Gut microbiota, probiotics and psychological states and behaviours after bariatric surgery – a systematic review of their interrelation.

Jessica Cook^{1*}, Christine Lehne^{1*}, Alisa Weiland¹, Rami Archid², Yvonne Ritze³, Kerstin Bauer¹, Stephan Zipfel¹, John Penders⁴, Paul Enck¹, Isabelle Mack¹

SUPPORTING INFORMATION:

Text S1: Search Strategy

PubMed-

(((((((((((((((((((((((((((()) Gever gastroe by astronuclear (by astronuclear (b) astron

Web of Science-

((TS=(sleeve gastrectom*) OR TS=(gastric bypass surger*) OR TS=(RYGB) OR TS=(DJB) OR TS=(duodenal?jejunal bypass*) OR TS=(jejunostom*) OR TS=(gastrectom*) OR TS=(jejunostom*)) AND TS=(gastric bypass*) OR TS=(bariatric surger*) OR TS=(obesity surger*) OR TS=(gastrojejunostom*)) AND TS=(probiotic*)) OR ((TS=(sleeve gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(jejunoileal bypass*) OR TS=(duodenal?jejunal bypass*) OR TS=(jejunostom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*)) AND (TS=(microbiota*) OR TS=(bariatric surger*) OR TS=(gastrectom*) OR TS=(gastrectom*)) AND (TS=(faceal*)) OR TS=(gastrectom*) OR TS=(gastrectom*)) AND TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*)) AND TS=(gastrectom*) OR TS=(gastrectom*) OR TS=(gastrectom*)) AND TS=(gastrectom*) OR TS=(gastrectom*)) AND TS=(gastrectom*)) OR (TS=(gastrectom*)) OR TS=(gastrectom*)) OR TS=(gastrectom*)) AND TS=(gastrectom*) OR TS=(gastrectom*)) AND TS=(gastrectom*)) OR TS=(gastrectom*)) AND TS=(gastrectom*)) AND (TS=(microbiota*)) OR TS=(gastrectom*)) AND (TS=(microbiota*)) OR TS=(gastrointestina*) OR TS=(gastrointestina*)) AND (TS=(microbiota*)) OR TS=(gastrointestin*) OR TS=(gastrointestina*)) AND (TS=(microbiota*)) OR TS=(gastrointestin*)) AND (TS=(faceal*))) AND (TS=(faceal*)) OR TS=(gastrointestina*)) OR TS=(gastrointestina*)) OR TS=(gastrointestina*)) OR TS=(gastrointestina*)) OR TS=(gastrointestin*)) OR TS=(gastrointestin

