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Abstract: Binge eating is a characteristic symptom observed in obese individuals that is related to
dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is
reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated
dopaminergic neuron specific IKKβ deficient mice (KO) to examine the effects of inflammation in
DNs on binge-like eating under inflammatory conditions associated with HFD. After administration
of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for
2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and
dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin
was administered intraventricularly to assess downstream signaling. The consumption of HFD was
significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in
female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs
activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data
suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function
and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.

Keywords: obesity; binge-like eating; high-fat diet; inflammation; reward system; ventral tegmental
area; feeding behavior

1. Introduction

Obesity is a chronic disease that occurs when energy intake exceeds energy expen-
diture, and its prevalence has been increasing in recent decades [1]. Abnormal eating
behavior is a known characteristic of obesity and is accompanied by irregular eating, in-
cluding excessive intake of highly palatable and caloric foods such as those typically seen
in a high-fat diet (HFD) [2,3], and binge eating disorders [4]. Binge eating is an abnormal
eating behavior that results in a loss of control over the appropriate amount of food intake
and is characterized by excess consumption of food in a short period of time [5]. It has
been suggested that the cause of these eating behavior abnormalities is a dysfunction of the
reward system in the brain [6].

Dopaminergic neurons (DNs) projecting from the ventral tegmental area (VTA) of
the midbrain to the striatum play a central role in the regulation of reward system-based
eating behavior [7]. Multiple studies have reported that insulin receptor signaling in DNs
inhibits hedonic feeding behavior [8]. Nasal administration of insulin in humans has been
reported to decrease food taste evaluation and value signaling in mesolimbic regions [9].
Additionally, inflammation is known to be an adverse factor that causes dysfunction of
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DNs [10,11], and our recent study revealed that HFD causes inflammation and insulin
resistance in the VTA [12]. However, it remains unclear whether inflammation in the VTA
is associated with how HFD administration affects feeding behavior.

IKKβ plays a central role in the transduction of inflammatory signals such as tumor
necrosis factor-α (TNF-α) [13]. IKKβ also causes insulin resistance by directly phospho-
rylating serine residues of insulin receptor substrate-1 (IRS-1) [14]. Previous studies have
shown that brain or hypothalamic neuron-specific IKKβ deficiency ameliorates obesity
induced by HFD administration [15], suggesting that central inflammation induced by
HFD plays a pivotal role in the regulation of energy balance.

In our present study, we evaluated the eating behavior of mice lacking dopaminergic
neuron-specific IKKβ (KO) compared to wild-type (WT) mice, using a binge-like eating
model under conditions of VTA inflammation induced by HFD administration.

2. Materials and Methods
2.1. Mice

All animal procedures were approved by the Animal Care and Use Committee of
Nagoya University Graduate School of Medicine and performed in accordance with Na-
tional Institutes of Health animal care guidelines. Mice were maintained as described
previously [16].

2.2. Mice with Dopamine Transporter (DAT)-Specific Deletion of IKKβ

IKKβlox/lox mice were provided by EMMA (RRID: IMSR_EM:01921). DAT-Cre trans-
gene mice (RRID: IMSR_JAX:006660) express functional Cre-recombinase only in DNs [17].
DNA extraction and genotyping were performed as described previously [16]. Primer se-
quences used for genotyping of IKKβlox/lox and DAT-Cre mice were as follows: IKK2 forward,
5′ACAGGCTGCCAGTTAGGGAGGAAG; reverse, 5′-GGAGTACTGCCAAGGAGGAGAT;
DAT-Cre forward, 5′-TGGCTGTTGGTGTAAAGTGG; reverse, 5′-GGACAGGGACATGGT
TGACT (to detect WT gene) or 5′- CCAAAAGACGGCAATATGGT (to detect transgene).
All IKKβlox/lox mice, DAT-Cre mice were backcrossed more than 15 generations onto a
C57BL/6J background.

