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Abstract: We conducted a case-control study (532 cases and 532 control) in Chinese adults to in-
vestigate the independent and interactive effects of dietary nutrients (pro- or anti-inflammation)
on Esophageal Squamous Cell Carcinoma (ESCC) risk. Dietary data were collected using a food
questionnaire survey that included 171 items. Two algorithms, the Least Absolute Shrinkage and
Selector Operation (LASSO) and Bayesian Kernel Machine Regression (BKMR) were employed to
select indicators and evaluate the interactive effect of nutrients’ mixture on ESCC risk. Thirteen
nutrients were selected, including three pro-inflammatory nutrients (protein, fat and carbohydrate)
and ten anti-inflammatory nutrients (fiber, Vitamin A, riboflavin, niacin, Vitamin C, Fe, Se, MUFA, n-3
PUFA and n-6 PUFA). Single-exposure effects of fat, carbohydrate and fiber significantly contributed
to ESCC risk. The pro-inflammatory nutrients’ submodel discovered that the combined effect was
statistically associated with increased ESCC risk. In addition, a higher fat level was significantly
associated with ESCC risk. On the contrary, for fiber and riboflavin, the anti-inflammatory nutrients’
submodel delineated a significant negative effect on the risk of ESCC. Our result implies that dietary
nutrients and their inflammatory traits significantly impacted ESCC occurrence. Additional studies
are warranted to verify our findings.

Keywords: diet; nutrient; esophageal squamous cell carcinoma; inflammation

1. Introduction

Esophageal cancer (EC) is the seventh-most common malignancy of the upper gas-
trointestinal tract worldwide, with aggressive potency and a heavy burden of 570,000 new
cases occurring annually based on global cancer 2020 (http://globocan) (accessed on 23 De-
cember 2021) [1,2]. As a deadly histological subtype, esophageal squamous cell carcinoma
(ESCC) is characterized by a late-stage diagnosis and challenging clinical management [3].
Hence, investigating risk factors associated with ESCC has significant public and clinical
implications for achieving an early prevention and diagnosis.

Chronic inflammation is a known risk factor for ESCC [4,5]. Cyclooxygenase, a target
of NSAIDs, and its downstream bioactive lipid products might provide evidence of the link
between inflammation and ESCC [6]. In addition, activation of the immune system and
chronic inflammation—induced by heat injury, further strengthened genetic alterations and
intercellular signaling pathways, including the nuclear factor kappa-light chain enhancer
for activated B cells—signal the transduction activator for transcription-3 and hypoxia-
inducible factor 1α to regulate the malignant progression of cancer cells [7]. Notably,
overexpression and activation of sphingosine kinase 1 (SphK1) promoted and enhanced
the development and progression of ESCC. Sphingosine 1-phosphate (S1P), a product of
SphK1, led to various inflammatory reactions, including lymphocyte transport. A high fat
and sugar diet, unbalanced intestinal flora and obesity are associated with inflammation
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activation and SphK/S1P/S1P receptor signal transduction in various gastrointestinal
pathologies (including cancer) [8].

Accumulating evidence suggested that inflammatory effects of dietary components
and embedded nutrients might be involved in esophageal tumorigenesis and progres-
sion [9,10]. Fruits and vegetables containing abundant β-carotene, fiber and other antiox-
idants have been hypothesized to possess a protective prospect [11]. In contrast, salted
consumption redundant in sodium and meat diets predominant in fat seemed to expose
a dismal effect on ESCC by the postulated mechanism, which was thought to accelerate
carcinogenesis through systemic inflammation and various cellular processes interference.
In real life scenarios, the regular practice we employed was syncretism with various food-
stuffs instead of eating particular foods or nutrients alone, which might lead to countless
permutations and combinations of the health effects of food components. Therefore, merely
from the perspective of a single nutrient or a single food group in replacement of overall
diets to grope for the relationship between improper dietary compositions and ESCC risk,
this cannot tangibly reflect actual intake, comprehensive effect and potential interaction
among food and within nutrients. The paucity of integrative analyses concentrating on the
relationship between multiple nutrients and ESCC highlights key future research priorities.

The dietary inflammatory index (DII) is an indicator synthesizing the intake of dietary
constituents and evaluating associations between diets with well-known inflammatory
markers [12]. DII specifies inflammatory scores for each food or nutrient by way of the
extensive literature and categorizes individuals’ diets according to their inflammatory po-
tential on a continuum from maximally pro-inflammatory to maximally anti-inflammatory.
Based on the objectively and reliably inflammatory effect score for each nutrient or food,
the main focus of this study (i.e., dietary nutrients), was divided into pro-inflammatory
and anti-inflammatory. Current interests tend to be given to the single effect of singular
nutrients or the whole effect of comprehensive indicators, with the default of graphical
presentation and multi-level consideration about the interactions between nutrients. In
addition to the exploration of the overall effect reflected by DII, we also want to explicit
single meticulousness influence and specify detailed interactions among the inflammatory
nutrients’ collocation on ESCC risk and then further explain and complement the possible
mechanism implied by the whole effect.