Table S1:	Overview	of individual	study c	haracteristics

		Group 1: Bariatric surgery and micr	obiota in humans	
Author (Year)	Study Type/ Length	Sample Size and Characteristics n; Age (year) (SD); Sex %f, BMI [kg/m ²] (SD)	Surgery Type	Microbiota Samples / Analysis
Aron- Wisnewsky (2018)	NRCT 12M	n=110; age: 39.9 (9.9); 100% f; BMI: 45.6 (5.2) i: n=20 ii: n=41 c: n=49	i: AGB ii: RYGB c: CWL	Faecal samples Shotgun metagenomics sequencing
Bjoerneklett (1981)	RCT 19M	i: n=9; age: 34; 100% f; BMI: N.R. ii: n=9; age: 34; 89% f; BMI: N.R. iii: n=8; age: 33; 88% f; BMI: N.R. c: n=12	i: End-to-end jejunoileostomy ii: End-to-side jejunoileostomy iii: Gastric bypass c: HWC	Jejunal fluid sample Gas-solid chromatography
Campisciano (2018/2017)	NRCT 3M	n=40; age: N.R.; 78% f; BMI: 34.1 (4.1) i: n=10 ii: n=10 c: n=20	i: LSG ii: LGB c: HWC	Faecal samples 16S rRNA gene sequencing (V1-V3) by Thermofisher Ion Torrent
Chen (2017)	exp. 6M	i: n=24; age: 40 (9); 0% f; BMI: N.R.	i: RYGB	Faecal samples 16S rDNA by PCR
Cortez (2018)	RCT 12M	i: n=11; age: 47 (8), N.R. f; BMI: 29.7 (1.9) c: n=10; age: 44 (5), N.R. f; BMI: 31.7 (3.5)	i: DJB c: CWL	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Damms- Machado (2014)	NRCT 6M	i: n=5; age: 48 (3); 100% f; BMI: 45.8 (0.9) c: n=5; age: 48 (3), 100% f; BMI: 40.2 (1)	i: LSG c: Very low calorie diet	Faecal samples SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing
Federico	NRCT	i: n=28; age: 47.8; 71.4% f; BMI: 51.5 (12.5)	i: BIB	Faecal samples
(2010) Fouladi (2019)	NRCT N.R.	i: n=12; age: 42.1; 100% f; BMI: 32.7 (1.5) c: n=6, age: 44.7, 100% f, BMI: 31.2 (2.4)	i: RYGB c: ObC	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Furet (2010)	NRCT 6M	i: n=30; age: 42 (2); 90% f; BMI: 48.3 (1.6) c: n=13; age: 36 (3); N.R. f; BMI: 21.7 (0.4)	i: RYGB c: HWC	Faecal samples Real-time PCR
Graessler (2013)	exp. 3M	i: n=6; age: 46.0 (5); 50% f; BMI: 46.1 (4.0) c: n=5; N.R.	i: RYGB c: HWC	Faecal samples (paper-based stool collectors) 16S rRNA gene sequencing by Illumina MiSeq
Gutiutiérrez- Repiso (2019)	exp. 6M	i: n=24; age: 46.4 (2.4); 85.7% f; BMI: N.R.	i: RYGB	Faecal samples 16S rRNA gene sequencing (V2-V4, V6-V9) by Thermofisher Ion S5
Ilhan (2017)	NRCT N.R.	i: n=24; age: 51 (7); 67% f; BMI: 30.8 ii: n=14; age: 46 (11); N.R. f; BMI: 36.6 c: n=10; age: 42 (15);70% f; BMI: 22.3 cc: n=15; age: 50 (9); 53% f; BMI: 43.5	i: RYGB ii: AGB c: HWC cc: ObC	Faecal samples 16S rRNA gene sequencing (V4-V6) by Illumina MiSeq
Kellerer (2019)	NRCT 6M	i: n=8; age: N.R.; N.R. f; BMI: 45.8 c: n=8; N.R.	i: LSG c: HWC	Faecal samples 16S rRNA gene sequencing (V3-V4) by Illumina MiSeq
Kong (2013)	exp. 6M	i: n=30; age: N.R.; 100% f; BMI: N.R.	i: RYGB	Faecal samples 16S rRNA gene sequencing (V3-V4) by Roche GS-FLX 454
Lee (2019)	RCT 9M	i: n=4; age: 57; 100% f; BMI: 35.1 ii: n=4; age: 45; 100% f; BMI: 35.8 c: n=4; age: 56; 100% f; BMI: 38.5	i: RYGB ii: AGB c: CWL	Faecal samples 16S rRNA gene sequencing (V3-V4) by Illumina Miseq
Lin (2018)	NRCT 3M	i: n=10; age: 37.1 (10); 60% f; BMI: 36 (4.3) c: n=10: age: 38 (10.5); 60% f; BMI: 36 (4.6)	i: LSG c: CWL	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Liu R.X. (2017)	NRCT 3M	i: n=6; age: 23.3 (1.8); N.R. f; BMI: 44.5 (7.4) c: n=25; age: 23.6 (3.8), N.R.; BMI: 20.2 (1.3)	i: LSG c: ObC	Faecal samples 16S rRNA gene sequencing (V3-V4) by Illumina MiSeq,

