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Abstract: Macrophages and microglia are highly versatile cells that can be polarized into M1 and
M2 phenotypes in response to diverse environmental stimuli, thus exhibiting different biological
functions. In the central nervous system, activated resident macrophages and microglial cells trigger
the production of proinflammatory mediators that contribute to neurodegenerative diseases and psy-
chiatric disorders. Therefore, modulating the activation of macrophages and microglia by optimizing
the inflammatory environment is beneficial for disease management. Several naturally occurring
compounds have been reported to have anti-inflammatory and neuroprotective properties. Zerum-
bone is a phytochemical sesquiterpenoid and also a cyclic ketone isolated from Zingiber zerumbet
Smith. In this study, we found that zerumbone effectively reduced the expression of lipocalin-2 in
macrophages and microglial cell lines. Lipocalin-2, also known as neutrophil gelatinase-associated
lipocalin (NGAL), has been characterized as an adipokine/cytokine implicated in inflammation.
Moreover, supplement with zerumbone inhibited reactive oxygen species production. Phagocytic
activity was decreased following the zerumbone supplement. In addition, the zerumbone supplement
remarkably reduced the production of M1-polarization-associated chemokines CXC10 and CCL-2, as
well as M1-polarization-associated cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α.
Furthermore, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 and the
production of NO were attenuated in macrophages and microglial cells supplemented with zerum-
bone. Notably, we discovered that zerumbone effectively promoted the production of the endogenous
antioxidants heme oxygenase-1, glutamate–cysteine ligase modifier subunit, glutamate–cysteine
ligase catalytic subunit, and NAD(P)H quinone oxidoreductase-1 and remarkably enhanced IL-10, a
marker of M2 macrophage polarization. Endogenous antioxidant production and M2 macrophage
polarization were increased through activation of the AMPK/Akt and Akt/GSK3 signaling pathways.
In summary, this study demonstrated the protective role of zerumbone in maintaining M1 and M2
polarization homeostasis by decreasing inflammatory responses and enhancing the production of en-
dogenous antioxidants in both macrophages and microglia cells. This study suggests that zerumbone
can be used as a potential therapeutic drug for the supplement of neuroinflammatory diseases.
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1. Introduction

Macrophages are key immune cells that maintain homeostasis and defense during
periods of both good health and disease by regulating the onset and resolution of inflam-
mation [1]. Tissue macrophages reside in almost every part of the human body, including
the brain. Resident microglia in the central nervous system (CNS) are local phagocytic cells
that mediate immunological and inflammatory reactions in response to pattern-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) in the en-
vironment [2]. Several environmental factors alter the phenotype of macrophages, thereby
affecting their functions. Macrophages can be polarized into M1-like and M2-like pheno-
types [3]. Typically, microglia in healthy brain tissues are in a quiescent M2 phenotype,
and these microglia are critical for the maintenance of neuron–microglia interactions and
neuronal development [4]. M1 macrophages are activated by bacterial lipopolysaccharide
(LPS) and proinflammatory cytokines, including tumor necrosis factor (TNF) and interferon
(IFN). Activated M1 macrophages overexpress inducible nitric oxide synthase (iNOS), nitric
oxide (NO), and reactive oxygen species (ROS) and upregulate proinflammatory mediators
such as interleukin (IL)-1β, IL-6, and TNF-α [5–7]. ROS, which are produced in response
to oxidative and environmental stress, cause the activation of microglia [2]. Activated M1
microglia produce various proinflammatory mediators and free radicals that inhibit brain
repair and regeneration, leading to neuroinflammation, neurodegenerative diseases, and
psychiatric disorders [8]. Moreover, M1 macrophages produce several chemokines, such
as the C–X–C motif chemokine ligand (CXCL)-10 [9] and C–C motif chemokine ligand
(CCL)-2 [10], which trigger the activation of type 1 T helper (Th1) response, accelerate
phagocytic activity, and promote inflammation [6]. By contrast, M2 macrophages are acti-
vated in response to the Th2 response. Upregulation of arginase-1 (Arg-1) and IL-10 in M2
macrophages promotes cell proliferation, tissue repair, and anti-inflammatory cytokines,
thereby counteracting the inflammation triggered by activated M1 macrophages [11]. M2
microglia increase brain repair and regeneration by promoting phagocytosis, producing
endogenous trophic factors, and alleviating brain inflammation [1]. However, disruption
in the homeostasis of M1 versus M2 phenotypes results in the development of several
diseases, including obesity, atherosclerosis, and insulin resistance [12].

