age, sex, BMI, smoking, hypertension, family

history of CVD, previous cardiovascular disease,
triglycerides, high LDL-c, low HDL-c.

Paquette, 2019 [146] MC Canada Definite, probable or
possible DLCN criteria 1412 5.2 2.9 (1.8–4.7) NS Montreal-FH-SCORE

Pérez-Calahorra, 2019 [171] NR Spain
Genetic test or definite

or probable
DLCN criteria

1958 6.5 4.99 (3.43–7.26) NS

Michikura, 2022 [172] SC Japan Genetic test 176 12 Non reported NS
Age, sex, BMI, smoking, hypertension, LDL-c,

HDL-c, triglycerides,
Achilles tendon elasticity index

* Type of study. SC: single-centre; MC: multicentre; RR: regional registry; NR: national registry. ** Diagnostic criteria. MEDPED: Make Early Diagnosis to Prevent Early Deaths System;
DLCN: Dutch Lipid Clinic Network; NS: Not significant; BMI: body mass index; CVD: cardiovascular disease; c: cholesterol.
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5. Knowledge Gaps and Further Research

The previous sections have highlighted the interplay between lipid and glucose
metabolism, but also the controversy in this area. The inverse correlation between LDL-c
concentrations and the risk of DM is supported by the low risk of DM in most populations
with HF, by mendelian randomization studies, and by the increased risk of DM associated
with some cholesterol-lowering agents, especially statins. However, results are inconsistent,
and robust mechanistic studies are sparse. Furthermore, healthy behavior in people with
FH could be associated with lower body mass index and a lower risk of T2DM.

There are several approaches that could fill in some of the existing knowledge gaps.

1. In FH populations where DM is more frequent than in the general population, family
co-segregation studies could be performed, comparing the prevalence of DM and
pre-DM in FH-causing mutation carriers and non-carriers in the same families;

2. Studies focused on glucose tolerance, insulin secretion, and insulin resistance in
whole-body and β-cell specific LDLR (or other FH-related genes) knock-out animal
models, as performed already for PCSK9 [129,130];

3. FH-causing-mutation-specific studies in β-cells and islets, assessing their viability
and function;

4. Larger and longer prospective studies assessing the incidence of DM in FH and
non-FH populations, as well as the cardiovascular risk of the combination of FH
and DM.

6. Conclusions

Both DM and FH are associated with an increased risk of cardiovascular disease. Many
studies suggest that FH is protective against the development of DM and that cholesterol-
lowering treatments, especially statins, increase the risk of DM. Indeed, the LDLR is
hypothesized to play a role in the toxicity of (or protection from) cholesterol on the β-cells.
Their reduced amount or function in HF would protect the cells against LDL particle entry,
whereas their increase would promote it and, thus, damage the β-cells. Nevertheless, this
hypothesis is still to be proven. Indeed, a healthy lifestyle associated with a relatively low
body mass index in people with FH could also account for some of the protection against
DM. On the other hand, there are also studies showing an increased prevalence of DM in
people with FH, and not all cholesterol-lowering drugs are associated with an increased
risk of DM. The combination of FH and DM would be expected to be associated with an
especially high risk of cardiovascular disease. However, existing evidence suggests that
other classical cardiovascular risk factors modulate cardiovascular risk in FH, but DM does
not play a highly relevant role. Short follow-up and small numbers of people with DM
advise that this conclusion should be drawn with caution. Much research is still needed to
fully understand the interplay between glucose and lipid metabolism in FH and DM.
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