				Real-time PCR
Medina (2017)	exp.	i: n=5; age: N.R.; N.R. f; BMI: 37.1 (2.8)	i: RYGB	Faecal samples
	12M	ii: n=5; age: N.R.; N.R. f; BMI: 35.2 (2.4)	ii: LSG	16S rRNA gene sequencing
1 (2017)	DNC	c: $n=9$, age: N.R., N.R. t ; BMI: 38.9 (5.8)	c: CWL	(V3-V4) by Illumina MiSeq
Murphy (2017)	KNC 12M	i: $n=7$; age: 48.6 (b.1); $5/.1\%$ I; BIVII: 58.4 (5.2) i: $n=7$; age: 48.2 (6.1); 28.5% f; BMI: 36.9 (5.1)	i: KYGB	Faecal samples
	1 2111	II: $n=7$, age. 40.5 (0.1), 20.570 I, DIMIL 50.7 (5.1)	II: L50	IOS IKINA gene sequencing by Illumina HiSeq2000
Paganelli	RNC	i. n=23. age: 44 (9 3): 91 3% f. BMI: 37 5 (4 1)	i. RYGB	Faecal samples
(2019)	6M	ii: n=22: age: 43 5 (12): 77.3% f: BMI: 36.6	ii: LSG	16S rRNA gene sequencing
(,)		(5.9)		(V3-V4) by Illumina MiSeq
Pajecki (2019)	exp.	i: n=9; age: 41.9; 66.7% f; BMI: 56.5	i: RYGB	Faecal samples
-	24M	_		16S rRNA gene sequencing
				(V4) by Thermofisher Ion
D 11 · (2016)			1 DUCD	Torrent, PCR
Palleja (2016)	exp.	i: n=13; age: N.R.; 61.5% f; BMI: N.R.	i: RYGB	Faecal samples
	12M			16S rKNA gene sequencing
Dalmisano	рст	$1 = 1 = 0.002 \cdot 445(0.5) \cdot 77.8\% \text{ f} \text{BMI} \cdot 37.2(6.9)$: DVCB	(V2) by Illullina Histy2000
(2019)	6M	1: $n=9$, agc. 44.5 (7.5), 77.6701, BMI: 57.2 (0.7) ii n=16: age: 44.7 (9.4): 87.5% f: BMI: 37.2	ii· LSG	16S rRNA gene sequencing
(=017)	0111	(6.9)	c: HWC	(V1-V3) by Thermofisher Ion
		c: n=25; age: 44.2 (9.3); 80% f; BMI: 22.7 (3.2)		PGM
Patrone (2016)	exp.	i: n=6; age: 50.6; 81.8% f; BMI: 47.5 (7.5)	i: BIB	Faecal samples
	6M			16S rRNA gene sequencing
				(V4) by Illumina, real-time
D : (1002)	D (• 40 (7 2) (7 40/ 0 DML N.D.	•	PCR
<i>Rosina (1993)</i>	N D	i: n=49; age: 40 (7.3); 67.4% I; BMI: N.K.	i: End-to-end	Samples of intestinal content.
	IN.K.		iii End_to_side	functioning leum
			ieiunoilelal bypass	middle of the excludes loop
			iii: side-to-side	taken at reoperation.
			jejunoilelal bypass	Microbiological cultures
Sanmiguel	exp.	i: n=8; age: 39.5 (8.7); 100% f; BMI: 44.1 (5.6)	i: LSG	Faecal samples
(2017)	1M			16S rDNA gene sequencing
			· Brigh	(V4) by Illumina HiSeq2500
Tremaroli	RCT	i: $n=7$; age: 43.3 (8.1); 100% t; BMI: 42.2 (4.2)	i: RYGB	Faecal samples
(2015)	N.K.	II: $n=/;$ age: 50.1 (/.0); 100% 1; BIVII: 45 (5.1)		Shotgun sequencing by
		(4.7)		IIIumma Hiseq2000
Wang (2019)	RCT	i: n=8: age: 33.3 (6.5); 100% f; BMI: N.R.	i: LSG	Faecal samples
	3M	ii: n=3; age: 40.3 (6.8); 100% f; BMI: N.R.	i: RYGB	16S rRNA gene sequencing
		c: n=20; N.R.	c: HWC	(V4) by Thermofisher Ion S5,
				real-time PCR
Zhang (2009)	NRCT	i: n=3; age: 43.3 (8.1); 66% f; BMI: 40.6 (5.4)	i: RYGB	Faecal samples
	N.R.	c: n=3; age: $36.7 (4.0); 66\% t; BMI: 22.7 (2.3)$	c: HWC	16S rDNA gene sequencing
		cc: n=3; age: 35.7 (4.2); 66% I; BIVII: 48.5 (7.7)	cc: ObC	(V6) and high-throughput 454,
		Crown 2. Deristric surgery and microbio	to in other vertebrates	
	Study	Group 2: Dallaute Surgery and Interovie		<u>s</u> T
Author (Year)	Tvne/	N [•] Age (weeks) (SD): Sex (%), weight (g) (SD).	Surgery Type	Microbiota Samples /
	Length	species	Surgery -Jrs	Analysis
<i>Alvarez (2018)</i>	RCT	n=36; age: N.R.; 0% f; weight: 250-300; rats	i: LSG1: 1-staple	Intestinal content from
	12W	i: n=13 ii: n=13 c: n=10	load	duodenum, jejunum, ileum,
			ii: LSG2: 2-staple	caecum and faecal samples
			load	16S rRNA gene sequencing
Dagao (2016)	DOT	$r = (0; area; 10; 00/ f; weight; N \mathbf{P} + rate$	c: Sham	(V4) by Illumina MiSeq
DUSSO (2010)	10W	n=00, age. 10, 0% 1, weight. w.r., iais	r: Glalluulai	16S rRNA gene sequencing
	10 **		c. Ctrl	(V3-V5) by Roche GS-FLX+
			C. Cui	Platform
Bastos (2018)	RCT	n=17; age: N.R.; 100% f; weight: N.R.; rats	i: Blind Loop	Duodenum, pre- and post-
· · ·	12W	i : n=6 c : n=5 cc : n=10	c: Sham	anastomosis segments, ileum,
			cc: Resection	cecum and faecal samples