Generally, the proportion of M1 and M2 macrophages is tightly controlled in healthy
tissues [5]. Substantial evidence has been obtained indicating that the modulation of
macrophage polarization plays a crucial role in the pathology of several diseases, including
obesity [13], atherosclerosis [14], and cancers [15]. According to a study by Jiang et al.,
spinal cord injury (SCI) induced the expression of M1 phenotypic markers (CD86, iNOS,
IL-6, and TNF-α) and decreased the expression of M2 phenotypic markers (CD206, IL-10,
and Arg-1) [16]. In addition, treatment with substance P improved recovery from SCI by
inducing the production of endogenous anti-inflammatory mediators [16]. Our previous
study showed that treatment with paliperidone effectively decreased the expression of an
M2 phenotype marker (CD206) while increasing that of an M1 phenotype marker (CD80),
resulting in the inhibition of glioblastoma and suggesting that regulation of macrophage
polarization is a potential treatment strategy for certain diseases [17]. Notably, our recent
findings indicate that inhibiting lipocalin-2 expression in macrophages and microglial cells
may be a novel strategy for the treatment of neuroinflammation and neurodegenerative dis-
eases [18]. Lipocalin-2 has been characterized as an adipokine/cytokine and was found to
be associated with several cellular processes, including cell survival, death, differentiation,
invasion, migration, inflammatory response, iron homeostasis, insulin resistance, and tissue
regeneration [19]. An increased level of lipocalin-2 expression was correlated with acute and
chronic liver injury [20]. Following acute inflammation, the liver overexpresses lipocalin-2,
triggering inflammatory cell infiltration for phagocytosis and ensuring homeostasis [21].
One study discovered that lipocalin-2 promoted microglial M1 polarization, resulting in
impairment of cognitive function and motor behavior due to neuroinflammation [22]. A
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recent study reported that the neutralization of lipocalin-2 diminishes the severity of brain
injury caused by ischemia reperfusion [23]. Moreover, lipocalin-2-deficient mice exhibited
a weaker M1 phenotype with an increase in the strength of the M2 phenotype, suggesting
that lipocalin-2 plays a critical role in microglial polarization [22].

Zerumbone is a dietary compound presented in a variety of natural foods. It is naturally
occurring in plants of the Zingiberaceae and Curcuma families, notably Zingiber zerumbet Smith,
and features as a monocyclic sesquiterpene phytochemical [24]. Zerumbone has been reported
to possess diverse biological activities, including activities against microbes, osteoporosis,
prostatic hyperplasia, and polycystic ovary syndrome [24,25]. The safety, cytotoxicity, and
chemopreventive potential of zerumbone have been reported [26–28]. Zerumbone was also
reported to possess anti-inflammatory effects against acute and chronic inflammation of
granulomatous tissue in mice [29]. In addition, oral administration of zerumbone did not result
in any clinical abnormalities or other adverse effects in one study [30]. Zerumbone has been
discovered to possess anti-inflammatory and antioxidant activities in various inflammation-
related diseases [31,32]. Additionally, zerumbone was found to be beneficial for the treatment
of learning and memory impairment in an animal model [33]. A recent study suggested
that zerumbone decreased proinflammatory cytokine expression, β-amyloid production, and
behavioral deficits in APP/PS1 transgenic mice [34]. However, the effects (and underlying
mechanisms) of zerumbone on lipocalin 2 expression and macrophage polarization, as well
as the generation of endogenous antioxidant enzymes and anti-inflammatory proteins in the
CNS, remain poorly understood.

This study aimed to elucidate the regulatory effects of zerumbone on homeosta-
sis and M1/M2 macrophage polarization by considering lipocalin-2 expression, oxida-
tion/antioxidation effects, and inflammatory/anti-inflammatory effects in macrophages
and microglial cells. Furthermore, this study investigated the effect of zerumbone on
the activity of endogenous antioxidants and anti-inflammatory proteins in macrophages
and microglial cells. In summary, this study suggests that zerumbone may be a potential
supplement for inflammatory diseases and neurodegenerative diseases.

2. Materials and Methods
2.1. Materials

Primary antibodies against GSK3α/β, β-actin, and phosphor-AktSer743 were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies against phosphor-
AMPKThr172 and phosphor-GSK3α/βSer21/Ser9 were purchased from Cell Signaling Tech-
nology. Anti-iNOS antibody (610431) was acquired from BD Transduction Laboratories
(Lexington, KY, USA). Cyclooxygenase (COX)-2 polyclonal antibody (aa 570–598) was pur-
chased from Cayman Chemicals (Ann Arbor, MI, USA). Heme oxygenase (HO)-1 polyclonal
antibody was obtained from Enzo Life Sciences Inc. (Farmingdale, NY, USA). Antibodies
against glyceraldehyde-3-phosphate dehydrogenase (GAPDH; GCLC, GCLM, and NQO1)
were acquired from Abcam (Cambridge, MA, USA).