The Least Absolute Shrinkage and Selector Operation (LASSO) [13] could identify
the most relevant nutrient variables, while the Bayesian Kernel Machine Regression
(BKMR) [14], a relatively new algorithm, could further address the linear or non-linear
interrelation of multiple exposed variables (dietary nutrients with distinct inflammatory
potency) in a specific outcome as dependent variables (ESCC carcinogenesis). BKMR
models in this study could estimate the mixture effects, detect the interactions among
individual nutrients and explore their relationship with ESCC risks. This implicated the
relationship between dietary nutrients and ESCC that might not be simply predicted by
DII. The exploration of the interaction and other effects of nutrients by BKMR can be
used as a favorable supplement to DII so as to more holistically evaluate the influence
of inflammatory diets on ESCC and preliminarily provide causal inference clues for the
follow-up mechanism research [15–17]. Consequently, this study aims to do the follow-
ing: (1) investigate the association of multiple dietary nutrients’ (cataloged into pro- and
anti-inflammation) co-exposure with ESCC risk; (2) evaluate the impact of single-effect
and interaction within different inflammatory levels of nutrients on ESCC risk through
implementing a BKMR model, providing preliminary causal inferences in diet-related
carcinogenesis and a reference base for the nutritional prevention of ESCC. In the current
study, we hypothesized that the data-driven LASSO and BKMR algorithms would supple-
ment traditional models of the associations of single nutrients/indices in elucidating the
relationship between dietary inflammatory nutrients and the ESCC risk. To be compared
with conventional studies [18–20], we also assessed the association of DII calculated by
nutrients with ESCC risk.
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2. Materials and Methods
2.1. Study Design and Participants

This study was designed as a case-control evaluation. The case group was newly
diagnosed ESCC patients with detailed clinicopathological data collected from the First
Affiliated Hospital of Fujian Medical University and Fujian Provincial Cancer Hospital
(through 2021), while the carcinoma-free control group was age- and sex-matched healthy
population randomly enrolled from community or village registers in Fujian Province at the
same period. All of the subjects in this study were self-reported as no special diet behaviors,
such as long-term diet modification and major diet change in the past five years. This
project belonged to the sub-project of the special disease cohort of EC in Fujian Province.
The study was approved by the Ethics Committee of Fujian Medical University (approval
no. 201495). All study subjects provided written informed consent.

Cases were eligibly complying with the inclusion criteria below: 1© Incident cases of
ESCC confirmed by X-ray, endoscopy or pathology after baseline enrollment according
to the International Classification of Disease for Oncology (ICD-O), 10th edition; 2© The
average daily energy intake is greater than 700 kcal and less than 4200 kcal for males while
the average daily energy intake is greater than 500 kcal and less than 3500 kcal for females;
3© Signed informed consent forms and completely qualified questionnaire survey data

were equipped. Moreover, subjects were excluded as unreliable according to the exclusion
criteria below: 1© failure to complete or cooperate with the questionnaire survey with
confidence or reliability; 2© recurrent, secondary or prevalent ESCC cases were diagnosed
by pathology; 3© having or ever had suffered from severe diseases such as malignancy or
immunological defects.

Controls were qualified and recruited according to the following inclusion criteria:
1©without history of any malignant disease or other diseases that may distinctly change

the diet, such as diabetes and arthrolithiasis; 2© the average daily energy intake is greater
than 700 kcal and less than 4200 kcal for males while the average daily energy intake is
greater than 500 kcal and less than 3500 kcal for females; 3© signed informed consent forms
and completely qualified questionnaire survey data are equipped. Moreover, controls were
excluded in the light of the following exclusion criteria: 1© failure to complete or cooperate
with the questionnaire survey with confidence or reliability; 2© having or ever had suffered
from severe diseases such as malignancy or immunological defects. Of the 1,955 participants
through 2021, we identified 1064 subjects with dietary data. After excluding participants
who suffered from severe diseases, or for whom there was incomplete information, 1064
adult subjects were finally included in the study (Figure 1).
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2.2. Data Collection

All the survey data were collected through face-to-face interviews using constructed
and standardized questionnaires by trained personnel. Sociodemographic characteristics
(e.g., gender, age, education, occupation, income), behavioral habituation (e.g., tobacco
smoking, alcohol drinking, tea consumption) and dietary information (e.g., frequency of
hot food intake, eating speed per meal) were ascertained via questionnaire.

2.3. Dietary Measurements

Various food intakes commonly consumed in Southeast China were assessed using a
171-item semi-quantitative food-frequency questionnaire (FFQ), classified into five major
categories: (1) cereals, 14 items; (2) plant-based foods, 82 items; (3) animal-based foods,
49 items; (4) beans, peas, legumes and their products, 8 items; (5) beverages, desserts and
nuts, 18 items. For each food, the subjects reported the frequency of consumption, which
was grouped into four classes including <1 time/month, 1–3 times/month, 2–6 times/week,
≥1 time/day, during one year before the diagnosis for cases or before the interview for
controls. The interviewers utilized multifarious food molds in the dietary survey to assist
subjects in recalling the specific consumption amounts more accurately.

2.4. Inflammatory Nutrients

We captured 23 of the 45 food parameters, which composed DII algorithm and were
quantified in inflammatory potential. In this study, energy (kcal), protein (g), carbohydrate
(g), fiber (g), cholesterol (mg), fat (g), saturated fatty acid (SFA) (g), monounsaturated
fatty acid (MUFA) (g), polyunsaturated fatty acid (PUFA) (g), β-carotene (µg), Vitamin A
(RE), thiamine (mg), riboflavin (mg), Vitamin C (mg), Vitamin E (mg), niacin (mg), Ferrum
(Fe) (mg), magnesium (Mg) (mg), selenium (Se) (µg), zinc (Zn) (mg), n-3 PUFA (g) and
n-6 long-chain PUFA (n-6 PUFA) (g) contents were obtained from FFQ data. Nutrient
intakes were calculated through multiplying the nutrient-content of each daily food per
100 g by the intake frequency and summed across all food items, referring to the China
Food Composition Tables: 6th edition. In addition, the daily average intake of alcohol (g)
was directly obtained from the survey data based on the China Food Composition Tables:
6th edition.