Cummings (2013)	NRCT 18W	n=34; age: 8.; 0% f; weight: N.R.; rats i: n=12 c: n=16 cc: n=16	i: Ileal interposition c: Sham cc: Ctrl	Cecal samples 16S rRNA gene sequencing (V1-V2) by Roche GS-FLX, real-time PCR
Duboc (2017)	NRCT 6W	n=20; age: N.R.; 0% f; weight: 220-240; rats i: n=5 ii: n=6 c: n=9	i: LSG ii: RYGB c: Sham	Faecal and cecal samples 16S rRNA gene sequencing (V3-V4) by Illumina MiSeq
Guo (2016)	RCT 10W	i: n=10; age: 6; 0% f; weight: 291 (7.7); rats ii: n=10; age: 6; 0% f; weight: 286 (5.8); rats c: n=10; age: 6; 0% f; weight 303 (6.2); rats cc: n=10; age: 6; 0% f; weight 289 (7.7); rats	i: RYGB ii: LSG c: Sham (pair-fed) cc: Sham (fed ad libitum)	Faecal samples 16S rRNA gene sequencing (V1-V3) by Roche 454 GS- FLX+ Titanium platform
Huang (2014)	RCT 4W	i: n=10; age: 20; 0% f; weight: 363 (9.3); rats c: n=10; age: 20; 0% f; weight: 362 (25); rats cc: n=10; age: 20; 0% f; weight: 412 (33.6); rats	i: LSG c: Sham cc: Sham (glucose SD)	Faecal samples 16S rRNA gene sequencing by Sanger, PCR
Huh (2019)	RCT 8W	i: n=10 ii: n=10 c: n=5; age: 7; 0% f; weight: 625; rats cc: n=5; age: 7; 0% f; weight: 796; rats ccc: n=3	i: RYGB ii: LSG c: Regular diet ctrl cc: High-fat diet ctrl ccc: Sham	Faecal samples 16S rRNA gene sequencing by Illumina MiSeq
Jahansouz (2017)	RCT 4W	n=30; age: 4; 0% f; weight: N.R.; mice i: n=7 ii: n=8 c: n=7 cc: n=8	i: LSG ii: LSG (cohoused) c: Sham cc: Sham (cohoused)	Faecal samples 16S rRNA gene sequencing (V5-V6) by Illumina MiSeq
Jiang (2016)	NRCT 9W	n=N.R; age: 7; 0% f; weight: N.R.; mice	i: DJB c: Sham cc: Sham (wild-type)	Faecal samples and different parts of the biliopancreatic limb, the roux limb, ileum, cecum, colon and rectum. 16S rRNA gene sequencing (V6) by Thermofisher Ion Torrent, DGGE
Kashihara (2015)	RCT N.R.	n=6; age: 16; 0% f; weight: N.R.; rats i: n=2 c: n=2 cc: n=2	i: DJB (diabetic) c: Sham (diabetic) cc: Liraglutide injection ctrl	Faecal samples 16S rRNA gene sequencing by Illumina MiSeq
Kim (2017)	NRCT 4W	n=19; age: N.R.; N.R. f; weight: N.R.; rats i: n=4 c: n=7 cc: n=8	i: DES c: Sham cc: Sham (pair-fed)	Cecal samples 16S rDNA gene sequencing (V4) by Illumina MiSeq
Li J.V. (2011)	NRCT 8W	i: n=6; age: N.R.; 0% f; weight: N.R.; rats c: n=6; age: N.R.; 0% f; weight: N.R.; rats	i: RYGB c: Sham	Faecal samples 16S rRNA gene sequencing (V1-V3) by PCR using a Qiagen Stool Kit
Li S. (2017)	RCT 3W	i: n=6; age: 6; 0% f; weight: 29 (5); mice ii: n=8; age: 6; 0% f; weight: 30 (1); mice c: n=8; age: N.R.; 0% f; weight: 30 (5); mice	i: DJB ii: LSG c: Sham	Faecal samples 16S rRNA gene sequencing by PCR
Liou (2013)	NRCT 12W	n=38; age: 22-26; 0% f; weight: N.R.; mice i: n=14 c: n=11 cc: n=6 ccc: n=7	i: RYGB c: Sham cc: Sham (wt matched) ccc: Ctrl	Faecal samples 16S rRNA gene sequencing (V4) by Illumina HiSeq
Liu (2018)	NRCT 8W	n=11; age: 8; 0% f; weight: 180; rats i: n=4 c: n=3 cc: n=4	i: RYGB c: Sham cc: Ctrl	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Miyachi (2017)	NRCT 12W	n=N.R.; age: 4-6; 0% f; weight: N.R.; rats	i: DJB, B-DJB, J- DJB. c: Sham	Faecal samples 16S rRNA gene sequencing by Illumina MiSeq
Mukorako (2019)	RCT 8W	n=21; age: N.R.; 0% f; weight: N.R.; rats i: n=5 ii: n=6 iii: n=4 c: n=6	i: BPD/DS ii: LSG iii: DS c: Sham	Faecal samples and intestinal content from alimentary, biliopancreatic and common limbs. 16S rRNA gene sequencing (V3-V4) by Illumina MiSeq
Osto (2013)	RCT 2W	i: n=8; age: N.R.; 0% f; weight: 445 (5); rats c: n=8; age: N.R.; 0% f; weight: 435 (5); rats	i: RYGB c: Sham	Intestinal content from limb, alimentary limb, common channel, cecum and colon