2.2. Cell Culture

In a humidified incubator containing 5% CO2 and 95% air at 37 ◦C, mouse macrophages
RAW264.7 cells were cultured in high glucose Dulbecco’s modified Eagle’s medium
(DMEM), 10% fetal bovine serum (FBS), and 100 U/mL penicillin/streptomycin. The
adult mouse microglia (IMG) was obtained from the Harvard School of Public Health
(Boston, MA, USA). IMG cells expressing a microglial-specific marker represent brain mi-
croglia features morphologically and functionally. The IMG cells were cultured in DMEM
with low glucose content (1 g/L), 10% FBS, and 100 U/mL penicillin/streptomycin.

2.3. Western Blotting Analysis

The cells were lysed on ice for 30 min with radioimmunoprecipitation assay buffer con-
taining a protease inhibitor cocktail. The supernatant was collected after centrifugation, and
proteins in the supernatant were separated using sodium dodecyl sulfate–polyacrylamide
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gel electrophoresis. The blots were transferred onto polyvinylidene fluoride membranes.
After being blocked with nonfat milk, the membranes were probed with primary antibodies
and secondary antibodies. Proteins were visualized through enhanced chemiluminescence
using Kodak X-OMAT LS film (Eastman Kodak, Rochester, NY, USA). The densitometric
values were quantified by ImageJ software.

2.4. NO Assay

The NO assay method is described in our previous publication [35]. Briefly, culture
supernatant containing nitrite was reacted for 10 min with 0.1% NED solution and 1%
sulfanilamide in 5% phosphoric acid avoiding light. NO was quantified by measuring the
amount of nitrite under OD 520 nm using a microplate reader.

2.5. Quantitative Real-Time Polymerase Chain Reaction (PCR)

mRNA levels were detected using quantitative real-time PCR, and total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). An amount of 2 µg of
total RNA was used for reverse transcription (RT) by using an RT Kit (Invitrogen, Carlsbad,
CA, USA). SYBR Green Master Mixes (Applied Biosystems, Waltham, MA, USA) was used
for conducting PCR. To calculate the transcripts cycle (denoted CT), the threshold was set
within the linear phase of gene amplification.

2.6. Phagocytosis Assay

The phagocytosis assay method was performed in accordance with the method in our
previous study [35]. The cells were seeded onto culture dishes and grown at 37 ◦C and 5%
CO2. After drug treatment, the medium was replaced with medium containing carboxylate-
modified polystyrene fluorescent yellow–green latex beads (YG beads; Cat#L4655; Sigma
Aldrich, St. Louis, MA, USA), and the cells were incubated at 37 ◦C. The cells were
trypsinized after several washes to remove the noninternalized beads, and their phagocytic
activity was quantified using flow cytometry.

2.7. Statistical Analysis

GraphPad Prism 6.0 (Graph Pad Software, San Diego, CA, USA) was used for statistical
analysis. Values are presented as the mean± standard error of the mean (SEM). Significance
of the differences between the groups was analyzed by Student’s t-test. One-way analysis
of variance (ANOVA) with the Bonferroni post hoc test was used for comparisons of more
than two groups. A p < 0.05 was considered significant.

3. Results
3.1. Zerumbone Lowers the Expression of Lipocalin-2 in Macrophages and Microglial Cells

RAW264.7 mouse macrophages (Figure S1) and IMG adult mouse microglia (Figure S2)
were supplemented with zerumbone (1, 5, or 10 µM), and no toxicity was then observed.
As shown in Figure 1, supplement with zerumbone alone did not affect the expression
of lipocalin-2 in either cell model. Application of LPS resulted in significantly increased
lipocalin-2 expression in both the macrophages (Figure 1A) and microglia (Figure 1B).
Moreover, the zerumbone supplement effectively decreased LPS-stimulated lipocalin-
2 expression in a concentration-dependent manner for macrophages (Figure 1A) and
microglia (Figure 1B), with a 40% and 75% reduction under the maximum concentration
of zerumbone.
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Figure 1. Inhibitory effects of zerumbone on the expression of lipocalin-2 in macrophages and
microglia. RAW264.7 macrophages (A) and IMG adult mouse microglial cell lines (B) were supple-
mented with different concentrations of zerumbone (1, 5, or 10 µM) for 30 min and administered with
lipopolysaccharide (LPS; 50 ng/mL) for 6 h. Lipocalin-2 mRNA expression levels were determined
using real-time PCR and normalized to β-actin. Data are presented as the mean ± standard error of
the mean (SEM) (n = 3 or 4). *** p < 0.005 compared with the control group. # p < 0.05, ## p < 0.01
compared with the LPS alone group.