2.3. Isolating DNA from Tissues for Detection of Recombination of Floxed Alleles

DNA was extracted from different tissues (VTA, substantia nigra, hypothalamus,
cerebral cortex, hippocampus, cerebellum, brain stem) of mice at the age of 10 weeks, and
genotyping was performed as described previously [18].

2.4. Body Composition and Food Intake

At weaning (3 weeks of age), mice were placed on HFD (Test Diet 58Y1, PMI Nutrition
International, KS, USA; 60.9% fat,18.3% protein, and 20.1% carbohydrate). Body weight was
monitored until 16 weeks of age. Measurements of epididymal fat pad weight, perigonadal
fat pad weight, and blood glucose were performed at 16 weeks of age in the beginning
of the light cycle (between 09:00 and 09:30 a.m.) when mice were in the fed state. Food
intake of HFD was assessed by multifeeders (Shinfactory, Fukuoka, Japan) at 16 weeks of
age. Feed efficiency was calculated as grams of body weight gained per grams of food
consumed over a 3-day period.

2.5. Assessment of Feeding Behaviors under Fast-Refeed Access to HFD or Chow Diet (CD)

Mice (6 weeks of age) were divided into 2 groups. After acclimation, WT and KO
mice were exposed to HFD for 4 weeks, and then were fasted for 24 h. After fasting, the
mice were divided into two groups: “HFD group” and control diet “CD group” on the
experimental day. The mice in the HFD group were given restricted access to HFD for
120 min (21:00 to 23:00), while the mice in the CD group were given restricted access to
CD (CE-2, CLEA Japan, Tokyo, Japan; 4.6% fat, 24.9% protein and 70.5% carbohydrate).
Then, HFD and CD intakes were measured for 120 min (21:00 to 23:00). The food intake
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of mice on both the CD and HFD were assessed by multifeeders (Shinfactory, Fukuoka,
Japan). Mice were sacrificed at 120 min after the start of access to HFD or CD (23:00).

2.6. Extraction of Brain Tissues

After mice were sacrificed, the VTA, NAc, and CPu were quickly dissected as described
previously [16]. Then the dissected tissues were immediately frozen in liquid nitrogen until
RNA extraction.

2.7. Determination of mRNA Levels by qRT-PCR

Total RNA was extracted from samples, and copy DNA was synthesized as described
previously [16]. Quantitative reverse transcriptase (qRT)-PCR reactions were carried out
as described previously [16]. The relative mRNA levels of TNF-α, IL1β (interleukin-1β),
PTP1B (Protein tyrosine phosphatase 1B), Socs3 (Suppressor of cytokine signaling 3), IL10
(interleukin-10), Iba1 (ionized calcium binding adaptor molecule 1), CD11b (cluster of
differentiation molecule 11B), Emr1 (EGF-like module-containing mucin-like hormone
receptor-like 1), CD68 (cluster of differentiation 68), GFAP (glial fibrillary acidic protein),
GLAST (glutamate aspartate transporter), cFos (cellular oncogene fos), ∆fosB (FBJ murine
osteosarcoma viral oncogene homolog B), DAT, TH (Tyrosine hydroxylase), D1R (Dopamine
receptor D1), and D2R (Dopamine receptor D2) were assessed by qRT-PCR as described
previously [16]. Gapdh (glyceraldehyde 3-phosphate dehydrogenase) was used as an
internal control. The sequences of primers are described in Table S1.

2.8. Intracerebroventricular Injection of Insulin

After overnight fasting, 10 weeks-old mice on HFD were deeply anesthetized as
described previously [12]. After anesthetization, insulin (10−5 M) or saline in a volume
of 2.0 µL was injected into the lateral ventricle as described previously [12]. Then, 15 min
after injection, the mice were decapitated and dissected the VTAs. They were stored at
−80 ◦C until analysis.

2.9. Determination of Protein Levels by Western Blot

Western blotting was performed using proteins extracted from VTA as described
previously [12]. The antibodies used to assess Akt phosphorylation were the same as
previously reported [12].

