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Abstract: Approximately $20 billion of apple sales are generated annually in the United States. With
an estimated 5 million tons produced yearly in the U.S. within the last decade, apple consumption
is considered ubiquitous. Apples are comprised of bioactive constituents such as phytochemicals
and prebiotics that may potentiate intestinal health and the gut microbiome. This study aimed to
evaluate the effects of Empire apple juice, pomace, and pulp soluble extracts on intestinal functionality,
morphology, and the microbiome in vivo (Gallus gallus). There were five treatment groups: non-
injected (NI); 18 MΩ H2O (H2O); 6% apple juice (AJ); 6% apple pomace (APo); 6% apple pulp (APu).
The eggs were treated by intra-amniotic administration of the samples on day 17 of incubation.
After hatching, the blood, tissue, and cecum samples were collected for further analyses—including
duodenal histomorphology, hepatic and duodenal mRNA expression, and cecal bacterial populations.
Crypt depth was significantly (p < 0.5) shortest in AJ when compared to APo and APu. APo and APu
soluble extracts significantly improved villi surface area compared to NI and H2O control groups. The
highest count of Paneth cells per crypt was observed in APo as compared to all groups. In addition,
the expression of brush border membrane micronutrient metabolism and functional proteins varied
between treatments. Lastly, Lactobacillus cecal microbial populations increased significantly in the
AJ group, while AJ, APu, and APu increased the abundance of Clostridium (p < 0.5). Ultimately,
these results indicate the potential of Empire apple pomace to improve host intestinal health and the
gut microbiome.

Keywords: apples; intra amniotic administration; gene expression; microbiome; intestinal morphology;
Gallus gallus

1. Introduction

Apples (Malus domestica) are a well-established, domesticated fruit worldwide, with
approximately 86 million metric tons produced annually [1]. On a fresh basis, apples
are among the top fruit varieties grown in the United States—second only to grapes [2].
Fresh apple consumption is most common among consumers, however, 35% of the apples
consumed are processed [3]. While processed apple products generally include jams, jellies,
cider, vinegar, and dried products, most apples are processed for apple juice. There is
a 75% juice extraction efficiency in the apple juice industry; thus, 25–30% of the fruit
waste remains. Known as the pomace, this leftover fraction is a heterogeneous mixture of
skin, flesh, seeds, stems, core, and calyx [4,5]. According to the U.S. Apple Association,
approximately 33.4 million bushels (701.4 million kg) of apples were produced in 2021–2022
for juice and cider production [6]. Based on the juice extraction efficiency (75%), an
estimated 175,350 metric tons of apple pomace were produced annually [4]. Apple waste is
typically disposed of in landfills, leading to several damaging environmental effects, as
disruption to the carbon:nitrogen ratio of soil can occur due to sugar content, organic acids,
and microbial fermentation of apple pomace [7]. The high-water content of apple pomace
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is also an issue as it can cause water pollution. Given the complications of pomace disposal,
various industries have taken advantage of the by-product as it is a rich source of nutrients
such as carbohydrates, micronutrients, and phytochemicals [8]. Further utilization includes
pectin extraction, production of enzymes and aroma compounds, cultivation of microbial
strains and edible mushrooms, and incorporation into animal feed [5]. However, the
burden remains to prevent the disposal of apple waste into landfills and, ultimately, avoid
environmental pollution.

Apples contain health-promoting bioactive constituents. Quercetin derivatives (galac-
toside, glucoside, rhamnoside), catechin, gallic acid, phloretin, and chlorogenic acid are
polyphenolic compounds that are reportedly found in apples [8]. Studies have reported the
antioxidative [9–13], antiproliferative [11,14–17], and anti-inflammatory [18–20] potential
of apple polyphenols. It is important to note that apple phenolic compounds differ in
concentration throughout the fruit matrix. For example, while apple flesh and apple peels
contain chlorogenic acid, the flesh contains higher concentrations [21,22]. Research has
also shown apple peels to contain greater amounts of antioxidants and, therefore, greater
antioxidant potential compared to apple flesh. In addition, interest in apple seeds as a
source of polyphenolic compounds has been investigated and found to be a rich source of
quercetin derivatives, phenolic acids, catechin, and phloridzin [23]. Another constituent
with health-promoting properties within the apple is dietary fiber, specifically, the non-
digestible soluble polysaccharide pectin. Historically utilized as a commercial thickening
and gelling agent, pectin holds potential functional properties which may improve intesti-
nal health. The resistance to gastric digestion enables pectin to reach the host gut and
undergo fermentation by microbiota, and ultimately produces short-chain fatty acid (SCFA)
metabolites [24–27]. Previous studies have shown SCFAs to be beneficial to the gut by
promoting enteric epithelial cell proliferation, enhancing gut barrier function, enhancing
micronutrient absorption, and favoring the growth of beneficial bacteria over potentially
pathogenic bacteria [28–32].