3.2. Supplement with Zerumbone Decreases H2O2, ROO•, and HO• Production in
Microglial Cells

The microglial cells were treated with either hydrogen peroxide (H2O2), 2, 2′-azobis
(2-amidinopropane) hydrochloride (AAPH), or iron (II) plus H2O2 to stimulate the produc-
tion of various ROS. Then, the effects of zerumbone on ROS production were determined.
As illustrated in Figure 2, supplement with zerumbone alone did not influence ROS pro-
duction. H2O2, AAPH, and iron resulted in ROS levels in microglial cells that were
approximately four- to six-fold higher than those in the control group. Notably, zerumbone
decreased H2O2 production in a concentration-dependent manner (Figure 2A). Supplement
with zerumbone further decreased AAPH-induced peroxyl radical (ROO•) production
(Figure 2B). Moreover, hydroxyl radical (HO•) production stimulated by iron (II) and
H2O2 following the zerumbone supplement was markedly decreased in a concentration-
dependent manner (Figure 2C). This study suggests that supplements with zerumbone
concentration-dependently inhibited H2O2, ROO•, and HO• production in microglial cells.

3.3. Inhibitory Effect of Zerumbone against Phagocytic Activity in Microglial Cells

We further investigated the effect of zerumbone on phagocytosis in microglial cells.
The results revealed that the nonphagocytic populations were remarkably smaller in the
LPS-activated microglial cells than in the non-LPS-activated microglial cells (Figure 3).
However, the phagocytic populations that engulfed two or more beads were larger. Fur-
thermore, supplement with zerumbone alone did not change the ability of phagocytosis
of microglial cells either in one or in two or more beads (Figure 3A upper-left panel, B).
Notably, 1 µM zerumbone slightly decreased LPS-stimulated phagocytosis in microglial
cells (Figure 3A upper-right panel, B). In addition, zerumbone at higher concentrations
(5 and 10 µM) effectively decreased the phagocytic populations engulfing two or more
beads in the LPS-stimulated microglial cells (Figure 3A lower panel, B). These results
confirm that supplement with zerumbone alone did not affect the ability of phagocytosis.
Moreover, zerumbone effectively inhibited LPS-stimulated microglial phagocytosis.
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Figure 2. Effects of zerumbone on ROS production in microglia. IMG cells were supplemented
with various concentrations of zerumbone (1, 5, or 10 µM) for 30 min, followed by 5 mM H2O2 (A),
5 mM AAPH (B), or 1 mM iron (ll) with 0.5 mM H2O2 (C) for another 90 min. The intensity
of dichlorofluorescein (DCF) fluorescence was detected through flow cytometry after 40 min of
incubation with 10 µM dichloro-dihydro-fluorescein diacetate (DCFH-DA). Quantitative data are
represented as the mean ± SEM (n = 4). *** p < 0.005 compared with the control group. # p < 0.05,
## p < 0.01, ### p < 0.005 compared with the treatment group alone.
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Figure 3. Effect of zerumbone on phagocytic ability in microglia. (A) IMG cells were presupplemented
with different concentrations of zerumbone (1, 5, or 10 µM) for 30 min and LPS (50 ng/mL) for another
24 h. After incubation of the cells with 1 µm fluorescent YG beads for 1 h at 37 ◦C, the intensity of the
beads was analyzed using flow cytometry. The quantitative results shown in (B) are the mean ± SEM
(n = 4): non, no bead was uptaken by cell; 1 bead, cell uptake 1 bead; >2 beads, cell uptake more than
2 beads. ** p < 0.01, *** p < 0.005 compared with the control group. # p < 0.05, ## p < 0.01 compared
with the LPS alone group.

3.4. Zerumbone Reduces the Expression of Proinflammatory Mediators and M1-Macrophage
Polarization Markers in Macrophages and Microglial Cells

We investigated the effect of zerumbone on the LPS-stimulated expression of proinflam-
matory mediators associated with M1-like macrophage/microglia polarization. The mRNA
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expression of CXCL-10 and CCL-2 was elevated in the mouse macrophages (Figure 4A,B) and
IMG cells (Figure 4C,D) following LPS stimulation. Furthermore, zerumbone concentration-
dependently decreased the LPS-induced increased expression of CXCL-10 (Figure 4A,C) and
CCL-2 (Figure 4B,D) in both cell models.
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Figure 4. The expression of proinflammatory mediators in macrophages and microglia in response to
zerumbone. RAW264.7 (A,B) and IMG (C,D) cells were supplemented with different concentrations of
zerumbone (1, 5, or 10 µM) for 30 min and then activated by LPS (50 ng/mL) for another 6 h. CXCL-10
(A,C) and CCL-2 (B,D) mRNA expression was analyzed using real-time PCR and normalized to β-actin.
Data are presented as the mean ± SEM (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.005 compared with the
control group. # p < 0.05, ## p < 0.01 compared with the LPS alone.