In the analysis of dietary nutrients and ESCC risk (i.e., LASSO and BKMR models), all
nutrients were adjusted to the total energy take by estimating the energy-adjusted intakes of
each food item using the FFQ [21] and classified into pro- and anti-inflammatory predictors
according to the representative and standardized database [12] rooted in 11 countries
around the world, which evaluated the comprehensive analysis of 929 articles on diet
and body inflammatory indicators published during 1950–2007 with sufficient literature
foundation and provided a credible inflammatory effect score for each nutrient or food
with reliable validity. To explore the true correlation between dietary nutrients and ESCC
in excluding the confounding effect of total energy intake from dietary components, the
nutrients were calculated per 1000 kcals of food consumed.

The process of development and calculation of the DII have been described in de-
tail previously [12]. The calculation of DII was accomplished by deducting population-
estimated average daily intake and divided by standard deviation. To minimize the
influence of the “right deviation”, the obtained Z-value was converted into percentile to
centralize on 0 by doubling the proportion and subtracting 1. Eventually, the sum of total
DII score was calculated to multiply by the corresponding inflammatory effect score of
each nutrient or food, and all figures were added together. To control for the potential
influence of energy intake, the DII was calculated per 1000 kcals of food consumed based
on the energy-density model (during the calculation of DII, nutrients were not energy-
adjusted). The values of single inflammatory effect score vary between −1 (maximum
anti-inflammation) and +1 (maximum pro-inflammation). For the purposes of this paper,
DII score was divided into quartiles in accordance with cut points derived from its distribu-
tion among controls, with quartile 1 as the referent group. Finally, there were 22 dietary
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nutrients included in our study, which consisted of 16 nutrients with anti-inflammatory
effects and six nutrients with -pro-inflammatory effect.

2.5. Covariates

Basic information comprised of gender (male, female), age (<60, ≥60), education (Illit-
eracy/primary school, junior high school/above), income (<CNY 2000/month,
CNY 2000–5000/month, >CNY 5000/month), occupation (farmer, worker, individual busi-
ness, other), tobacco smoking (no, yes), drinking intensity (no, mild, moderate, heavy), tea
consumption (never/seldom, often), eating speed per each meal (normal, quick, slow), hot
food (no, occasionally, often).

In this study, current alcohol drinker was defined as drinking at least once a week
on average and the drinking amount was equivalent to at least 50 mL alcohol contents
lasting for six months at fewest [22]. The intensity of alcohol consumption was categorized
based on the daily intake of ethanol. Among them, daily alcohol consumption less than
12.5 referred to “mild drinking”, 12.5–50 referred to “moderate drinking” and >50 referred
to “heavy drinking” [23]. According to the China Food Composition Tables: 6th edition, the
respective ethanol contents of various alcohol drinks were listed as below. For 100 mL of
alcoholic beverages, high-degree liquor (≥40 degree) is 52%, low-degreeiquor (<40 degree)
is 38%, yellow rice or millet wine is 18%, fruit and red wine is 10%, and beer is 4%. Smoker
was defined as smoking at a minimum of one cigarette per day for six months at lowest [24],
and tea drinker was defined as drinking tea once per week at any rate on average for
leastwise six months [25].

2.6. Least Absolute Shrinkage and Selection Operator Regression (LASSO)

LASSO regression [13], an effective methodology for high-dimensional surface of
predictors (22 pro- or anti-inflammatory nutrients), compressed function estimation and
constructed a penalty function in the interest of variable selection, turning on reducing
coefficients of variable sets. Moreover, it could avoid the malpractice resulting from
ordinary least squares estimation, such as overfitting and multicollinearity. In this study,
13 inflammatory nutrients (Figure 2) were picked out with ten-fold cross-validation and one
standard error of the minimum logarithmic transformation lambda value to be evaluated
in the subsequent BKMR models.

2.7. Bayesian Kernel Machine Regression

BKMR [14], a relatively new statistical approach, addressed the interrelation of multi-
ple exposed variables (dietary nutrients with distinct inflammatory potency) in a specific
outcome as dependent variables (ESCC carcinogenesis). BKMR model utilized Gaussian
kernel function to clarify the non-linear and non-additive exposure–response relationship
through iterative regression, combining the Bayesian algorithm and statistical methodol-
ogy. The main idea behind BKMR captured a wide range of underlying functional forms,
expressed as the formula below:

g(µm) = exp
{
−∑M

m=1 rm(zm − z′m)
2
}
+ βxm + εm, m = 1, . . . , n.

Here, gi was a monotonic link function, µi = E(Yi); z and z’ represented vectors of
predictor variables (22 inflammatory nutrients) for two different individuals; m referred to
the study subject; rm ≥ 0 denoted the tuning parameter that controlled the function smooth-
ness of the exposure variables zm; x was a vector of covariates assumed to have had a linear
relationship with ESCC (β as the corresponding vector of coefficients); εi referred to resid-
ual. Intuitively, the kernel function shrunk the estimated health effects of two individuals
with similar nutrients profiles toward each other as the exposure–response function.
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2.8. Statistical Analysis

Categorical variables were expressed as the count (N) and proportion (percentage).
Normally distributed continuous variables were presented as means and standard devia-
tions, whereas non-normally distributed data were presented as median with interquartile
range. Chi-square and Mann–Whitney U tests were applied to compare basic characteristics
between ESCC cases and controls for qualitative and quantitative data separately.

