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Abstract: (1) Background: The microbiota-host cross-talk has been previously investigated, while
its role in health is not yet clear. This study aimed to unravel the network of microbial-host inter-
actions and correlate it with cardiometabolic risk factors. (2) Methods: A total of 47 adults with
overweight/obesity and metabolic syndrome from the METADIET study were included in this
cross-sectional analysis. Microbiota composition (151 genera) was assessed by 16S rRNA sequencing,
fecal (m = 203) and plasma (m = 373) metabolites were profiled. An unsupervised sparse generalized
canonical correlation analysis was used to construct a network of microbiota-metabolite interactions.
A multi-omics score was derived for each cluster of the network and associated with cardiometabolic
risk factors. (3) Results: Five multi-omics clusters were identified. Thirty-one fecal metabolites
formed these clusters and were correlated with plasma sphingomyelins, lysophospholipids and
medium to long-chain acylcarnitines. Seven genera from Ruminococcaceae and a member from the
Desulfovibrionaceae family were correlated with fecal and plasma metabolites. Positive correlations
were found between the multi-omics scores from two clusters with cholesterol and triglycerides
levels. (4) Conclusions: We identified a correlated network between specific microbial genera and
fecal/plasma metabolites in an adult population with metabolic syndrome, suggesting an interplay
between gut microbiota and host lipid metabolism on cardiometabolic health.

Keywords: metabolites; gut microbiota; cross-talk; cardiovascular risk; metabolic syndrome;
metabolism; obesity; microbial metabolites; omics; metabolomics

1. Introduction

The metabolic variability derives from a complex and dynamic interaction between
endogenous metabolism, environmental factors and the gut microbial ecosystem. Although
gut microbiota is considered quite stable in adulthood, several modifiable factors can mod-
ulate its composition and activity. Whether these changes could compromise health is not
yet well understood [1]. Therefore, a better understanding of how microbial communities
affect or modify the complex environment of the human organism is a promising approach
for the design of preventive and therapeutic strategies in different conditions [2]. In this
sense, previous studies have suggested a role of some gut microbiota-derived metabolites,
like bile acids and short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs),
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trimethylamine N-oxide, tryptophan and indole derivatives in the host-microbial cross-
talk [3,4]. Furthermore, several fecal and circulating metabolites have been associated
with clinical features associated with cardiometabolic risk [5], but it remains difficult to
determine whether they are fully microbiota-derived or if other sources, including diet
or the host itself, are also involved. An integration of metagenomics and metabolomics
information may advance our knowledge on microbiota-host interactions [6]; however, to
date, limited multi-omics analyses have been conducted. Two recent studies suggested a
microbiota-host cross-talk analyzing the correlations of fecal and blood metabolites with
gut microbiota composition by using both 16S rRNA and whole metagenomic shotgun
sequencing in a large sample of UK adults (TwinsUK) [7,8]. However, whether a multi-
omics profile characterizing this cross-talk could be associated with cardiometabolic health
is unknown. Metabolic syndrome (MetS), a cluster of cardiometabolic conditions, is of-
ten accompanied by an imbalance of the gut microbiota [9] and alterations in metabolic
pathways [5]. Identifying a host-microbial cross-talk in a population with MetS and its
relationship with MetS features could further advance the understanding of biochemical
processes preceding the development of cardiometabolic diseases.

Therefore, the aim of this study was to decipher the network of correlations between
microbial genera, fecal and plasma metabolites using a multi-omics integrative approach
in adults with overweight/obesity and MetS. Furthermore, we examined whether the
identified multi-omics profiles were associated with cardiometabolic risk factors.

2. Materials and Methods

This is a cross-sectional analysis nested within the METADIET study, a random-
ized, controlled, crossover, dietary-intervention trial conducted in 50 adults with over-
weight/obesity and MetS [10]. Community-dwelling adults aged 30–65 years, with a body
mass index (BMI) of 25–34.9kg/m2 who met at least three of the five diagnostic criteria of
MetS and who regularly consumed a non-MedDiet were included in the study. Subjects
were excluded if they suffered from type 2 diabetes (T2D), chronic diseases, had secondary
obesity or related pathologies, non-controlled hypertension, LDL-cholesterol > 160 mg/dL,
triglycerides > 400 mg/dL, followed specific pharmacological treatments (anti-inflammatory,
corticoids, hormones or antibiotics), were alcohol or drug abusers and consumed prebiotics,
probiotics or laxatives. Written informed consent was obtained from all study participants.
The Institutional Review Board approved the study protocol, which accomplishes the
ethical standards of the Declaration of Helsinki.