Additionally, zerumbone considerably and concentration-dependently reduced the
LPS-induced upregulation of M1 polarization markers such as IL-6 (Figure 5A), IL-1β
(Figure 5B), and TNF-α (Figure 5C) in macrophages. We further observed similar in-
hibitory effects of zerumbone on LPS-induced IL-6 (Figure 6A), IL-1β (Figure 6B), and
TNF-α (Figure 6C) in microglial cells. Moreover, supplement with zerumbone attenuated
LPS-stimulated expression of iNOS (Figure 5D,E) and COX-2 (Figure 5D,F) proteins in
macrophages in a concentration-dependent manner. Zerumbone further inhibited LPS-
induced NO production in macrophages (Figure 5G). Furthermore, zerumbone effectively
reduced the mRNA expression of iNOS (Figure 6D) and COX-2 (Figure 6E) induced by
LPS. Supplement with zerumbone attenuated the expression of iNOS (Figure 6F,G) and
COX-2 (Figure 6F,H) proteins induced by LPS, as well as NO production, dose-dependently
(Figure 6I). We did not observe any change in the expression of proinflammatory mediators
in macrophages (Figure 4A,B and Figure 5) or microglia (Figure 4C,D and Figure 6) sup-
plemented with zerumbone alone. The results suggest that supplement with zerumbone
reversed LPS-activated macrophage and microglia polarization toward the M1 phenotype.



Nutrients 2022, 14, 5402 9 of 19Nutrients 2022, 14, 5402 9 of 18 
 

 

 

Figure 5. The expression of proinflammatory mediators in response to zerumbone in macrophages. 

RAW264.7 cells were supplemented with different concentrations of zerumbone (1, 5, or 10 μM) for 

30 min and then stimulated with LPS (50 ng/mL) for another 6 h (A–C) or 24 h (D–G). Expressions 

of IL-6 (A), IL-1β (B), and TNF-α (C) mRNA were analyzed using real-time PCR and normalized to 

β-actin. (D) iNOS and COX-2 protein expressions were analyzed using Western blotting. Quantita-

tive results are shown in (E) and (F). (G) The cultural supernatant was harvested for measuring NO 

production by NO assay. Each bar represents the mean ± SEM (n = 3 or 4). * p < 0.05, ** p < 0.01, *** p 

< 0.005 compared with the control group. # p < 0.05, ## p < 0.01, ### p < 0.005 compared with the LPS 

alone group. 

Figure 5. The expression of proinflammatory mediators in response to zerumbone in macrophages.
RAW264.7 cells were supplemented with different concentrations of zerumbone (1, 5, or 10 µM) for
30 min and then stimulated with LPS (50 ng/mL) for another 6 h (A–C) or 24 h (D–G). Expressions
of IL-6 (A), IL-1β (B), and TNF-α (C) mRNA were analyzed using real-time PCR and normalized to
β-actin. (D) iNOS and COX-2 protein expressions were analyzed using Western blotting. Quantitative
results are shown in (E,F). (G) The cultural supernatant was harvested for measuring NO production
by NO assay. Each bar represents the mean ± SEM (n = 3 or 4). * p < 0.05, ** p < 0.01, *** p < 0.005
compared with the control group. # p < 0.05, ## p < 0.01, ### p < 0.005 compared with the LPS
alone group.
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Figure 6. The expression of proinflammatory mediators in response to zerumbone in microglia. IMG
cells were supplemented with different concentrations of zerumbone (1, 5, or 10 µM) for 30 min and
administered with LPS (50 ng/mL) for another 6 h (A–C) or 24 h (D–G). IL-6 (A), IL-1β (B), TNF-α (C),
iNOS (D), and COX-2 (E) mRNA expressions were analyzed using real-time PCR and normalized to
β-actin. (F) iNOS and COX-2 protein expressions were analyzed using Western blotting. Quantitative
results are shown in (G,H). (I) The cultural supernatant was harvested for measuring NO production by
NO assay. Each bar represents the mean ± SEM (n = 3 or 4). ** p < 0.01, *** p < 0.005 compared with the
control group. # p < 0.05, ## p < 0.01, ### p < 0.005 compared with the LPS alone group.