Given different inflammatory effects, DII-related food parameters were divided into
pro-inflammatory and anti-inflammatory nutrients and then were selected by LASSO
regression. In this study, three BKMR models were run by 10,000 iterations through the
Markov Chain Monte Carlo algorithm, which contained three pro-inflammatory nutrients
(protein, fat, carbohydrate) or/and ten anti-inflammatory nutrients (fiber, Vitamin A,
riboflavin, niacin, Vitamin C, Fe, Se, MUFA, n-3 PUFA, n-6 PUFA). We regraded the
concentration of each nutrient via energy-density adjustment as a continuous variable. We
fitted the BKMR model to investigate the interaction, the combination, and the single effects
of nutrient co-exposure on ESCC (dichotomous outcome). Potential confounding variables,
including gender, age, education, income, occupation, tobacco smoking, drinking intensity,
tea consumption, eating speed per meal and hot food, were adjusted to fit BKMR models.

We conducted a sensitivity analysis in exploring the relationship between DII (as a
continuous variable and a categorical variable) and ESCC utilizing unconditional logis-
tic regression and restricted cubic splines (RCS) to evaluate the whole effect containing
countervailing influences of dietary nutrients in the opposite directions of inflammation by
a simple indicator. We implemented three sets of models: (1) unadjusted any covariates;
(2) adjusted for gender and age; (3) the fully adjusted model, adjusting for gender, age,
education, income, occupation, tobacco smoking, drinking intensity, tea consumption,
eating speed per meal and hot food.

All statistical analyses were performed using the “compareGroups”, “glm”, “glmnet”,
“rms” and “bkmr” packages of R software (R Core Team, 2022, Vienna, Austria; version
4.1.3), and all p values were based on two-sided tests.

3. Results

The baseline characteristics of the study subjects were listed and compared (Table 1).
A total of 1064 participants were included in the analysis, consisting of 532 cases and
532 controls as sex- and age-frequency matches. Significant differences were observed
between the two groups on daily energy intake, education, income, occupation, drinking
intensity, tobacco smoking, tea consumption, eating speed per meal, hot food and DII
(as a continuous and categorical variable) (all p values < 0.05). Compared with controls,
ESCC patients were more likely to have statistically higher proportions of farmers and
workers, lower education and income level, more severe degree of alcohol consumption,
more frequently smoking tobacco and consuming tea, and poorer eating habits presented
as quickly eating per meal and usually hot food.

The distribution of nutrients between ESCC cases and the control group was repre-
sented (Table 2). In addition to cholesterol, selenium, thiamine, niacin, Vitamin E and
PUFA, statistical differences were revealed in other nutrients between the two groups (all
p value < 0.05).

The ESCC risk score was calculated through a linear combination of weighted coef-
ficients for 22 nutrients with a generated coefficient-distribution map (Figure 2A). The
cross-validation error graph in the most regularized and reduced model with coefficient
paths differed in disparate logarithmic transformation lambda values (Figure 2B). Within
one standard error of the minimum value, 13 nutrients eventually brought into BKMR
analysis were protein, fat, carbohydrate, fiber, Vitamin A, riboflavin, niacin, Vitamin C, Fe,
Se, MUFA, n-3 PUFA and n-6 PUFA. As listed in Table 2, these predictors were divided into
two groups with properties of pro- or anti- [3 pro-inflammatory nutrients: protein, fat, and
carbohydrate; 10 anti-inflammatory nutrients: fiber, Vitamin A, riboflavin, niacin, Vitamin
C, Fe, Se, MUFA, n-3 PUFA and n-6 PUFA].
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Table 1. Baseline Demographic Characteristics of the Analyzed Participants Given [Median (IQR) or
Frequency (%)].

Variables Control
(N = 532)

ESCC
(N = 532) p Value

Age 0.950 a

<60 319 (60.0) 318 (59.8)
≥60 213 (40.0) 214 (40.2)

Gender 0.790 a

Male 369 (69.4) 373 (70.1)
Female 163 (30.6) 159 (29.9)

Daily energy intake
(Kcal/day) 1363 [943.0;1942.0] 996 [761.0;1356.0] <0.001 b

Education level <0.001 a

Illiteracy/Primary school 234 (44.0) 332 (62.4)
Junior high school/above 298 (56.0) 200 (37.6)

Income level <0.001 a

<¥2000/month 154 (28.9) 217 (40.8)
¥2000–5000/month 254 (47.7) 219 (41.2)

>¥5000/month 124 (23.3) 96 (18.0)
Occupation <0.001 a

Farmer 155 (29.1) 229 (43.0)
Worker 68 (12.8) 103 (19.4)

Individual Business 89 (16.7) 56 (10.5)
Other 220 (41.4) 144 (27.1)

Tobacco smoking <0.001 a

No 311 (58.5) 217 (40.8)
Yes 221 (41.5) 315 (59.2)

Drinking intensity <0.001 a

No 240 (45.1%) 230 (43.2%)
Mild 157 (29.5%) 63 (11.8%)

Moderate 87 (16.4%) 155 (29.1%)
Heavy 48 (9.0%) 82 (15.4%)

Tea consumption <0.001 a

Never/seldom 308 (57.9) 239 (44.9)
Often 224 (42.1) 293 (55.1)

Eating speed/each meal 0.002 a

Normal (10–20 min) 286 (53.8) 242 (45.5)
Quick (<10 min) 123 (23.1) 173 (32.5)
Slow (>20 min) 123 (23.1) 117 (22.0)

Hot food <0.001 a

No 173 (32.5) 174 (32.7)
Occasionally 272 (51.1) 161 (30.3)

Often 87 (16.4) 197 (37.0)
DII (continuous) 2.38 [1.50;3.43] 3.05 [2.25;3.89] <0.001 b

DII (category) <0.001 a

Quartile 1 133 (25.0) 66 (12.4)
Quartile 2 133 (25.0) 100 (18.8)
Quartile 3 133 (25.0) 168 (31.6)
Quartile 4 133 (25.0) 198 (37.2)

a χ2 test between cases and controls; b Mann–Whitney U test between cases and controls; Abbreviation: DII,
dietary inflammation index.
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Table 2. Distribution of Nutrient Content Specific for DII in 1064 Subjects among Cases and Controls
[Median (IQR)].