Weight, height and waist circumference were determined with calibrated scales and a
wall-fixed stadiometer, and BMI was calculated. Blood pressure was measured in duplicate
using a validated semiautomatic oscillometer (Omron Electronics Iberia S.A.U., Madrid,
Spain). Blood and fecal samples were collected in fasting conditions before any inter-
vention. Glucose and lipid profiles were measured using standard enzymatic automated
methods. LDL-cholesterol was estimated using the Friedewald formula in subjects with
triglycerides < 400 mg/dL. Circulating insulin levels were measured by commercial ELISA
(Deltaclon SL, Madrid, Spain). The homeostatic model assessment of insulin resistance
(HOMA-IR) was estimated [11]. Participants were instructed to collect stool samples in her-
metic sterile flasks and freeze them immediately at −20 ◦C. Frozen samples were delivered
to the laboratory within 1–2 days after collection and stored at −80 ◦C.

The fecal metabolomics profiling included 226 metabolites derived from a dual analyt-
ical approach (Supplementary Table S1 [12]). Ninety-four metabolites were quantified by a
targeted analysis, using nuclear magnetic resonance (NMR) and liquid chromatography
coupled to triple quadrupole mass spectrometry (LC-qTOF), while 132 metabolites were
analyzed and semi-quantified with an untargeted approach. Particularly for the targeted
analysis, NMR-based metabolic profiling of 37 metabolites included SCFAs, alcohols and
organic acids, while LC-qTOF was used for the determination of 16 bile acids and 41 amino
acids. The analytical procedures are specified in the Supplemental methods of [12]. Plasma
metabolites (m = 378) were analyzed by different analytical platforms (Supplementary
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Table S2 [12]). LC-QqQ was used to analyze TMAO and derivatives, acylcarnitines, amino
acids and serotonin. LC-qTOF was used for the lipidomic analysis. Measurements of
total fatty acids, together with organic acids and sugar metabolites, mainly belonging to
the tricarboxylic acid cycle, were obtained by a GC-qTOF analytical platform. A further
description of the analytical procedures can be found in the Supplemental methods of [12].

Fecal DNA extraction was performed using a QIAmpPowerFecal DNA kit (Qiagen,
Germantown, TN, USA) with a previous 5-minute lysis step (FastPrep-24-5G Homogenizer,
MP Biomedicals). The 16S rRNA gene was amplified (Ion Metagenomics kitTM (Life
Technology, Carlsbad, CA, USA), performing two separated PCR reactions with two primer
sets (to amplify different hypervariable regions of 16S rRNA: V2, V4, V8 and V3, V6–7, V9).
Amplicons were processed to obtain DNA libraries (Ion Plus Fragment Library kit and
Ion Xpress Barcodes Adapters, 1-64 (Life Technology, Carlsbad, CA, USA) and adapter-
ligated and nick-repaired libraries were purified (CleanNGSkit, CleanNA, Waddinxveen,
The Netherlands). The libraries were further amplified (Ion Plus Fragment Library kit,
Life Technology, Carlsbad, CA, USA) and quantified with Bioanalyzer (Agilent DNA
7500 Reagents, Agilent Technologies, Santa Clara, CA, USA). Equimolar amounts of all
the libraries (60 µM) were sequenced in 4 different runs with Ion 520 and Ion 530 Kit-Chef
(Life Technologies, Carlsbad, CA, USA) in an S5 sequencer from the Ion Torrent platform.
Fastq data from sequencing were pre-processed with an adapted in-house script [13] in
order to split only forward reads of each sample data into 6 subsets of 6 hypervariable
regions. Forward reads from the V4 region were used for this study. Quality control, length
filtering at 280 bp, and denoising of sequences with DADA2 pipeline other than taxonomy
assignment were performed in QIIME2 software package using the latest version of Silva
132 as 16S rRNA gene classifier database. Finally, a further filtering step of ASV (Amplicon
Sequence Variant) table at 10% prevalence cut-off at the taxonomic level of genera was
achieved in R (using phyloseq package functions).