3.5. Zerumbone Promotes Endogenous Antioxidant Production and IL-10 Expression in
Microglial Cells

Several naturally occurring compounds stimulate the production of endogenous antioxidants
—such as heme oxygenase (HO)-1, glutamate–cysteine ligase modifier subunit (GCLM),
glutamate–cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase-1
(NQO1)—and promotes microglial polarization toward M2-like phenotypes that are benefi-
cial for maintaining cellular redox homeostasis and are anti-inflammatory [18,36,37]. This
study showed that supplement with zerumbone remarkably promoted the expression of
the endogenous antioxidant proteins HO-1 (Figure 7A,B), GCLM (Figure 7A,C), GCLC
(Figure 7A,D), and NQO1 (Figure 7A,E) in microglial cells. Moreover, the mRNA expression
of HO-1 (Figure 7F), GCLM (Figure 7G), GCLC (Figure 7H), and NQO1 (Figure 7I) was upreg-
ulated following zerumbone supplement in microglial cells. Moreover, as shown in Figure 7J,
zerumbone increased the expression of the M2 phenotype marker IL-10 in a dose-dependent
manner. These data suggest that the antineuroinflammatory properties of zerumbone were
modulated by the production of endogenous antioxidants.
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Figure 7. The expression of endogenous antioxidants and anti-inflammatory cytokines in response to
zerumbone in microglia. (A) Different concentrations of zerumbone (1, 5, or 10 µM) were supple-
mented on IMG cells for 24 h. Protein expressions of HO-1, GCLM, GCLC, and NQO1 were evaluated
using Western blotting. The quantitative results of HO-1 (B), GCLM (C), GCLC (D), and NQO1
(E) were determined by using ImageJ. Different concentrations of zerumbone (1, 5, or 10 µM) were
supplemented on IMG cells for 6 h. HO-1 (F), GCLM (G), GCLC (H), NQO1 (I), and IL-10 (J) mRNA
expressions were quantified using real-time PCR. Each bar represents the mean ± SEM (n = 3 or 4).
* p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control group.

3.6. AMPK and Akt/GSK3 Signaling Pathways Mediate Zerumbone-Stimulated Production of
Endogenous Antioxidants in Microglial Cells

Studies have shown that zerumbone activates AMPK signaling pathways and the
downstream target of AMPK, acetyl-CoA carboxylase (ACC), contributing to a protective
role in high-glucose-stimulated renal tubular cells [38] and high-fat-diet-induced obesity in
mice [39]. Furthermore, zerumbone attenuated inflammatory responses in mice with acute
lung injury [40] and macrophages [26] by modulating the Akt pathway. In the present
study, the zerumbone supplement enhanced activation of the AMPK (Figure 8A) and Akt
(Figure 8B) signaling pathways, as well as their downstream targets ACC (Figure 8A) and
GSK3 (Figure 8B). In addition, supplement with an AMPK inhibitor (compound C) sup-
pressed the expression of HO-1 (Figure 8C,D), GCLM (Figure 8C,E), and GCLC (Figure 8C)
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proteins in microglial cells supplemented with zerumbone. We further confirmed the
involvement of the AMPK/Akt signaling pathways in the protective effects of zerumbone.
As illustrated in Figure 8, the zerumbone-induced expression of endogenous antioxidant
genes such as HO-1, GCLC, GCLM, and NQO1 (Figure 8F–I), as well as M2 phenotype
marker IL-10 (Figure 8J), was inhibited by compound C, Akt inhibitor, and GSK3 inhibitor
(SB21). These findings indicate that zerumbone promoted endogenous antioxidants and
polarization toward M2 phenotypes by mediating the AMPK and Akt/GSK3 pathways in
microglial cells.
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Figure 8. Zerumbone-induced endogenous antioxidant expression is mediated through AMPK and
Akt/GSK3 signaling pathways. IMG cells were supplemented with zerumbone (10 µM) for 30,
60, or 120 min. The phosphorylation of AMPK and ACCα (A) and of Akt and GSK3α/β (B) were
examined by Western blotting. AMPK inhibitor compound C (15 µM) was administered 30 min before
supplemented with zerumbone (10 µM) for another 24 h. (C) HO-1 and GCLM protein expressions
were detected by Western blotting, with quantitative data shown in (D) and (E). Compound C,
Akt inhibitor (10 µM), or SB 216763 (SB21; 20 µM) were administered 30 min before supplemented
with zerumbone for another 6 h. HO-1 (F), GCLC (G), GCLM (H), NQO1 (I), and IL-10 (J) mRNA
expressions were determined using real-time PCR and normalized to β-actin. The quantitative results
in bar graphs represent the mean ± SEM (n = 3 or 4). ** p < 0.01, *** p < 0.005 compared with the
control group. # p < 0.05, ## p < 0.01, ### p < 0.005 compared with zerumbone alone.
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4. Discussion