2.10. Immunohistochemistry

Brain collection for immunohistochemistry was performed as described previously [16].
The immunohistochemistry was performed using free-floating method described as pre-
viously [16]. The used antibodies were rat anti-DAT (MAB369, Merck KGaA, Darmstadt,
Germany, RRID: AB_2190413), and rabbit anti-IKKβ (#2684, Cell Signaling Technology,
Danvers, MA, USA, RRID: AB_2122298).

2.11. Statistical Analysis

The statistical analysis was performed using SPSS Statistics 27 (IBM, Endicott, NY, USA;
RRID:SCR_002865) described as previously [16]. Results are expressed as mean ± standard
error of the mean (SEM), and differences were considered significant at p < 0.05.

3. Results
3.1. Generation of Dopaminergic Neuron-Specific IKKβ Deficient Mice

To generate dopaminergic neuron-specific IKKβ deficient mice, we crossed IKKβlox/lox

mice with DAT-Cre heterozygous mice to generate IKKβlox/lox DAT-Cre mice (KO mice) and
IKKβlox/lox littermate controls (WT mice). Deletion of the IKK2 allele in KO mice was only
detected in DNA extracts from the VTA (Figure 1A). In contrast, no recombined alleles were
detected in WT mice (Figure 1A). IKKβ immunostaining revealed that IKKβ was expressed
in the DNs of the VTA in WT mice but was rarely expressed in KO mice (Figure 1B).
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Figure 1. Generation of dopaminergic neuron-specific IKKβ deficient mice. (A) Detection of deleted
IKK2 alleles (∆) in IKKβlox/lox DAT-Cre (KO) mice. DNA was extracted from different tissues as
follows, ventral tegmental area (Vta); substantia nigra (Sub); hypothalamus (Hyp); cerebral cortex
(Cor); hippocampus (Hip); cerebellum (Cer); brain stem (BS); positive control (PC); negative control
(NC). The deletion of the floxed allele was detected by PCR. GAPDH was used as an internal control.
(B) Representative pictures showing DAT (green), IKKβ (red), and DAPI (blue) staining in the VTA of
WT and KO mice. White thick arrow heads indicate co-localization of DAT and DAPI; white triangles
indicate co-localization of IKKβ and DAPI; white thin arrow heads indicate co-localization of DAT,
DAPI and IKKβ.

3.2. IKKβ Signaling in DNs Does Not Affect Energy Balance and Glucose Metabolism

We examined the role of IKKβ signaling in the VTA in the regulation of energy balance
and glucose metabolism under ad libitum access to HFD for 13 weeks in male (WT = 14,
KO = 14) and female (WT = 12, KO = 6) mice. There were no significant differences in body
weight (Figure 2A,B), daily food intake (Figure 2C,E), feed efficiency (∆ body weight/∆
food intake) (Figure 2D,F), epididymal fat pad weight (Figure 2G), or perigonadal fat pad
weight (Figure 2I) between WT and KO mice on HFD. There were no significant differences
between genotypes in glucose metabolism estimated by blood glucose (Figure 2H,J). These
data suggest that IKKβ signaling in the VTA does not affect energy balance or glucose
metabolism under ad libitum access to HFD.

3.3. IKKβ Deficiency in DNs Suppresses Binge Eating of HFD in Female Mice
3.3.1. Binge-like Eating under Inflammatory Conditions in the VTA