Twenty-three fecal metabolites were removed from the analysis due to the high
number of missing values (>20%), and a total of 203 metabolites were included. In those
metabolites with less than 20%, missing values were imputed using the random forest
imputation approach (“missForest” function of “randomForest” R package version 4.6-14).
The concentrations of metabolites were normalized and scaled to multiples of 1 SD with
the rank-based inverse normal transformation.

Five out of 378 plasma metabolites were removed because of the high number of
missing values (>20%), and the remaining missing values were imputed using the same
approach as above. The rank-based inverse normal transformation was used to normalize
their concentrations.

Baseline values of absolute abundances of the ASV table at the taxonomic level of 151
genera were center-normalized with clr function from the “composition” package on R
(version 1.4-40). Due to the high dimensionality and collinear nature of the data, a Sparse
Generalized Canonical Correlation Analysis (SGCCA) in an unsupervised mode was con-
ducted to select the most relevant variables from three omics datasets (fecal metabolites,
plasma metabolites, 16S rRNA). The model was implemented by using the canonical mode
of the “wrapper.sgcca” algorithm [14], available in the mixOmics package in R (version
6.14.0) (Available online: http://mixomics.org/ (accessed on 20 November 2021)). The
tuning procedure to identify the optimal number of components for each omic dataset was
performed by a separated performance analysis on both tri and dual-omics datasets by
using the “perform” function, which is available for both “block.splsda” and spls models.
We then validated the choice of the optimal parameters by evaluating the AVE values of
our obtained model of spls models (perf function in mixOmics package in R, version 6.14.0).
A network analysis was implemented by the network function with a cut-off correlation
value of 0.6 [15]. The network was further analyzed in Cytoscape software (version 3.8.2)
(Available online: https://cytoscape.org/ (accessed on 20 November 2021)) in order to bet-
ter visualize the presence of connected components and the relevant associations between
fecal and plasma metabolites and microbial genera. A prefuse force-directed layout with
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a color grouping visualization based on the nature of components was selected to better
feature the clusters of the network. A prefuse force-directed layout in Cytoscape is based
on the force-directed-layout algorithm, which uses repulsive forces between nodes and
attractive forces between adjacent nodes. The multi-omics score was calculated based on
the weighted sum of the selected components in each cluster. The weights were obtained
from the scaling with the eigengene centrality scores of each component in each module
measured with the Page Ranking algorithm in Cytoscape. Linear regression models were
fitted to examine the association between the derived scores and cardiometabolic risk fac-
tors (glucose, insulin, HOMA-IR, total cholesterol, HDLc, LDLc, VLDLc, triglyceride levels,
systolic and diastolic blood pressure) adjusting for age, sex and BMI values. Furthermore,
a Pearson partial correlation analysis adjusting for age, sex and BMI, was implemented
between individual components of each multi-omic score and the cardiometabolic parame-
ters significantly correlated with the scores. Values of the selected metabolites in feces and
plasma, as well as the selected genera, were correlated with the cardiometabolic parameters,
using the “associate” function from the “microbiome” package in R (version 1.12.0). A
Benjamini-Hochberg false discovery rate (FDR) approach [16] was used to correct p-values
for multiple testing.

All analyses were performed using R, version 3.6.2. All tests were two-sided, and
significance was defined as p < 0.05.

3. Results

Of the 50 participants initially included in the METADIET study, three were excluded
because of the unavailability of either 16S rRNA sequencing data or fecal metabolomics, re-
sulting in a final total number of 47 participants. The general characteristics of participants
are shown in Table 1. The mean age of participants was 50.6 ± 7.13 years, and the mean
BMI was 30.5 ± 2.28 Kg/m2.

Table 1. General characteristics of study participants.