Zerumbone has been reported to modulate oxidative stress in several cancers, includ-
ing breast cancer [18], nonsmall-cell lung cancer [36], and colon cancer [37]. Furthermore,
it has been reported that zerumbone enhances the radiosensitivity and chemosensitivity
of these malignancies. Notably, zerumbone has been reported to induce oxidative stress
and cell apoptosis in protozoan parasites [38]. A recent report indicated that zerumbone
protects against zearalenone-induced hepatotoxicity in mice by activating endogenous
antioxidants, including glutathione and superoxide dismutase [39]. Moreover, zerumbone
treatment also protected against oxidative stress in a mouse model of acute liver injury [40].
A few studies have reported that zerumbone exerts biological effects on the CNS. Treat-
ment with zerumbone reversed scopolamine-induced memory impairments in rats [33]
and social memory in triple transgenic Alzheimer’s disease (AD) mouse models [41]. In
addition, the cotreatment of zerumbone with polyunsaturated fatty acids attenuated ox-
idative stress in the brain by increasing antioxidants and neurotrophins [42]. A recent
study suggested that in APP/PS1 transgenic mice, zerumbone decreased the expression of
proinflammatory cytokines, lessened the amount of β-amyloid accumulation, and reduced
behavioral deficits, partly due to the production of IL-10 by activated microglia [34]. The
present study confirmed the antioxidative and anti-inflammatory properties of zerumbone
by demonstrating that zerumbone effectively reduced inflammation and oxidative stress in
macrophages and microglia without any toxicity being incurred.

Production of lipocalin-2 may act as a signal during oxidative stress and inflamma-
tion. Lipocalin-2 is produced in the CNS in response to acute-phase brain injury, further
triggering the inflammation-related chemokine CXCL10, which promotes the migration
of astrocytes to injury sites [43,44]. Neutralization of lipocalin-2-attenuated neurological
deficits and cerebral infarction by diminishing the expression of M1 macrophage polariza-
tion in the brain in a stroke-reperfusion injury mouse model [45]. Additionally, lipocalin-
2-deficient mice had less hyperalgesia, M1 macrophage polarization, and macrophage
inflammatory protein 2 production in response to complete Freund’s adjuvant. [46]. The
level of lipocalin-2 was found to be increased in patients with AD [47] and Parkinson’s
disease (PD) [48]; the patient’s pathophysiology was also aggravated along the lipocalin-2
levels. Moreover, a recent study considered lipocalin-2 to be a promising therapeutic
target in the management of dementia [49]. In our previous study, we demonstrated that
management of lipocalin-2 reduced astrocyte activation and improved cognitive functions,
social avoidance, and anxiety-like behaviors [50]. Notably, one study [23] and our recent
study [51] have reported that lipocalin-2 may be a regulator of M1 and M2 macrophage
polarization. The present study demonstrated the role of zerumbone in decreasing the
expression of lipocalin-2 and thereby improving the inflammatory response and tissue
homeostasis in activated microglia and macrophages.

Macrophages respond to external and endogenous stimuli by switching their phe-
notypes to resolve inflammation and maintain immune defense and homeostasis [1].
One study demonstrated that in an experimental PD mouse model, an increase in M1
macrophages in the peripheral immune system triggered the expression of proinflamma-
tory mediators such as iNOS, IL-1β, and TNF-α in brain, leading to neuronal cell death [52].
Notably, by depleting peripheral M1 macrophages and promoting M2 macrophages, T
cell infiltration to the brain was reduced, thereby reducing brain inflammation, neuronal
cell death, and behavioral deficits [52]. In experimental autoimmune encephalomyelitis
(EAE), activated M1 microglia upregulated CCL-2, which facilitated the recruitment of
circulating monocytes to the injured sites, as well as TNF and iNOS, which contributed to
inflammation [53]. Overproduction of ROS in macrophages may trigger necrosis, which
leads to the production of proinflammatory mediators and aggravates inflammation [54].
One study revealed that mitochondrial ROS generated by activated macrophages stimu-
lated the expression of IL-1β, TNF-α, and CCL-2, thereby increasing the risk of developing
high-fat-induced insulin resistance and atherosclerosis [55]. Moreover, increased levels of
ROS were shown to trigger inflammation and cause apoptotic death of microglia under
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oxygen–glucose deprivation conditions [56]. Notably, NADPH oxidase (NOX)-1-derived
ROS increased the expression of lipocalin-2 in colon epithelial cells stimulated with TNF-
α and IL-17 [57]. Accordingly, NOX-1-knockout mice exhibited reduced expression of
lipocalin-2 along with improved colon condition [57]. Treatment with zerumbone was
found to diminish ROS production and protect cells from high-glucose-stimulated pan-
creatic β cells [58]. The present study supported previous studies that zerumbone could
protect microglia and macrophages by regulating the production of ROS and expression of
proinflammatory mediators.