This study aimed to evaluate the in vivo effects of apple juice, pomace, and pulp solu-
ble extracts on intestinal morphology, functionality, and the microbiome using Gallus gallus
as our model. The broiler chicken is an established model employed to evaluate the ef-
fects of plant-origin bioactives on intestinal health and the microbiome [33]. The broiler
chicken model exhibits genetic homology, a complex gut microbiota, and notable microbial
similarity at the phylum level to human gut microbiota [34].

2. Materials and Methods
2.1. Apple Preparation

Empire apples (Malus domestica) were harvested (>2 tons) during the fall of 2021 from
multiple trees from the Cornell AgriTech Orchards and processed at the Cornell Food
Venture Center Pilot Plant (Geneva, NY, USA). Before processing, Empire apples were
destemmed and washed. Apple pulp was made by removing the core and seeds and
dicing. The apple pieces were then freeze-dried (Max53, Millrock Technology, Kingston,
NY, USA) for 24 h. The dried apple was then ground into a fine powder using a bench-scale
processor (Robo Coue; Jackson, MI, USA) at 1500 RPM. Apple juice was made to typical
industry standards. For apple juice, whole apples were ground in a hammer mill in a blade
configuration. The pulp was then pressed using a pilot-scale hydraulic press (Orchard
Equipment Co., Conway, MA, USA) at 1200–1400 PSI. The juice was commercially sterilized
by hot-packing into PET bottles at 85 ◦C and keeping it hot for 2 min. Apple pomace was the
resulting pomace from the juice pressing. After juice pressing, the pomace was freeze-dried
for 24 h. The dried pomace was ground into a fine powder using a bench-scale grinder. The
powders were vacuumed-sealed, and all samples were kept frozen until use.
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2.2. Apple Analysis Sample Preparation

Apple samples were extracted under dark conditions utilizing absolute methanol and
constant agitation for 2 h. The resulting slurry was centrifuged and decanted to acquire the
supernatant. The subsequent isolate and washings were diluted to attain an extract (15%
w/v) which was ultimately utilized for the further analysis below.

2.2.1. Polyphenol Analysis

The Folin-Ciocalteu method previously detailed by Waterhouse was utilized to quan-
tify total polyphenol content (TPC) [35]. Essentially, the Folin-Ciocalteu reagent and the
extract were allowed to incubate at room temperature. The sodium carbonate solution was
used to quench the reaction and sample absorbance was measured immediately using a
UV-visible spectrophotometer (Thermo Fisher; Waltham, MA, USA) at 765 nm. Therefore,
TPC was calculated as gallic equivalents (GE) using a standard curve prepared under the
same conditions.

2.2.2. Fibrous and Non-Fibrous Carbohydrate Analysis

According to AOAC 962.09, the non-fibrous carbohydrate analysis (NFC) was com-
pleted. Acid detergent fiber (ADF) and neutral detergent fiber (NDF) analyses were
conducted according to AOAC 973.18. The analysis was performed by Dairy One Co-Op
Inc. (Ithaca, NY, USA).

2.3. Extraction of Soluble Apple Contents

Apple powders and juice samples were dissolved and diluted in distilled water to
create 6% concentrations. All apple samples were heated via water bath for 1 h at 60 ◦C,
centrifuged (3500 RPM) for 10 min at room temperature, and the supernatant was collected
only in the case of the pomace and pulp.

2.4. Animals and Design

Fertile Cornish-cross broiler chicken eggs (n = 55) were provided by a hatchery
(Moyer’s chicks, Quakertown, PA, USA). All animal protocols were approved by Cornell
University Institutional Animal Care and Use Committee (ethic approval code: 2020-0077).
Apple extract powders and juice were diluted with 18 MΩ H2O to acquire the necessary
concentration to maintain an osmolarity value of less than 320 Osm. On day 17 of em-
bryonic incubation, viable eggs were weighed and randomly allocated into five groups
(n = 12) with a similar weight frequency distribution. After identifying the amniotic fluid
by candling, the treatment solution (1 mL) was injected with a 21-gauge needle. Subsequent
to injection, the injection site was sealed with cellophane tape. Eggs were placed in hatching
baskets for each treatment and equal representation at each incubator location. The five
treatment groups consisted as follows: non-injected (NI); 18 MΩ H2O (H2O); 6% apple
juice (AJ); 6% apple pomace (APo); and 6% apple pulp (APu). On day 21, exposure to CO2
was used to euthanize hatchlings, and the blood, pectoral muscle, liver, duodenum, and
cecum were collected for further analysis.