Characteristics Baseline
n = 47

Age (years) 50.6 (48.6, 52.6)

Women n (%) 30 (63.8%)

BMI (Kg/m2) 30.5 (29.9, 31.2)

Waist Circumference (cm) 102.1 (99.3, 104.8)

SBP (mmHg) 135.1 (131.7, 138.6)

DBP (mmHg) 85.0 (82.3, 87.7)

Total Cholesterol (mg/dL) 215.3 (206.1, 224.5)

LDLc (mg/dL) 135.8 (128.1, 143.6)

HDLc (mg/dL) 50.5 (47.6, 53.5)

VLDLc (mg/dL) 28.1 (24.7, 31.5)

Triglycerides (mg/dL) 147.7 (126.3, 169.2)

Glucose (mg/dL) 100.2 (96.5, 103.9)

Insulin (mcUI/mL) 13.4 (11.3, 15.5)

HOMA-IR 3.3 (2.8, 3.9)
All values are given as means (95% CI). Abbreviations: BMI; body mass index, SBP; systolic blood pressure, DBP;
diastolic blood pressure, LDLc; low-density lipoprotein cholesterol, HDLc; high-density lipoprotein cholesterol,
VLDLc; very-low-density lipoprotein cholesterol, HOMA-IR; homeostatic model assessment of insulin resistance.

3.1. Multi-Omics Network of Correlations between Gut Microbiota, Fecal and Plasma Metabolites

Figure 1 shows the network deriving from the correlation network analysis with a
cut-off point value of 0.6. Ninety-four nodes and 263 edges characterized the resulting
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network, which displays the most relevant correlations deriving from the SGCCA between
the different multi-omics data. The network shows five distinct multi-omics clusters,
including a total number of 9 genera, 31 fecal metabolites and 41 plasma metabolites. A
detailed description of the network and cluster characteristics is given in Supplementary
Table S3 and Figure S1.
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In the tri-omics cluster one, we observed a hub of connected components, mainly
constituted by a fecal primary bile acid [chenodeoxycholic acid (CDCA)] and its derivative
secondary bile acid, ursodeoxycholic acid (UDCA), fecal propionate, fecal derivatives of
arachidonic acid, as well as, fecal LPC 16:0 and LPC 20:4, that were negatively correlated
with three uncultured genera from the Ruminococcaceae family and Christensenellaceae
R7 group. These microbial genera were also positively correlated with several plasma
sphingomyelins (SMs) with one and two double bonds. Cluster two mainly consisted
of fecal amino acids positively correlated with plasma species of LPCs (16:0, 17:1, 18:2,
18:1, 18:3, 20:5, 22:6) and LPIs (18:1, 18:2, 20:4). Plasma levels of LPI 22:6 were also nega-
tively correlated with Subdoligranum. The multi-omics cluster three was constituted by
plasma levels of medium/long-chain mainly saturated acylcarnitines (C8:0, C10:0, C12:0,
C12:1, C14:1, C14:2) found to be positively correlated with fecal levels of spermidine and
cadaverine. Plasma levels of C10:0, C12:0, C14:1, C12:0-OH were also negatively correlated
with two genera from the Ruminococcaceae family (Ruminococcaceae UCG09 group and
Acetanaereobacterium). The multi-omics cluster four was formed by fecal fatty acids such as
myristic acid, methyladipic acid, capric acid and dodecanoic acid that were positively cor-
related with plasma levels of different androsterones, including dehydroepiandrosterone
sulfate (DHEAS), and with a member of Firmicutes (Anaerotruncus). The multi-omics
cluster five was a dual-omics hub of plasma levels of phosphocholines (PCs 32:2, 32:1, 34:4,
30:0), triglycerides (TGs 46:1, 46:2, 48:1, 48:2, 48:3), lysophosphatidylcholine (LPC) 14:0,
lysophosphatidylethanolamine (LPE) 14:0 and lysophosphatidylinositol (LPI) 14:0 nega-
tively correlated with a genus from the Desulfovibrionaceae family. Better visualization of
the direction of each correlation is shown in Supplementary Figures S2–S4 [12].
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3.2. Associations between Multi-Omics Scores and Cardiometabolic Risk Factors

The linear regression analysis of associations between the five multi-omics scores (one
for each cluster) and cardiometabolic parameters are shown in Table 2.

Table 2. Linear regression analysis examining the associations of 1-SD increase of multi-omics scores with cardiometabolic
risk factors.