Our previous study showed that HFD feeding for 4 weeks causes inflammation and
insulin resistance in the VTA [12]. To investigate the hedonic regulation of HFD intake under
inflammatory conditions in the VTA, we performed an experimental protocol (Figure 3)
based on a previous study [19] with some modifications. In the protocol, WT and KO mice
were fasted for 1 day after exposure to HFD for 4 weeks, and the cumulative refeeding
consumption of HFD or CD was measured at 30, 60, and 120 min on the experimental day
(21:00 to 23:00). Binge eating refers to eating large amounts of food in a short period of
time [5]. According to a previous study [20], binge eating was defined as 25% or more of
total daily calorie intake in one hour, and we confirmed that the refeeding consumption
of HFD at 60 min in both male and female WT mice was more than 25% of the total daily
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calorie intake (data not shown). We also confirmed that the stomach of the mouse after
refeeding of HFD for 120 min was extremely expanded (Figure S1).
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Figure 2. There were no statistically significant differences between WT and KO mice in terms of
energy balance after 13 weeks HFD administration. (A,B) Body weight of male (A) and female
(B) IKKβlox/lox (WT) and IKKβlox/lox DAT-Cre (KO) mice on HFD for 13 weeks. (C,E) Daily food intake
of male (C) and female (E) 16-week-old WT and KO mice (D,F) feed efficiency of male (D) and female
(F) 16-week-old WT and KO mice (G,I) epididymal fat pad weight (G) and perigonadal fat pad
weight (I) 16-week-old WT and KO mice (H,J). Blood glucose of male (H) and female (J) WT and KO
mice at the age of 16 weeks. Data are mean ± SEM. Two-way ANOVA with repeated measures was
used for statistical analysis of A and B, or an unpaired t test was used for statistical analysis of C to J.
The details of statistics are shown in Table S2.
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Figure 3. Refeeding of HFD after 24 h fasting gives rise to binge-like eating. The protocol for the
experiment. WT and KO mice were exposed to a HFD for 4 weeks, and then were fasted for 24 h. On
the day of the experiment, the mice were divided into two groups, “HFD group” and “CD group”.
The HFD and CD groups were given HFD and CD, respectively, for 2 h.
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3.3.2. IKKβ Deficiency in DNs Suppresses Binge Eating of HFD in Female Mice

There were no significant differences in the cumulative refeeding consumption of HFD
(WT = 6, KO = 8) or CD (WT = 8, KO = 9) between genotypes in male mice (Figure 4A,C).
In contrast, in female KO mice, the cumulative refeeding consumption of HFD (WT = 13,
KO = 11) was significantly decreased at all time points (p < 0.05) (Figure 4B) compared
to female WT mice, and the amount of HFD intake at 60 min was less than 25% of the
total daily calorie intake (data not shown). The cumulative refeeding consumption of
CD (WT = 12, KO = 10) was significantly increased at 60 and 120 min in female KO mice
compared to WT mice (p < 0.05) (Figure 4D), but the amount of CD intake at 60 min did
not reach 25% of the total daily calorie intake (data not shown). In addition, in male mice,
the phosphorylation of AKT induced by intracerebroventricular injection of insulin after
exposure to HFD for 4 weeks followed by fasting for 1 day was significantly decreased in
HFD compared to CD in both WT (CD = 7, HFD = 6, p < 0.05) and KO (CD = 6, HFD = 6,
p < 0.05) mice (Figure 4E). In comparison, in female mice, the AKT phosphorylation was
significantly decreased on HFD compared to CD in WT mice (CD = 5, HFD = 6, p < 0.05),
whereas there were no significant differences between HFD and CD conditions in KO mice
(CD = 6, HFD = 6) (Figure 4F).
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Figure 4. IKKβ deficiency in the dopamine neurons of VTA suppresses the refeeding consumption of
HFD after 24 h fasting and improves insulin resistance in female mice on HFD for 4 weeks. (A,B)
The refeeding-HFD food intake over 120 min of male (A) and female (B) WT and KO mice after 24 h
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fasting on HFD for 4 weeks. (C,D) The refeeding-CD food intake over 120 min of male (C) and female
(D) WT and KO mice after 24 h fasting on HFD for 4 weeks. (E,F) Phosphorylation of AKT 15 min
after insulin injection in male (E) and female (F) WT, KO mice on CD and HFD for 4 weeks. Data are
mean ± SEM. Two-way ANOVA assessed with repeated measures was used for statistical analysis of
A to D. Two-way factorial ANOVA was used for statistical analysis of E and F. * p < 0.05, versus WT;
# p < 0.05, versus CD; ns: no statistical significance. The details of statistics are shown in Table S2.
Uncropped images of Western blots used in this analysis are shown in Figure S2.