2.5. Blood Analysis

Blood was collected from the heart using micro-hematocrit heparinized capillary tubes
(Fisher Scientific Waltham, MA, USA). Blood glucose concentrations were determined
using the Accu-Chek® blood glucose monitor following the manufacturer’s protocol.

2.6. Pectoral Glycogen

The pectoral muscle was collected on the day of the hatch. Glycogen analysis was
completed as previously described [36–38]. Briefly, 20 mg of the sample was homogenized
in 8% perchloric acid and centrifuged at 12,000 rpm (4 ◦C) for 15 min. The supernatant
was removed, and 1.0 mL of petroleum ether was added. Following mixing, the petroleum
ether fraction was discarded, and the remaining sample layer was transferred to a new
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container with the color reagent (300 µL). Samples were read in an ELISA reader at 450 nm,
and glycogen content was analyzed based on the standard curve. Total glycogen content
in the pectoral sample was identified as the product of multiplying tissue weight by the
amount of glycogen per 1 g of wet tissue.

2.7. Total RNA Extraction from Duodenum and Liver Tissue Samples

Total RNA was extracted from 30 mg of duodenal and liver tissue samples (n = 5)
as previously described [39–43]. Briefly, the Qiagen Rneasy Mini Kit (Rneasy Mini Kit,
Qiagen Inc., Valencia, CA, USA) was used. All protocols were carried out according to
the manufacturer and under Rnase-free conditions. RNA was quantified by absorbance
at A 260/280. The integrity of 18S ribosomal rRNA was verified by 1.5% agarose gel
electrophoresis, followed by ethidium bromide staining. RNA was stored at −80 °C until
further use.

2.8. Real-Time Polymerase Chain Reaction (RT-PCR)

cDNA was created from the extracted RNA by a 20 µL reverse transcriptase (RT)
reaction. To complete the reaction, the BioRad C1000 touch thermocycler using the Improm-
II Reverse Transcriptase Kit (Catalog #A1250; Promega, Madison, WI, USA) was utilized.
The cDNA concentration was measured by Nanodrop (Thermo Fisher Scientific, Waltham,
MA, USA) at an absorbance of 260 nm and 280 nm using an extinction coefficient of 33 (for
single-stranded DNA). Genomic DNA contamination was assessed by a real-time RT-PCR
assay for the reference gene samples.

The RT-PCR primers were designed based on relevant gene sequences from the Gen-
Bank database using the Real-Time Primer Design Tool software (IDT DNA, Coralvilla,
IA, USA), as detailed previously [44]. Table 1 indicates the primer sequences used in
accordance with iron, zinc, and vitamin A metabolism, immune response, and brush border
membrane functionality. The reference gene used was the Gallus gallus primer 18S rRNA.
BLAST searches against the genomic National Center for Biotechnology Information (NCBI)
database were applied to verify primer specificity.

Table 1. DNA primer sequences used in this study.

Analyte Forward Primer (5′-3′) Reverse Primer (5′-3′) Base Pair GI Identifier

Iron Metabolism

DcytB CATGTGCATTCTCTTCCAAAGTC CTCCTTGGTGACCGCATTAT 103 20380692

DMT1 TTGATTCAGAGCCTCCCATTAG GCGAGGAGTAGGCTTGTATTT 101 206597489

Ferroportin CTCAGCAATCACTGGCATCA ACTGGGCAACTCCAGAAATAAG 98 423984

Hepcidin AGACGACAATGCAGACTAACC CTGCAGCAATCCCACATTTC 132 SAMN08056490

Zinc Metabolism

ZnT1 GGTAACAGAGCTGCCTTAACT GGTAACAGAGCTGCCTTAACT 105 54109718

ZnT7 GGAAGATGTCAGGATGGTTCA CGAAGGACAAATTGAGGCAAAG 87 56555152

ZIP4 TCTCCTTAGCAGACAATTGAG GTGACAAACAAGTAGGCGAAAC 95 107050877

ZIP1 TGCCTCAGTTTCCCTCAC GGCTCTTAAGGGCACTTCT 144 121112053

Vitamin A Metabolism

CRBP2 GGCTACATGGTTGCACTAGACA AACCACCCGGTTATCGAGTC 195 NM_001277417.1

LRAT GATTTTGCCTATGGCGGCAG TTGTCGGTCTGGAAGCTGAC 197 XM_420371.7

RBP4 TGCCACCAACACAGAACTCTC CTTTGAAGCTGCTCACACGG 149 NM_205238.2

STRA6 GTGCGCTGAACTTTGTCTGC TTCTTCCTGCTCCCGACCT 116 NM_001293202.2
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Table 1. Cont.