Characteristic Control
(N = 532)

ESCC
(N = 532) p Value a Enter in BKMR

Model b

Pro-inflammatory
Protein (g/day) 51.6 [45.9; 57.8] 48.8 [40.9; 55.8] <0.001 Yes
Total fat (g/day) 38.8 [32.3; 46.0] 44.0 [35.1; 52.7] <0.001 Yes

Carbohydrate (g/day) 109.0 [92.2; 130.0] 102.0 [82.9; 124.0] <0.001 Yes
Cholesterol (mg/day) 319.0 [211.0; 447.0] 304.0 [185.0; 456.0] 0.216 No

Ferrum (mg/day) 15.1 [12.1; 19.4] 13.8 [10.9; 18.0] <0.001 Yes
Saturated fat (g/day) 17.3 [11.5; 208.0] 68.2 [13.5; 221.0] <0.001 No

Anti-inflammatory
Fiber (g/day) 8.1 [5.8; 12.2] 5.9 [4.0; 8.7] <0.001 Yes

Zinc (mg/day) 7.4 [6.6; 8.6] 7.2 [5.9; 8.4] 0.003 No
Selenium (µg/day) 37.8 [30.4; 51.4] 35.8 [24.8; 55.8] 0.027 Yes

Magnesium (mg/day) 237.0 [192.0; 291.0] 208.0 [165.0; 264.0] <0.001 No
Vitamin A (RE/day) 442.0 [314.0; 615.0] 387.0 [268.0; 576.0] 0.001 Yes

β-Carotene (µg/day) 2956.0
[1504.0; 4993.0]

2426.0
[1412.0; 4323.0] 0.009 No

Thiamine (mg/day) 0.6 [0.5; 0.7] 0.6 [0.5; 0.8] 0.113 No
Riboflavin (mg/day) 0.8 [0.7; 0.9] 0.7 [0.5; 0.8] <0.001 Yes

Niacin (mg/day) 13.6 [10.8; 121.0] 12.8 [9.9; 200.0] 0.337 Yes
Vitamin C (mg/day) 96.5 [65.4; 143.0] 82.5 [50.9; 128.0] <0.001 Yes
Vitamin E (mg/day) 12.1 [7.7; 17.8] 13.2 [8.34; 18.1] 0.099 No
Monounsaturated fat

(g/day) 19.2 [12.7; 245.0] 78.3 [14.3; 261.0] 0.001 Yes

Polyunsaturated fats
(g/day) 5.9 [4.0; 96.3] 33.6 [4.1; 95.6] 0.230 No

N-3 polyunsaturated fatty
acid (g/day) 2.8 [1.9; 3.9] 2.5 [1.7; 3.8] 0.017 Yes

N-6 polyunsaturated fatty
acid (g/day) 20.8 [16.0; 26.8] 19.2 [13.9; 25.7] 0.001 Yes

Alcohol (g/day) 0.00 [0.00; 5.93] 0.90 [0.00; 30.0] <0.001 No
a Mann–Whitney U test for the difference between cases and controls; b The nutrient selection using LASSO
regression with ten-fold cross-validation and one standard error of the minimum logarithmic transformation
lambda value to judge whether to enter into the BKMR model. Abbreviation: LASSO, least absolute shrinkage
and selection operator; BKMR, Bayesian kernel machine regression.
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Figure 2. Variable selection using the LASSO logistic regression model. (A) LASSO coefficients
of 22 candidate variables. The different color lines stand for trajectories for various variables at
increasingly higher levels of λ. (B) The optimal penalization coefficient (λ) identification in the
LASSO model was achieved by 10−fold cross−validation and the minimum criterion. The left
vertical line represents the minimum error, and the right vertical line represents the cross−validated
error within one standard error of the minimum. The red dotted line reflects changes of the mean
squared error, defined as the sum of variance and squared bias, at different levels of λ. Abbreviation:
LASSO, least absolute shrinkage and selection operator.
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The full BKMR model, concurrently containing 13 nutrients with diverse inflammatory
potential, revealed that the continuous markers of ESCC had an increasing trend even
though there was no statistical difference when all nutrients were at their 60th and above
percentile compared with the median level (Figure 3A). Although the overall effect was non-
significant, individual nutrients displayed a certain non-linear correlation with the hazard
of ESCC (Figure 3B). When all other nutrients were at the median level, n-3 PUFA, n-6 PUFA,
protein, riboflavin, and fiber had a gradual or negative relationship with ESCC. In contrast,
other nutrients represented by fat and carbohydrate were positively correlated with ESCC.
Meanwhile, the single-exposure effects of individual nutrients on ESCC indicated that fat,
carbohydrate and fiber in nutrient mixtures had significantly contributed to changes in
ESCC (Figure S1A). Further exploring whether there was an interaction between nutrients,
it set out mutual effects between fiber and fat, carbohydrate and Vitamin A, fiber and
MUFA and MUFA and Vitamin A (Figure S1B).
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Figure 3. Associations between 13 dietary nutrients (predictors) and ESCC (outcome) by BKMR
model adjusting for age, gender, education, income, occupation, tobacco smoking, drinking intensity,
tea consumption, eating speed per meal and hot food. (A) The estimated overall effect of 13 dietary
nutrients as compared to when all other nutrients are at the 50th percentile. The red dotted line
means the reference level at which all of nutrients are fixed to their 50th percentile, to achieve
interests of computing the overall effect of the mixture. (B) The univariate exposure–response
function of each nutrient when setting the remaining nutrients at their median level. Abbreviation:
BKMR, Bayesian kernel machine regression. Whereas the overall effect of whole nutrients tended to
be pro−inflammatory, it was inappropriate to take all pro−inflammatory and anti−inflammatory
predictors at the same time into account since there might be an offset influence. Hence, we further
investigated respective effects and possible relationships with ESCC for each subset’s pro− and
anti−inflammatory nutrients.