3.4. IKKβ Deficiency in the Dopamine Neurons of VTA Suppresses HFD Induced Inflammation in
the VTA of Female Mice

As our previous study showed that HFD feeding for 4 weeks causes inflammation in
the VTA [12], we next evaluated the expressions of inflammatory-related molecules in the
VTA of WT and KO mice. In male mice (WT = 8, KO = 8), only Iba1 mRNA expression levels
were significantly decreased in KO mice compared to WT mice (p < 0.05) (Figure 5A,C). In
comparison, in female mice (WT = 7, KO = 7), the mRNA expression levels of TNF-α, PTP1B,
Iba1, CD11b, and GFAP in the VTA were significantly decreased in KO mice compared to
WT mice (p < 0.05) (Figure 5B,D). The mRNA expression levels of the anti-inflammatory
cytokine IL10 were significantly increased in KO mice compared to WT (p < 0.05). These
data suggest that the suppression of VTA inflammation associated with IKKβ deficiency is
more robust in females than in males, and that inflammation in the VTA is associated with
glial cell activation in female mice.
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Figure 5. IKKβ deficiency in the dopamine neurons of VTA suppresses inflammation in the VTA
caused by HFD feeding for 4 weeks in mice. (A–D) The TNF-α, IL1β, PTP1B, Socs3, IL10 (A,B) and
Iba1, CD11b, Emr1, CD68, GFAP, GLAST (C,D) mRNA expression levels of male (A,C) and female
(B,D) WT and KO mice on HFD for 4 weeks. Data are mean ± SEM. Unpaired t test was used for
statistical analysis of A to D. * p < 0.05, versus WT. The details of statistics are shown in Table S2.

3.5. IKKβ Deficiency in the Dopamine Neurons of VTA Altered the Dopamine-Related Gene
Expressions in Female Mice

Given that female KO mice showed suppression of binge eating accompanied by
improved insulin resistance and reduced inflammation in the VTA under HFD conditions
(Figures 4B,F and 5B), we next assessed the activity of DNs and dopamine signaling by
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evaluating the dopamine-related gene expressions of WT (male = 8, female = 8) and KO
(male = 8, female = 8) mice in the VTA, NAc, and CPu. In the VTA, only DAT mRNA
expression levels showed significant decreases in both male and female KO mice compared
to WT mice (p < 0.05) (Figure 6A,B). In the NAc, there were no significant differences of DAT,
cFos, ∆FosB, D1R, or D2R mRNA expression levels between genotypes (Figure 6C,D). In the
CPu, both male and female mice showed significant decreases in cFos mRNA expression
levels in KO mice compared to WT mice (p < 0.05). Significant decreases in DAT, ∆FosB,
D1R, and D2R mRNA expression levels were detected in female KO mice (p < 0.05) but
not in male KO mice compared to WT mice (Figure 6E,F). These data suggest that the
suppression of binge eating observed in female KO mice is associated with suppression of
dopaminergic neuronal activity and signaling in the CPu.
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4. Discussion

This study investigated the effect of inflammation in VTA on eating behavior under
HFD conditions. Our findings demonstrate that IKKβ deficiency in VTA DNs (i) suppresses
binge eating of HFD in female mice; (ii) suppresses HFD-induced inflammation accompa-
nied by suppression of glial cell activation in the VTA of female mice; (iii) improves insulin
resistance induced by HFD in the VTA of female mice; (iv) alters the dopamine-related gene
expressions in female mice; and (v) does not affect energy balance. These findings suggest
that HFD-induced inflammation with glial cell activation in the VTA affects dopaminergic
neural function and causes abnormal eating behavior accompanied by insulin resistance in
the VTA of female mice independent of energy balance.