Analyte Forward Primer (5′-3′) Reverse Primer (5′-3′) Base Pair GI Identifier

Inflammatory Response

NF-κB CACAGCTGGAGGGAAGTAAAT TTGAGTAAGGAAGTGAGGTTGAG 100 2130627

TNF-α GACAGCCTATGCCAACAAGTA TTACAGGAAGGGCAACTCATC 109 53854909

IL6 ACCTCATCCTCCGAGACTTTA GCACTGAAACTCCTGGTCTT 105 302315692

Brush Border Membrane Functionality

VDAC2 CAGCACTCGCTTTGGAATTG GTGTAACCCACTCCAACTAGAC 99 395498

OCLN GTCTGTGGGTTCCTCATCGT GTTCTTCACCCACTCCTCCA 124 396026

SI CCAGCAATGCCAGCATATTG CGGTTTCTCCTTACCACTTCTT 95 2246388

MUC6 CCAACTTGCAGTGTTCCAAAG CTGACAGTGTAGAGCAAGTACAG 106 XM_015286750.1

18S rRNA GCAAGACGAACTAAAGCGAAAG TCGGAACTACGACGGTATCT 100 7262899

DcytB, Duodenal cytochrome B; DMT1, Divalent metal transport 1; ZnT1, Zinc transporter 1; ZnT7, Zinc trans-
porter 7; CRBP2, Cellular retinol-binding protein 2; LRAT, Lecithin; Retinol Acyltransferase; RBP4, Retinol binding
protein 4; STRA6, Stimulated by Retinoic aid 6; NF-kB, Nuclear factor kappa beta; TNF-α, Tumor necrosis factor-
alpha; IL6, Interleukin 6; VDAC2, Voltage-dependent anion channel 2; OCLN, Occludin; SI, Sucrase isomaltase;
MUC6, Mucin 6.

2.9. Microbial Samples and Intestinal Contents DNA Isolation

Cecum samples were weighed and placed in sterile tubes containing PBS. Subse-
quently, the samples were vortexed with sterile glass beads for 3 min. All protocols were
completed as previously described [42,45–49].

2.10. Primer Design and PCR Amplification of Bacterial 16S rRNA

Bifidobacterium, Lactobacillus, Escherichia coli, Clostridium, Klebsiella, and L. plantarum
primers were used. 16S rRNA was the universal primer and internal standard. Therefore,
the proportions of each bacterial group are presented. PCR products were applied to
1.5% agarose gel with ethidium bromide stain and quantified with Gel-Pro analyzer version
3.0 (Media Cybernetics LP, Rockville, MD, USA).

2.11. Histomorphological Examination

On the day of the hatch, proximal duodenal samples were collected. Subsequently,
the samples were soaked in 4% (v/v) buffered formaldehyde, dehydrated, cleared, and
embedded in paraffin. Several sections were cut with a 5 µm thickness and placed on
glass slides. Intestinal sections were then deparaffinized in xylene and rehydrated in a
series of graded alcohol. Ultimately, the slides were stained with Alcian Blue/Periodic
acid-Schiff and investigated by light microscopy using EPIX XCAP software (Standard
version, Olympus, Waltham, MA, USA). The following features were measured in the
duodenum: villus surface area, crypt depth, villus and crypt goblet diameter, crypt goblet
cell number and type, and Paneth cell number and diameter within the crypt, as previously
described [42,43,49–51]. Per treatment group, five biological samples (n = 5) (four segments
each) were analyzed. Ten randomly selected villi and crypts were measured and analyzed,
and cell measurements and counts were completed in ten randomly selected villi or crypts
per segment. The following equation was utilized to calculate the villus surface area:

Villus sur f ace area = 2π×VW
2
×VL (1)

in which VW is the mean of three villus width measurements, and VL is the villus length.
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2.12. Statistical Analysis

In this paper, values are portrayed as the mean values ± standard error means. Ex-
perimental treatments and controls for the intra-amniotic administration were assigned
with approximately equal weight distribution. Tested parameters were analyzed for
normal distribution and equal variance through a Shapiro-Wilk test. If the test was ac-
cepted, a one-way analysis for variance (ANOVA) was utilized. ANOVA was used to
analyze the results, followed by a Duncan post-hoc test to determine significance based on
p-values (p < 0.05). For all statistical evaluations, software SPSS version 20.0 was utilized.