In the submodel only inclusive of three pro-inflammatory nutrients, when all pro-
inflammatory nutrients were at or below their 40th percentile level, the potential continuity
markers of ESCC risk revealed a significant increment compared with the median level,
indicating that the combined effect of pro-inflammatory nutrients’ co-exposure was sig-
nificantly positively correlated with ESCC (Figure 4A). In the anti-inflammatory nutrient
model, a non-statistically significant difference was observed, but there was a downward
trend (Figure 5A).
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Figure 4. Associations between three pro−inflammatory nutrients (predictors) and ESCC (outcome)
by BKMR model adjusting for age, gender, education, income, occupation, tobacco smoking, drinking
intensity, tea consumption, eating speed per meal and hot food. (A) The estimated overall effect
of 13 dietary nutrients as compared to when all other nutrients are at the 50th percentile. The red
dotted line means the reference level at which all of nutrients are fixed to their 50th percentile, to
achieve interests of computing the overall effect of the mixture. (B) The univariate exposure–response
function of each nutrient when setting the remaining nutrients at their median level. Abbreviation:
BKMR, Bayesian kernel machine regression.

When all other pro-inflammatory nutrients were fixed at median levels, fat and carbo-
hydrate exhibited ascending association with ESCC risk, with a decrease trend for fat while
an increasing trend for protein, in the high concentration (Figure 4B). Contemporaneously,
in the anti-inflammatory nutrient model, fiber, riboflavin, n-3 PUFA and n-6 PUFA exhib-
ited descending associations, with slight augment for the latent variables of ESCC at high
concentrations. Fe, Se, niacin, Vitamin A, Vitamin C and MUFA depicted contrary results
(Figure 5B).

When observing single-predictor health risks for the pro-inflammatory nutrients’
subsets (Figure S2A) with other pro-inflammatory nutrients fixed at 25th, 50th and 75th
percentiles, fats were significantly associated with gaining ESCC risk, although this rela-
tionship was attenuated at the 75th percentile of fat concentrations compared to the 25th
percentile. On the contrary, for fiber and riboflavin, it delineated a significant and negative
effect on the risk of ESCC when all of the other anti-inflammatory nutrients were fixed at
their 50th and 75th percentiles (Figure S3A).

The pro-inflammatory nutrients’ model disclosed interactions between protein and
fat or carbohydrate, specifically that the estimated effect of fat or carbohydrate on ESCC
risk was stronger when protein was set at lower concentrations (Figure S2B). Considering
dissimilar slopes of one nutrient in different quantiles of the other between the two nutrient
predictors, some potential interactions between MUFA and fiber, MUFA and Vitamin A, Se
and niacin and Se and Vitamin A were observed in the anti-inflammatory nutrients’ model
(Figure S3B).
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Figure 5. Associations between 10 anti−inflammatory nutrients (predictors) and ESCC (outcome) by
BKMR model adjusting for age, gender, education, income, occupation, tobacco smoking, drinking
intensity, tea consumption, eating speed per meal and hot food. (A) The estimated overall effect of
13 dietary nutrients as compared to when all of the other nutrients are at the 50th percentile. The
red dotted line means the reference level at which all of nutrients are fixed to their 50th percentile,
to achieve interests of computing the overall effect of the mixture. (B) The univariate exposure–
response function of each nutrient when setting the remaining nutrients at their median level.
Abbreviation: BKMR, Bayesian kernel machine regression. Even though results on univariate effects
came to the same conclusion, the analysis comprising of collective nutrients in general revealed
overall effect was a non−statistically risk factor for ESCC and was significantly distinct from that
of the pro−inflammatory group, signifying a countervailing effect between pro−inflammatory and
anti−inflammatory diets.

In our study, DII scores ranged between −0.864 and 4.891. The continuous scores were
transformed into quartiles in light with its distribution among controls: Quartile 1 was the
most anti-inflammatory (−0.864 to 1.727), and Quartile 4 was the most pro-inflammatory
(4.159 to 4.891). In addition, the unconditional logistic model illustrated that a higher level
of DII was significantly associated with ESCC (Ptrend < 0.001), regardless of whether DII
was considered as a continuous variable or a categorical variable (Table 3). Compared
with the lowest quartile, the odds of ESCC for DII quartile four was 2.591 times (95% CI:
1.690, 3.971). The adjusted OR were 1.388 (95% CI: 1.206, 1.597) and 1.280 (95% CI: 1.118,
1.465) per 1-unit increase and per one-quartile increase, respectively. A similar trend result
was graphically exhibited in RCS analysis (Poverall < 0.001; Pnonlinear < 0.001), indicating
there was a positively non-linear relationship between inflammatory diets and ESCC risk
(Figure 6).
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Table 3. Adjusted Odds Ratios (OR) and 95% Confidence Intervals (CI) for the Association Between
DII and Esophageal Squamous Cell Cancer.