Macrophages require ROS during the uptake and clearance of dying cellular parts.
ROS control the phagocytic activity of macrophages [59]. Increased intracellular production
of ROS was reported to enhance the phagocytosis of macrophages [60]. Phagocytosis
by microglia is associated with neurodegenerative diseases [61]. The roles of microglia
and phagocytosis in different stages of neurodegenerative disorders remain unknown.
Phagocytosis by activated microglia can be beneficial in terms of the clearance of Aβ

in AD [62]. However, microglia may be detrimental to the pathophysiology of AD be-
cause they stimulate neurotoxins [61]. Similarly, a study suggested that there is a delicate
balance between activated microglial damage of myelin-generating cells and activated
microglial repair and support of neurogenesis in multiple sclerosis [63]. Thus, maintaining
macrophage homeostasis and phagocytic activity is beneficial for disease management.
Notably, lipocalin-2-deficient mice exhibited lower phagocytic activity than wild-type
mice [64]. A recent study suggested that lipocalin-2 regulated myelin phagocytosis in
an ischemic stroke mouse model [65]. The present study demonstrated the regulatory
effects of zerumbone on proinflammatory-stimulus-triggered lipocalin-2 expression and
microglial phagocytic activity. On the other hand, zerumbone is also reported to exert
anti-inflammatory effects through pathways other than lipocalin-2, such as the Akt-NFkB
pathway and NLRP3 inflammasome [40,66], indicating that zerumbone may augment
inhibitory effects on M1/M2 polarization, cytokine production, and ROS formation.

The production of IL-10 is facilitated by the protein expression of M2 phenotypes,
which suppress inflammation and restore homeostasis [67]. Treatment with recombinant
IL-10 considerably decreased M1 macrophage polarization in LPS-activated microglia [68].
Moreover, IL-10-deficient mice exhibited a decreased inflammatory response and persistent
ischemia, suggesting the role of IL-10 in attenuating local inflammatory responses [68].
IL-10 overexpression was found to be beneficial for the treatment of several neurodegen-
erative diseases—including SCI [16], EAE [69], and AD [70]—by reducing the expres-
sion of proinflammatory mediators and improving neurological functions. Evidence was
found that IL-10 signaling is correlated with the expression of HO-1 [71]. The induction
of endogenous antioxidants, such as glutathione-S-transferases, regulates inflammatory
responses [72]. Our previous studies have demonstrated that treatment with naturally
occurring compounds—quercetin [51], paeonol [73], fisetin [74], and caffeic acid phenethyl
ester [75]—induces the expression of HO-1 and promotes the polarization of macrophages
toward the M2 phenotype that inhibits proinflammatory responses in microglia. In addi-
tion, zerumbone has been reported to upregulate the expression of HO-1 and γ-glutamyl
cysteine ligase in human keratinocyte cells [76]. Zerumbone enhances GSK3β phosphory-
lation in meningioma cells [75,77]. A recent study reported that zerumbone supplement
activates the PI3/Akt signaling pathway and upregulates the expression of endogenous
antioxidants against hepatotoxicity [39]. Additionally, stimulation of endogenous antioxi-
dants is regulated by activation of the AMPK/Akt signaling pathway [78,79]. The present
study demonstrated that zerumbone significantly stimulated the expression of endogenous
antioxidants and M2 macrophage markers involving AMPK/Akt and Akt/GSK3β signal-
ing pathways, resulting in zerumbone having antioxidant and protective roles in microglia
and macrophages.

The limitation of this study includes that no result was obtained from in vivo experi-
mental models. If additional animal models were carried out, we could provide substantial
information considering the effectiveness of zerumbone and improve our understand-
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ing of zerumbone under systemic conditions. From our established in vivo model, we
found that LPS-induced inflammation provokes IL-6 and TNF-α production in mouse
brain microglia [80]. LPS also causes impaired motor balance and coordination function in
mice [36]. Moreover, LPS injection also induces microglia to change their normal ramified
morphology into an activated hypertrophic form [81]. In this study, we attempted to focus
on the effects of zerumbone on M1/M2 polarization and the ability of phagocytosis, and
we chose macrophages and microglia cell lines to clarify the effect of zerumbone.

5. Conclusions

This study demonstrated the potential role of zerumbone in reducing the expression
of lipocalin-2- and M1-associated inflammatory responses, including the overexpression
of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), chemokines (CCL-2 and CXCL-
10), iNOS, NO, and COX-2 in activated microglia and macrophages. Supplement with
zerumbone was discovered to effectively reduce ROS production stimulated by H2O2,
ROO•, and HO•. The phagocytic activity of microglial cells triggered by proinflammatory
stimuli was also lower in cells subjected to zerumbone supplement. The expression of
IL-10 in both microglia and macrophages was increased following supplementation with
zerumbone. Notably, we discovered that zerumbone increased the expression of HO-1,
GCLM, GCLC, and NQO1 by regulating the AMPK and Akt/GSK3β signaling pathways.
This study suggests that zerumbone could be a potential supplement for inflammatory
diseases in both the CNS and peripheral systems due to its ability to regulate cellular redox
homeostasis and macrophage polarization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14245402/s1, Figure S1: effects of zerumbone on viability of
macrophages, Figure S2: effects of zerumbone on viability of microglia.
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