3. Results
3.1. Apple Polyphenol and Fiber Content

Empire apple pulp had the highest (p < 0.05) TPC content, followed by apple pomace
(APo) and apple juice (AJ) (Table 2). Apple pomace had the greatest acid detergent fiber
(ADF) and neutral detergent fiber (NDF) compared to apple pulp and apple juice. Lastly,
non-fiber carbohydrate content was greatest in the apple pulp.

Table 2. Total polyphenolic (mg/g GAE) and fiber content of apple products.

Sample TPC (mg/g GAE) ADF (%/DM) NDF (%/DM) NFC (%/DM)

Pomace 0.834 ± 0.059 b 22.6 25.6 62
Juice 0.300 ± 0.029 c NA NA NA
Pulp 1.57 ± 0.074 a 6.7 7.9 85.4

Values are the means± SEM, a–c Treatment groups not indicated by the same letter in the same column are significantly
different (p < 0.05) by Duncan’s post-hoc test. ADF: cellulose, lignin, and insoluble minerals; NDF: cellulose, lignin,
insoluble minerals, and hemicellulose; NFC: sugars, starches, organic acids, and pectin.; GAE: gallic acid equivalents;
DM: dry matter; NA: not applicable.

3.2. Body Weight, Blood Glucose, and Glycogen Content

No significant differences were observed between the treatment and control groups
for body weight, blood glucose, and glycogen content (p < 0.05, Table 3).

Table 3. Effect of the intra-amniotic administration of apple fraction soluble extracts on body weight
(g), blood glucose (mg/dL), and glycogen (mg/g).

Treatment Group Body Weight (g) Blood Glucose (mg/dL) Glycogen (mg/g)

NI 40.83 ± 1.24 a 254.11 ± 23.83 a 0.396 ± 0.101 a

H2O 38.29 ± 4.31 a 234.4 ± 11.16 a 0.294 ± 0.093 a

AJ 40 ± 0.99 a 225.5 ± 11.43 a 0.431 ± 0.092 a

APo 35.7 ± 0.67 a 230.56 ± 21.28 a 0.271 ± 0.054 a

APu 36.44 ± 0.85 a 205.5 ± 32.05 a 0.442 ± 0.077 a

Values are the means ± SEM, n = 5. a Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Duncan’s post-hoc test.

3.3. Duodenal and Hepatic Gene Expression of Related Proteins

Figures 1–3 depict the gene expression of proteins relevant to micronutrients (iron,
zinc, and vitamin A) metabolism, immune response, and functionality.

3.3.1. Iron and Zinc-Related Proteins

DcytB expression in treatment groups AJ and Apo were downregulated (p < 0.05)
compared to the NI and H2O controls (Figure 1). AJ reduced (p < 0.05) gene expression of
DMT1 relative to the NI control, but no difference was observed relative to the H2O control.
The apple groups did not alter (p < 0.05) the gene expression of ferroportin compared to the
NI and H2O groups. Hepcidin, an iron-related protein located in the liver, was upregulated
by the AJ treatment relative to the NI control. APo and APu were not significantly altered
compared to NI and H2O controls.
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3.3.2. Vitamin A-Related Proteins 
No significant differences (p < 0.05) were observed in the gene expression of CRBP2 

and LRAT between the treatment and control groups (Figure 2). AJ had the greatest (p < 
0.05) expression of RBP4 compared to the NI control, which had the lowest (p < 0.05) ex-
pression of RBP4, however, there were no differences (p < 0.05) between the H₂O control 
and the apple treatment groups.  
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The administration of apple juice, pomace, and pulp extractions did not alter (p < 0.05)
the gene expression of zinc-related proteins at the brush border membrane relative to the
NI and H2O controls.

3.3.2. Vitamin A-Related Proteins

No significant differences (p < 0.05) were observed in the gene expression of CRBP2
and LRAT between the treatment and control groups (Figure 2). AJ had the greatest
(p < 0.05) expression of RBP4 compared to the NI control, which had the lowest (p < 0.05)
expression of RBP4, however, there were no differences (p < 0.05) between the H2O control
and the apple treatment groups.