Variable
OR(95% CI)

Model 1 Model 2 a Model 3 b

Continuous, per 1-unit
increase 1.490 (1.323–1.677) 1.470 (1.305–1.657) 1.388 (1.206–1.597)

Category
Quartile 1

−0.864 to 1.727 1 (Reference) 1 (Reference) 1 (Reference)

Quartile 2
1.728 to 2.771 1.969 (1.330–2.914) 1.992 (1.343–2.954) 1.807 (1.167–2.797)

Quartile 3
2.772 to 4.158 2.872 (1.964–4.199) 2.735 (1.865–4.009) 2.175 (1.405–3.367)

Quartile 4
4.159 to 4.891 3.033 (2.078–4.427) 2.950 (2.018–4.312) 2.591 (1.690–3.971)

p for trend <0.001 <0.001 <0.001
per one-quartile increase 1.396 (1.244–1.567) 1.369 (1.219–1.538) 1.280 (1.118–1.465)

a Adjusted for age and gender, using unconditional logistic regression. b Adjusted for age, gender, education,
income, occupation, tobacco smoking, drinking intensity, tea consumption, eating speed per meal and hot food,
using unconditional logistic regression.
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Figure 6. Restricted cubic spline curve fitting the relationship between DII and the risk of esophageal
squamous cell cancer adjusting for age, gender, education, income, occupation, tobacco smoking,
drinking intensity, tea consumption, eating speed per meal and hot food. The red dotted line stands
for the reference level. The solid black line represents the OR, and the shaded part the lower and
upper 95% CI; Poverall < 0.001; Pnonlinear < 0.001. Abbreviation: DII, dietary inflammatory index.

4. Discussion

This study explored the (1) the relationship between individual inflammatory nutrients
and the risk of ESCC; (2) the overall impact of inflammatory nutrients and (3) the interaction
between the different inflammatory nutrients. Thirteen nutrients were selected by LASSO
regression, including three pro-inflammatory nutrients (protein, fat and carbohydrate) and
ten anti-inflammatory nutrients (fiber, Vitamin A, riboflavin, niacin, Vitamin C, Fe, Se,
MUFA, n-3 PUFA and n-6 PUFA). In the BKMR model, we pointed out that the overall
effect of pro-inflammatory nutrients’ co-exposure was remarkably positively correlated
with ESCC risks. Univariate exposure–response function and single-predictor health-risk
analysis revealed ESCC patients tended to possess a higher level of fat and carbohydrate,
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while a lower level of fiber. Some interactions among nutrients were observed, for instance,
fat or carbohydrate and protein, fiber and fat, carbohydrate and Vitamin A, etc. Sensitivity
analysis indicated DII was positively and nonlinearly associated with risk of ESCC, which
was in accordance with the results of the BKMR model.

In line with our findings and postulations, it is well-reported that inflammation is
engaged in the pathogenesis of many degenerative diseases including gastrointestinal
cancer. In a study where a mice model [26] mimicked the development of human ESCC, it
was identified that the down-regulation of CD8+ was accompanied by an immune response
transformation that produced a chronic inflammatory environment and promoted the
proliferation of carcinogen-transformed epithelial cells. Recently, cumulative scientific
interests have posed that various abnormal changes in metabolic profile participated in
the occurrence and development of ESCC through inflammatory factors and effects. Due
to intrinsic antitumor properties, dihydroartemisinin inhibited ESCC by triggering cell
pyroptosis [27], a novel pro-inflammatory programmed cell death. Pyroptosis-based cells
exhibited the activation of caspase-8/3, the release of inflammatory factors (IL-18, IL-1β,
etc.) and a strong relationship to inflammation, immunity and cancer.

In the subgroup analysis that merely included dietary parameters with pro-inflammatory
potential, fat was identified as a significant risk factor for ESCC. Similar to our results,
some population-based studies stated that dietary intake of fat was associated with breast
cancer [28], liver cancer [29] and colon cancer [30]. Likewise, relevant studies set forth
that excessive dietary fat reservoir elicited a dysfunction of cellular process and activa-
tion of pro-inflammatory pathways, through unbalanced changes in gut microbiota and
unfavorable remodeling in metabolic profiling, presented as fecal enrichment of arachi-
donic acids, anomalous lipopolysaccharide biosynthesis pathway and growth of plasma
pro-inflammatory factors [31,32]. However, it was noteworthy that growing fats were
thought to reduce ESCC risks when other predictors were fixed at the 25th, 50th and 75th
percentile in the subset of pro-inflammatory nutrients. The mutual effect between fat and
protein, obtained from bivariate exposure–response function analysis, might be a recipe
for the paradoxical trend, implying further inquiry and elaboration. Corresponding to our
results, a sub-study of the Protein Overfeeding trial [33] examined the changes in blood
lipids under over-ingestion of high and low protein diets, elucidating that protein intake
and fat intake were inversely related. Moreover, A prospective study [34] indicated that
the association between higher take of dietary fat and gestational diabetes mellitus risk
was drastically attenuated after adjustment for animal protein intake. It was not unique
but had its counterpart. Composite effects of dietary protein and fat on several lipid pa-
rameters were ascertained [35]. In addition, we held that whether in the full parameter
group or the anti-inflammatory parameter subgroup, fiber was thought to be a protective
factor to reduce ESCC risk, in which there was a certain interaction between fiber and fat.
Compatible with our opinions, the increases in dietary fat and fiber concentration were
found to accelerate fecal excretion of bile acid (BA) with tumor promoting activity (p value
< 0.05), which might change the specific binding of taurine and/or glycine in the liver
and affect the lipid digestion/metabolism in the small intestine [36]. Diets high in fat and
low in fiber contributed to metabolic endotoxemia, implicated as a cause of inflammation
during metabolic dysfunction through changes in the gastrointestinal microbiome, bacterial
fermentation end products, gut barrier function and enterohepatic circulation of BAs [37].