Multi-Omic Score 1 Multi-Omic Score 2 Multi-Omic Score 3 Multi-Omic Score 4 Multi-Omic Score 5

Factor Mean ± SE p 1 Mean ± SE p 1 Mean ± SE p 1 Mean ± SE p 1 Mean ± SE p 1

Cholesterol (mg/dL) 1.666 ± 0.435 0.001 0.249 ± 0.087 0.070 0.099 ± 0.215 0.983 0.121 ± 0.311 0.743 0.621 ± 0.148 0.0003

LDLc (mg/dL) 1.269 ± 0.336 0.005 0.161 ± 0.0692 0.083 0.062 ± 0.166 0.983 0.079 ± 0.239 0.743 0.327 ± 0.126 0.032

HDLc (mg/dL) 0.374 ± 0.149 0.053 0.0452 ± 0.029 0.330 −0.001 ± 0.068 0.983 0.089 ± 0.098 0.743 0.0326 ± 0.055 0.803

VLDLc (mg/dL) −0.068 ± 0.179 0.755 0.036 ± 0.033 0.495 0.030 ± 0.076 0.983 0.050 ± 0.110 0.743 0.224 ± 0.052 0.0003

Triglycerides (mg/dL) 0.373 ± 1.186 0.755 0.234 ± 0.221 0.495 0.222 ± 0.505 0.983 −0.498 ± 0.728 0.743 1.420 ± 0.351 0.0003

Glucose (mg/dL) 0.358 ± 0.191 0.170 0.087 ± 0.035 0.083 0.132 ± 0.0824 0.983 0.116 ± 0.121 0.743 0.043 ± 0.069 0.803

Insulin (mcUI/mL) 0.088 ± 0.114 0.738 0.007 ± 0.021 0.838 −0.028 ± 0.0486 0.983 −0.062 ± 0.070 0.743 −0.010 ± 0.040 0.803

HOMA IR 0.034 ± 0.029 0.472 0.004 ± 0.005 0.656 −0.0005 ± 0.012 0.983 −0.008 ± 0.018 0.743 −0.003 ± 0.010 0.803

SBP (mmHg) 0.077 ± 0.191 0.755 0.019 ± 0.036 0.749 0.105 ± 0.080 0.983 −0.117 ± 0.117 0.743 0.019 ± 0.067 0.803

DBP (mmHg) 0.065 ± 0.148 0.755 0.002 ± 0.028 0.951 0.006 ± 0.063 0.983 0.045 ± 0.091 0.743 0.028 ± 0.052 0.803

Values are given as means ± standard error. Model was adjusted for sex, age and BMI. Abbreviations, DBP; diastolic blood pressure,
LDLc; low-density lipoprotein cholesterol, HDLc; high-density lipoprotein cholesterol, VLDLc; very-low-density lipoprotein cholesterol,
HOMA-IR; homeostatic model assessment of insulin resistance, SBP; systolic blood pressure, DBP; diastolic blood pressure. 1 Adjusted
with the Benjamini-Hochberg False Discovery Rate method.

Significant positive associations of the multi-omics cluster one score with total and
LDL cholesterol levels were observed. Significant positive associations were also found
between the multi-omics cluster five score and levels of cholesterol (total, LDL and VLDL)
and triglycerides.

Figures 2 and 3 show the heatmaps of Pearson correlations between individual com-
ponents of the multi-omics clusters one and five, and cardiometabolic parameters.
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Figure 2 shows significant positive correlations between specific plasma levels of
certain SMs (32:1, 34:1, 38:1, 39:1, 40.1, 41:1, 43:1) from the multi-omics cluster one and
cholesterol (total and LDL) levels as well as a positive correlation of SM32:1 and SM34:1
with HDLc. Figure 3 shows significant positive correlations of PCs (30:0, 32:1, 32:2, 34:4),
LPC 14:0, LPI 14:0, LPE 14:0 and different TGs species (46:2, 48:1, 48:2, 48:3) from cluster
five with serum levels of cholesterol (total, LDL, VLDL) and triglycerides.

4. Discussion

In this secondary analysis conducted in the METADIET study, we identified a network
of correlations between microbial genera and specific fecal and circulating metabolites that
constituted five different multi-omics clusters. Two of the identified clusters, and especially
plasma lipid species, were associated with cardiometabolic risk factors highlighting their
importance on cardiometabolic health [17]. Despite the absence of a direct correlation
between the identified microbial genera and cardiometabolic health features, their co-
occurrence with their microbial functional readout represented by fecal metabolites and
known secondary biomarkers of cardiometabolic health in plasma offers new insights for
further mechanistic studies.