3.3.3. Inflammatory and Functionality-Related Proteins

The gene expression of proteins related to inflammation—NF-κB, TNF-α, and IL6—was
not significantly different (p < 0.05) between the control and experimental groups (Figure 3).
Further, gene expression of functional proteins VDAC2, SI, and MUC6 were not significantly
(p < 0.05) different between treatment and control groups. However, the gene expression
of OCLN was significantly (p < 0.05) lowered in the AJ group compared to all other treat-
ment groups.

3.4. Morphometric Analysis

Groups APo and APu have significantly (p < 0.05) greater villi surface area compared
to both control and experimental groups (Table 4). Crypt depth is significantly shortest
(p < 0.05) in APu, APo, and AJ, respectively, related to both controls.

The intra-amniotic administration of AJ increased (p < 0.05) goblet cell diameter within
the villi relative to the other experimental groups and H2O control, but not the NI control
(Table 5). Goblet cell diameter within the crypts was significantly (p < 0.05) lower in the APo
group. Further, the count of goblet cells within the intestinal crypts was highest (p < 0.05)
in APu relative to the other treatment and control groups. The abundance of acidic goblet
cells per unit area was more significant (p < 0.05) in the APu treatment compared to the
other apple fraction treatments and NI and H2O controls. Neutral goblet cell abundance
was significantly (p < 0.05) lowered in all apple fraction treatment groups relative to the
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H2O control but was similar to the NI control. Mixed goblet cells were most numerous
(p < 0.05) in APu relative to the APo, NI, and H2O groups.

Table 4. Effect of the intra-amniotic administration of apple fraction soluble extracts on villi surface
area and crypt depth.

Treatment Group Villi Surface Area (µm2) Crypt Depth (µm)

NI 16,458.04 ± 771.84 b 22.1 ± 0.81 a

H2O 16,101.54 ± 383.07 b 21.93 ± 0.72 a

AJ 17,470.91 ± 444.08 b 14.45 ± 0.54 c

APo 23,116.65 ± 509.84 a 16.85 ± 0.79 b

APu 23,520.69 ± 739.04 a 17.38 ± 0.71 b

Values are the means ± SEM, n = 5. a–c Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Duncan’s post-hoc test.

Table 5. Effect of the intra-amniotic administration of apple fraction soluble extracts on villi and crypt
goblet cells.

Treatment Group Villi Goblet
Diameter (µm)

Crypt Goblet
Diameter (µm)

Crypt Goblet
Cell Number

Crypt Goblet Cell Number

Acidic Neutral Mixed

NI 3.48 ± 0.07 a 3.01 ± 0.05 a 7.01 ± 0.24 c 5.79 ± 0.2 c 0.02 ± 0.02 b 1.21 ± 0.13 c

H2O 3.17 ± 0.06 b 2.89 ± 0.05 a 8.55 ± 0.32 b 6.92 ± 0.27 b 0.13 ± 0.03 a 1.51 ± 0.12 bc

AJ 3.55 ± 0.07 a 2.88 ± 0.05 a 7.51 ± 0.26 c 5.81 ± 0.22 c 0.02 ± 0.01 b 1.69 ± 0.11 ab

APo 3.17 ± 0.06 b 2.71 ± 0.06 b 8.36 ± 0.27 b 6.75 ± 0.23 b 0.01 ± 0.01 b 1.60 ± 0.10 b

APu 3.08 ± 0.08 b 2.84 ± 0.05 a 9.14 ± 0.31 a 7.35 ± 0.26 a 0.00 ± 0.00 b 1.79 ± 0.11 a

Values are the means ± SEM, n = 5. a–c Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Duncan’s post-hoc test.

With regard to the morphometric measurements of Paneth cells within the crypt,
APo and APu groups had the greatest (p < 0.05) crypt Paneth cell count per unit area,
respectively (Table 6). The H2O group had the lowest (p < 0.05) observed Paneth cell count
per unit area relative to all other groups, yet had the greatest Paneth cell diameter.

Table 6. Effect of the intra-amniotic administration of apple fraction soluble extracts on Paneth cells.

Treatment Group Crypt Paneth Cell Number Paneth Cell Diameter (µm)

NI 1.22 ± 0.03 c 1.37 ± 0.02 c

H2O 1.04 ± 0.01 d 1.5 ± 0.02 a

AJ 1.31 ± 0.04 bc 1.45 ± 0.02 ab

APo 1.44 ± 0.04 a 1.43 ± 0.02 b

APu 1.38 ± 0.04 b 1.45 ± 0.02 ab

Values are the means ± SEM, n = 5. a–d Treatment groups not indicated by the same letter in the same column are
significantly different (p < 0.05) by Duncan’s post-hoc test.