Considering that the interaction between dietary inflammatory nutrients might have
a possible impact on ESCC risk, our study concluded that in the pro-inflammatory pa-
rameter subgroup, protein interacted not only with fat but also with carbohydrates. In
accordance with our result, certain effects of carbohydrate and protein fermentation on
gastrointestinal health were well established [38–40]. Diets with high protein and reduced
carbohydrate altered the colonic tumor microenvironments, favoring a potentially pro-
inflammatory microbiota profile and decreased short-chain fatty acid production. These
aberrant changes largely compromised the colonic epithelium structure, causing mucosal
inflammation that might also directly modulate the enteric nervous system and intesti-
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nal motility. Besides, the interaction between dietary components was found to regulate
the transcription/translation process of lipid and carbohydrate metabolism genes via the
activity of the protein kinase RNA-like endoplasmic reticulum stress response [41]. Further-
more, this study also noted that carbohydrate was considered to promote ESCC risk and
interacted with Vitamin A in the full parameter group (including both pro-inflammatory
and anti-inflammatory nutrients). It was reported that FGF19, a gut-derived hormone,
controlled carbohydrate metabolism and was regulated by Vitamin A through farnesoid X
receptor(FXR)-independent and -dependent pathways in human intestinal cell lines [42].
Interestingly, FXR synthetic ligand(GW4064) was thought to suppress ESCC proliferation
through induction of apoptosis, arrest of cell cycle, inhibition of inflammatory genes and
a reduction of ERK1/2 phosphorylation levels [43]. It suggests that FXR was somewhat
associated with EESCC. The FXR-related comprehensive effect between vitamin A and
carbohydrate has not been clarified, and further study is needed.

It is well-known that DII is broadly applied in fields of public health. As of yet, bulks of
studies mainly concentrated on the relationship between DII and health outcomes in various
gastrointestinal cancers, such as ESCC [18], colorectal cancer [19] and liver cancer [20]. To be
compared with conventional studies, we also assessed the association of DII, as a synthetic
index of nutrients, with ESCC risk. Similarly, we also noted DII was significantly associated
with risks of ESCC in a positive and non-linear manner, signifying the pro-inflammatory
diet was related to a higher risk of ESCC, which was consistent with the results of BKMR
models. However, the effects of DII on ESCC risk haven’t been stated explicitly according to
the single influence and the interactions among nutrients, which were sufficiently displayed
in BKMR models from distinct perspectives of pro-inflammatory, anti-inflammatory and
full nutrients. To sum up, DII, as a composite indicator, can efficiently assess the overall
effect of nutrients with different inflammatory potency. Noteworthily, in addition to the
explanation of the whole effects of all nutrients, this study based on the function of DII
has the superiority in graphically and specifically revealing individual effects and mutual
effects among nutrients that may be very important mechanistically. This implied that the
relationship between dietary nutrients and ESCC may not be simply predicted by DII, and
the exploration of the interaction and other effects of nutrients by BKMR can be used as
a favorable supplement to DII so as to more holistically evaluate the association between
inflammatory diets and ESCC [15–17].

The current study has several strengths. It is a newer analysis to look into, meticu-
lously and comprehensively, the correlation between inflammation-related dietary nutrients
and ESCC risks in the Chinese population from the perspective of inflammatory effects.
Furthermore, LASSO regression, a shrinkage (penalized regression) method that pushed
minimums of coefficients to exactly zero via directly shrinking the sum of the absolute
values of coefficients, was robust enough to identify important mixture components (highly
correlated variables) and address multicollinearity with lower coefficient variance than
ordinary least-squares regression. Thirdly, the BKMR algorithm could synthetically identify
non-linear exposure–reaction effects and graphically capture interactions between highly
correlated nutrients’ mixed co-exposure, making up for sole usage of DII, allowing evalua-
tion of combined effects of predictors with diverse influence directions. Finally, this study
was conducted in multiple medical centers, which may reduce the potential selection bias
to a certain extent.

There are a few limitations in this study. The present study centering on the popula-
tion in the southeast coastal area of China may be deficient in extrapolation. Additionally,
one weakness of the BKMR model originated from its core algorithm, which fixed other
inflammatory nutrients as predictors at a certain exposure level to infer the studied pre-
dictor’s exposure–response function and cannot estimate with advantage the effects of
simultaneous exposure to high or low levels of food parameters.
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5. Conclusions

Our study suggested that a pro-inflammatory diet increased ESCC risk while an
anti-inflammatory diet reduced ESCC risk, implying that dietary nutrients and their in-
flammatory traits significantly impacted ESCC occurrence. Further research is warranted
to validate these results and explore the probable pathobiological mechanisms, providing
handholds for nutritional assessment and promoting early identification of ESCC.
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food; Figure S2: Associations between 3 pro-inflammatory nutrients(predictors) and ESCC(outcome)
by BKMR model adjusting for age, gender, education, income, occupation, tobacco smoking, drinking
intensity, tea consumption, eating speed per meal, and hot food; Figure S3: Associations between
10 anti-inflammatory nutrients(predictors) and ESCC(outcome) by BKMR model adjusting for age,
gender, education, income, occupation, tobacco smoking, alcohol drinking intensity, tea consumption,
eating speed per meal, and hot food.
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