Overeating is a characteristic eating behavior observed in obese patients, and this
abnormal eating behavior is thought to be due to a dysfunction of DNs in the mesolimbic
system [21,22]. There are several lines of evidence that inflammation occurs in reward-
related brain regions with the use of abused substances [10]. For example, alcohol and
cocaine exposure both cause inflammation in the VTA [23,24]. We previously showed that
HFD caused inflammation with microglial activation and insulin resistance in the VTA
of mice [12], but whether these conditions actually affected feeding behavior remained
unclear. Here, we show that insulin resistance accompanied by HFD-induced inflammation
in the VTA promotes binge eating. Female KO mice had improved VTA insulin resistance
associated with HFD administration, resulting in significantly reduced food intake in
the binge-eating model compared to WT. The phenotype observed in female KO mice
was consistent with a previous report showing that insulin action in the VTA suppresses
ingestive behaviors, such as the hedonic feeding, food craving, and salience of food cues [8].
Furthermore, male KO mice showed less pronounced suppression of VTA inflammation
by HFD, and inflammation was essentially the same between KO and WT mice. As a
result, insulin sensitivity in the VTA was not significantly different, and food intake in the
binge-eating model was not significantly different between genotypes either. These data
indicate that inflammation and insulin resistance in the VTA caused by HFD are essential
for binge eating.

Our present study suggests that suppression of inflammatory signaling in DNs sup-
presses glial cell activation associated with HFD administration, which is consistent with
previous reports [25,26]. Protein Tyrosine Phosphatase 1B (PTP1B) expression was de-
creased in female KO mice in which VTA inflammation was suppressed. PTP1B is classi-
cally known as an enzyme that inhibits insulin receptor signaling [27]; we and others have
reported that PTP1B expression is enhanced by inflammation [28]. We have also previously
reported that PTP1B deficiency suppresses hypothalamic inflammation associated with
HFD [29], which is accompanied by enhanced expression of IL10, an anti-inflammatory
cytokine. Consistent with this previous report, we observed enhanced IL10 expression in
the VTA of female KO mice in our present study, suggesting that the reduction of PTP1B
expression exerts an anti-inflammatory effect as well as improves insulin receptor signaling
in the VTA.

In binge-eating models, it has been reported that intermittent administration of su-
crose or HFD enhances DAT expression in the VTA, suggesting that dopamine reuptake is
involved in binge eating [20,30]. In our present study, DAT expression was decreased by
suppression of IKKβ signaling in the VTA, and DAT expression was markedly suppressed
in female mice in which the suppression of inflammation was more pronounced. Although
the regulatory mechanism of DAT expression in the VTA is still unclear, the presence or
absence of inflammation may be critical for DAT expression under the inflammatory condi-
tions associated with HFD administration. We have previously shown that intermittent
HFD administration enhances dopamine signaling in the CPu [16]. In the present study, we
showed that D1R and D2R expression was decreased and the expression of downstream
signals, cFos and ∆FosB, was attenuated in the CPu of female KO mice, indicating that the
enhancement of dopamine signaling upon HFD administration was suppressed. In addi-
tion, female KO mice in which DNs inflammation was suppressed ate less HFD, but more
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normal food, suggesting that preference for palatable food was attenuated. These results
are consistent with a previous report using a resistance to binge eating model showing that
intake of control chow food was increased in comparison to a highly palatable food [31].

The limitation of this experiment is that it is unclear why there was a sex difference in
feeding behavior. According to previous reports, estrogen is known to suppress inflamma-
tion [32,33]. Combined with the fact that estrogen receptors are present in DNs [34] and
in the VTA [35], it is possible that the suppression of inflammation associated with IKKB
deficiency in female mice may have been further amplified by the presence of estrogen. In
addition, dopamine release was not directly measured in this study, and it remains unclear
whether the decreased dopamine signaling in CPu is due to decreased dopamine levels.

5. Conclusions

A graphical abstract of the present study is shown in Figure 7. In conclusion, our
data suggest that inflammation and insulin resistance in the VTA caused by HFD lead
to activation of the DNs and binge-like eating of HFD. Our findings also suggest that
inflammation in the VTA represents a new target of drug discovery for binge-like eating
and obesity.
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