3.5. Microbial Analysis

The AJ group reduced the relative abundance of Bifidobacterium (p < 0.05) compared
to the control and experimental groups (Figure 4). Furthermore, the greatest increase
(p < 0.05) of Lactobacillus abundance relative to NI and water-only control groups occurred
in the AJ group, while APo also increased (p < 0.05) Lactobacillus abundance relative only
to the water injection control. All apple treatment groups have an increased (p < 0.05)
abundance of Clostridium relative to the NI control, whereas only AJ and APu abundance is
significantly higher than both controls. No differences were observed between the apple
treatments relative to all controls for Klebsiella and L. plantarum microbial abundance.
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4. Discussion

The Empire apple variety is a cross between McIntosh (Malus domestica “McIntosh”)
and Red Delicious (Malus domestica “Red Delicious”) cultivars and is native to New York
state [52]. According to the United States Apple Association, Empire apples are among the
top-produced apples in the nation [6,53]. Here, we have investigated the effects of Empire
apple juice (AJ), pomace (APo), and pulp (APu) extracts via intra-amniotic administration
on micronutrient absorption, intestinal immune response, gut morphology, and cecal bacte-
rial populations. To our knowledge, this is the first study to examine such physiological
effects of the Empire apple cultivar.

Body weight, blood glucose, and glycogen content (Table 3) did not differ throughout
the treatment and control groups. As apples contain select macro- and micronutrients,
consumption of this fruit and weight gain prevention have been studied in previous animal
trials [54]. While Cho et al. (2013) reported apple pomace and juice supplementation
reduced (p < 0.05) body weight gain in Sprague-Dawley rats [55], and Samout et al. (2016)
found apple pectin to exert anti-obesity effects in Wistar rats [56], changes in body weight
did not occur in our study. We hypothesize that this may be the case as treatment groups
were a single dose in a naïve system, while the aforementioned studies utilized overweight
models over a prolonged period.

The intra-amniotic administration of apple juice and pomace extracts reduced the
gene expression of DcytB reductase relative to the controls (Figure 1A). Located in the
proximal duodenum, DcytB functions to reduce ferric dietary iron to the bioavailable
form (Fe2+) for uptake into the enterocyte [57]. No significant changes occurred in the
remaining iron metabolism proteins (DMT1, Ferroportin, and Hepcidin). Nonetheless,
the reduced expression of DcytB potentially suggests an improvement in iron absorption
into the enterocyte [58,59]. Shah et al. (2003) reported that apple juice enhances iron
bioavailability in American children of 3 to 6 years of age [60]. The soluble apple fractions
did not enhance zinc transporter proteins and vitamin A metabolism proteins, yet these
results revealed no adverse effects of a single-dose administration. We expected to ob-
serve an anti-inflammatory effect of the apple treatments due to the naturally occurring
phenolics in apples (represented in Table 2), which possess antioxidative properties (e.g.,
chlorogenic acid, quercetin glycosides, catechin) [21–23]. However, Figure 3 reveals no
effect of the apple treatments on inflammatory cytokine expression (NF-κB, TNF-α, IL6).
Given the reported anti-inflammatory potential of apples [10,18–20], the lack of agreement
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with this study’s results can be attributed to the short exposure time and concentrations
administered. Conversely, our results reveal that apple pomace extract did not stimulate a
negative intestinal immune response. Apple seeds are known to generate toxic cyanogenic
glycosides upon grinding and have been a factor of concern when upscaling apple pomace
for consumption. In a recent study, using Fisher rats, Ravn-Haren et al. investigated
the effects of a different cultivar (Shampion) apple pomace with and without seeds [61].
It was reported that apple pomace, regardless of seed content, did not elevate alanine
aminotransferase, a liver toxicity biomarker [61].