Cluster one demonstrated a cross-talk between circulating SM species and fecal bile
acids and arachidonic acid derivatives in which members from the Ruminococcaceae and
Christensenellaceae families were involved. The correlation of these interrelated metabolic
components with total and LDL cholesterol adds evidence on the role of SMs on cholesterol
metabolism. Indeed, SMs are the most abundant sphingolipids in lipoproteins, such as LDL,
and their levels in plasma have been previously associated with cardiovascular disease
risk [18]. SMs also play a role in cholesterol homeostasis [19] by affecting LDL’s ability to
bind surface receptors and subsequent internalization [19]. A growing body of evidence
regarding their favorable interaction with sterols indicates SMs as a potential key regulator
of cholesterol distribution within cellular membranes. Interestingly, the Christensenellaceae
R7 group and Ruminococcaceae UCG002, which we found to be positively correlated with
these SM species, have both been negatively associated with VLDL diameter in an observa-
tional study conducted in The Netherlands [20]. Similarly, other studies have also found
negative associations of the Christensenellaceae family with total and LDL cholesterol
and apolipoprotein particles [21,22], suggesting its role in overall cholesterol homeostasis.
Whether these associations could be partially explained by SMs is a hypothesis that needs
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further investigation. At the same time, we observed negative correlations between the
Christensenellaceae R7 group and Ruminococcaceae UCG002 with fecal bile acids CDCA and
its microbial derivative UDCA [23], supporting the mediation of the microbial activity on
fecal bile acids in cluster two. Reinforcing our findings of the potential involvement of this
cluster in cholesterol metabolism, a recent study conducted in an Italian elderly cohort
was able to characterize a healthier metabolic profile by Christensenellaceae-enterotype,
which was also associated with an improved visceral lipid composition, as well as with
a trend towards lower serum levels of CDCA [24], whose harmful impact on cholesterol
metabolism has been previously demonstrated [25]. On the contrary, the therapeutical ben-
efits of secondary bile acid UDCA in reducing cholesterol solubilization in blood has been
demonstrated [23]. In this cluster, circulating levels of SMs were also positively correlated
with fecal 13-methylmyristic acid, also known as 13-methytetradecanoic acid (13-MTD).
13-MTD is a saturated iso-fatty acid that derives from microbial fermentation and has been
extensively studied for its apoptotic properties, especially in certain cancer cells [26], other
than being proposed as a marker of adipose tissue turnover [27]. In this same cluster, fecal
levels of the SCFA propionate were also related to plasma levels of different SM species
(38:2, 41:2) and Ruminococcaceae UCG-002. Despite the fact that no specific genera from
Ruminococcaceae have been previously addressed to propionate production pathways [28],
we could speculate its indirect involvement in propionate metabolism.

In cluster two, fecal amino acids, including microbial-derived BCAAs, aromatic amino
acids and proline, were correlated with plasma LPC and LPI species, and LPI 22:6 was
negatively correlated with Subdoligranulum. The genus Subdoligranulum, from the Ru-
minococcaceae family, is a Gram-negative, strictly anaerobe and butyrate-producer [29],
which has been recently proposed as beneficial bacteria for metabolic health [30]. Strong
evidence supports a relationship between circulating BCAAs and cardiometabolic dis-
eases [31,32], and a similar pattern seems to be reflected in feces regarding the association
of fecal BCAAs with insulin resistance [33]. However, in our study, fecal BCAAs were
not correlated with cardiometabolic risk parameters. The positive correlation we found
between fecal levels of BCAAs and LPCs and LPI species in plasma is not supported by
previous findings; therefore, the potential intermediation of this metabolic interaction in
cardiometabolic health needs further mechanistic studies.

In cluster three, plasma levels of long-chain acylcarnitines were negatively corre-
lated with fecal levels of the polyamines cadaverine and spermidine, as well as nega-
tively correlated with members of the Ruminococcaceae family (Acetanaerobacterium and
Ruminococcaceae UCG-009). Plasma levels of long (C12, C14) and medium (C8, C10) chain
acylcarnitines are associated with β oxidation of fatty acids [34]. A similar pattern of
correlations between medium and long-chain acylcarnitines and both spermidine and ca-
daverine were associated with increased BMI in the Northern Finland Birth Cohort, while
some acylcarnitines were correlated with an unknown genus from the Firmicutes phy-
lum [35]. Acetanaerobacterium and Ruminococcaceae UCG-009 are both butyrate-producers
belonging to the Ruminococcaceae family and are known for their potential protective
role in the metabolism of high-fat diet-induced obese mice [36]. Different members of the
Ruminococcaceae family have been previously correlated with lower levels of medium-
chain acylcarnitines in a randomized crossover clinical trial comparing vegetarians versus
meat-eaters [37]. Other studies have also demonstrated the ability of some bacteria to fer-
ment cadaverine for butyrate production [38], partially explaining our observations about
the co-appearance of the Ruminococcaceae members with fecal cadaverine. Therefore,
there might be a potential involvement of this multi-omics profile of butyrate-producers in
energy homeostasis through the regulation of fatty acids oxidation.

In cluster four, Anaerotruncus from the family of Clostridiaceae was correlated with
fecal levels of dodecanoic acid and methyladipic acid, as well as with plasma levels of
different steroid species of androsterone sulfate, including DHEAS. Previous studies have
observed the involvement of Anaerotruncus in the biosynthesis of both steroids and ter-
penoids in colorectal cancer [39]. Although a recent in vivo study found a relationship
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between lower plasma concentrations of DHEAS and impaired glucose tolerance [40],
we did not find any significant correlation between plasma levels of steroids and car-
diometabolic parameters.

Finally, a dual-omics profile was identified in our study. To our knowledge, this is
the first study finding negative correlations of plasma phospholipid species and TGs with
46 or 48 carbon atoms and <3 double bonds with bacteria from the Desulfovibrioaceae
family. Previous evidence suggests that the Desulfovibrionaceae family members might
have an adverse effect on dyslipidemia, even if the biological mechanisms behind this
association remain still unknown [41]. Therefore, our results in relation to the correlations
of lipid species with serum cholesterol (total, LDL, VLDL) and triglycerides support the
involvement of this microbial-host cross-talk in lipid metabolism and transport.

The present study has some strengths that deserve to be mentioned, like being one
of the few studies analyzing the microbial-host cross-talk by using the combination of
three different omics, the use of a multi-platform metabolomics analysis, which allowed to
combine targeted and untargeted analytical approaches, in order to cover a wide range
of metabolites. Furthermore, the availability of a pretty uniform population character-
ized by MetS allowed us to relate the microbial-host cross-talk with cardiometabolic risk
factors. Regarding limitations, this is a cross-sectional study in a small-sized population,
and no causal relationship between the microbiome and the metabolome or between the
metabolome and the panel of cardiometabolic risk factors can be inferred. Due to the fact
that the implemented model is right below the limits to be considered as a robust model,
some of our findings could be the result of spurious correlations. Furthermore, the use
of 16S rRNA sequencing does not allow unraveling of the taxonomical composition of
gut microbiota up to the strain level. A further limitation of the study is the lack of a
“healthy” control group. This may have partially accounted for the lack of significant asso-
ciations between the multi-omics scores and cardiometabolic measures such as insulin and
HOMA-IR due to their low variation among the study population. As well, we evaluated
a sample of individuals with MetS that could limit the generalizability of our results to
other populations. Other larger studies would be necessary to confirm our novel findings,
ideally, prospectively.

5. Conclusions

In conclusion, this study demonstrated a network of five host-microbial cross-talk
profiles in adults with MetS. A total of 41 plasma and 31 fecal metabolites, as well as 9
microbial genera, were identified in 5 clusters. Plasma levels of different lipid species
(SMs, LPCs, LPIs and long-chain acylcarnitines) were mainly correlated with members
from the Ruminococcaceae and Christenseneellaceae families, as well as with fecal bile
acids, BCAAs, AAs and polyamines. The plasma lipid correlations with serum total LDL
and VLDL cholesterol and triglycerides levels suggest a link between the microbial-host
cross-talk and cardiometabolic health.
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