Intestinal barrier integrity is vital to gastrointestinal functionality and health, and
tight junction proteins play a crucial role in maintaining the luminal structure [62,63].
Located in luminal epithelial cells, tight junctions, such as claudin and occludin regulate
the permeability of ions, water, and macronutrients [64–66]. Expression of the tight junc-
tion protein occludin (OCLN) was significantly reduced by apple juice administration
(Figure 3), which suggests an increase in epithelial permeability. Apple juice is known
to naturally contain high amounts of simple sugars such as glucose and fructose [67,68].
High-sugar diets have reportedly increased intestinal barrier permeability, although the
direct mechanism is unclear [69]. One proposed mechanism is through the intestinal mi-
crobiome, as diets rich in simple sugars have been linked to disrupting the balance of
gut microbes, causing dysbiosis [69]. Dysbiosis can be characterized by an increase in
the Firmicutes/Bacteroidetes ratio [69–71]. AJ increased the abundance of Clostridium and
Klebsiella, as depicted in Figure 4. The Clostridium genus comprises commensal bacteria
within the Firmicutes phylum that can exert pathogenic effects under dysbiosis conditions.
Essentially, the overgrowth of opportunistic species within the Clostridium and Klebsiella
may lead to the degradation of the intestinal barrier [72–74] or render severe infection [75].
Conversely, while the beneficial bacteria Bifidobacterium decreased abundance in AJ, Lac-
tobacillus increased abundance. Lactobacillus is a lactic acid-producing bacteria within the
Firmicutes phylum; thus, our results suggest a possible selective stimulation of Firmicute
proliferation by AJ.

Figure 4 reveals the increased abundance of Clostridium within APo and APu relative
to the NI control. According to our results in Figure 3 and Tables 4–6, it is possible that the
Clostridium genera exerted a beneficial effect as an induced effect on intestinal permeability
and inflammatory cytokine expression was not observed. Therefore, we hypothesize that
valuable species of Clostridia were increased. Clostridium is an SCFA-producing genus
that has been reported to grow in abundance through pectin fermentation [76–78]. APo
and APu had the greatest amount of non-fiber carbohydrates (including pectin) (Table 2),
villi surface area (Table 4), and acidic goblet cells within the crypt (Table 5). A previous
study reported that apple-derived pectin-fed rats increased Clostridium species abundance
four-fold, whilst also increasing butyrate levels [79]. Butyrate is a short-chain fatty acid
produced upon carbohydrate fermentation by Clostridium that can lower intestinal pH [78],
which could explain the increased count of acidic goblet cells for APo and APu. Dufourny
et al. (2021) previously assessed the effects of apple pomace on intestinal morphology and
microbiota in weaned piglets. They found the pomace to increase Clostridia abundance and
duodenal and ileal villi length [80]. Our results agree with the significant findings of this
study. This further establishes the role of apple pomace to modulate Clostridia groups in
both animal models which leads to improvements in gut health and intestinal homeostasis.

Shortened crypt depth was observed in all apple treatment groups (Table 4). Shortened
crypt depths are morphological evidence for improved intestinal health as it suggests a
slower intestinal epithelial cell turnover rate, allowing sufficient time for enterocytes to
differentiate and function at capacity [81–83]. Within intestinal crypts, goblet cells play a
role in maintaining the gut epithelial layer as they secrete mucus and mucin glycoproteins
that function as a protective layer along the intestinal lumen [84]. A previous study found
apple polysaccharide isolated from Fuji apple pomace to stimulate the enhancement of
gut epithelial integrity by goblet cell autophagy [85]. Our study observed that APu and
APo had the greatest crypt goblet cell count per unit area, respectively. In addition, APu
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had a significantly lower crypt goblet cell diameter. This finding likely suggests lower
mucus content since intestinal crypt goblet cells only secrete mucus upon stimulation [84]
Our findings suggest that the Empire apple has a level of effect on goblet cells located
in the crypt. However, further studies should be completed to elucidate the potential
impact. Moreover, Paneth cells are in the small intestinal crypts and function in the
gut immunological response—secreting antimicrobial peptides and immunomodulating
proteins to maintain intestinal homeostasis [86–88]. Crypt Paneth cell count per unit area
was greatest (p < 0.05) in APo, APu, and AJ, respectively, compared to H2O control (Table 6).
Yet, the Paneth cell diameter of APo treatment was similar (p > 0.05) to APu and AJ, and
lower (p > 0.05) than the H2O control. Based on these observations and a recent review
that summarized the impacts of dietary fiber on host gastrointestinal immune response,
it seems that the Empire apple may stimulate Paneth cell function and improve intestinal
immune response [89].

5. Conclusions

The intra-amniotic administration of Empire apple soluble extracts from various
fractions was completed in this study. The data suggests that each apple fraction can
alter duodenal brush border membrane functionality, morphology, and the cecal microbial
populations. More specifically, the potential health benefits of apple pomace are revealed in
this study, evident by reducing iron metabolism protein gene expression (DcytB), increasing
villi surface area and decreasing crypt depth, increasing Paneth cell count per intestinal
crypts, and increasing potentially beneficial gut bacteria (Clostridium spp.). Additional
long-term studies should be completed to further establish potential health benefits.
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