				Real-time PCR
Schippers (1996)	exp. 24W	i: n=6; age: N.R.; 0% f; weight: N.R.; dogs	i: RY reconstruction	Biopsy specimen from the stomach, duodenum and proximal jejunum. Microbiological investigations
Shao (2017)	RCT 9W	i: n=18; age: 8; 0% f; weight: N.R.; rats	i: RYGB, LSG	Faecal samples 16S rDNA gene sequencing (V4) by Illumina MiSeq
Shao (2018)	RCT 22W	n=21; age: 6; 0% f; weight: N.R.; mice i: n=7 c: n=7 cc: n=7	i: LSG c: Normal diet cc: Sham	Faecal samples 16S rDNA gene sequencing (V4) by Illumina MiSeq
Wang (2019)	RCT 9W	i: n=N.R.; age: 12; N.R. f; weight: N.R.; rats c: n=N.R.; age: 12; N.R. f; weight: N.R.; rats	i: RYGB c: Sham	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Yang (2015)	RCT 2W	i: n=9; age: 12; 0% f; weight: 369 (3.6); rats c: n=9; age: 12; 0% f; weight: 369 (4.7); rats	i: DJB c: Sham	Mucosa-Associated Bacteria of proximal alimentary limb, proximal biliopancreatic limb, distal common limb, and proximal colon. Microbiological culture, in vitro intestinal permeability assay
Zhang (2015)	NRCT 12W	i: n=10; age: 8; 0% f; weight: 200; rats c: n=10	i: DJB c: Sham	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
		Group 3: Probiotics and baria	tric surgery	
Author (Year)	Study Type/ Length	Sample Size and Characteristics n; Age (year) (SD); Sex %F, BMI [kg/m ²] (SD)	Surgery Type	Microbiota Samples / Analysis
Chen J.C. (2016)	RNC 0.5M	n=60; age: 35.1 (8.3); 68% f; BMI: 29.2 (6.4) i: n=20 ii: n=20 c: n=20	i: RYGB ii: Mini gastric bypass c: Digestive enzymes	N/A
Kazzi (2018)	RCT 3M	n=40; age: 48.0 (12.7); 77.5% f; BMI: 46.2 (8) i: n=18 c: n=22	i: LSG c: Ctrl	N/A
Sherf-Dagan (2016)	RCT 6M	n=100; age: 41.9 (9.8); 60% f; BMI: 42.3 (4.7) i: n=50 c: n=50	i: LSG c: Ctrl	Faecal samples 16S rRNA gene sequencing (V4) by Illumina MiSeq
Woodward (2008)	RCT 6M	i: n=22; age: 48.6; 90.9% f; BMI: 45.7 c: n=22; age: 41.2; 84.2% f; BMI: 49.6	i: RYGB c: Ctrl	N/A

AGB: Adjustable gastric banding; BIB: Bilio-intestinal bypass; BMI: Body mass index; BPD/DS: Bilopancreal diversion with duodenal switch; CWL: Conservative weight-loss; DGGE: denaturing gradient gel electrophoresis; DJB: Duodenal-jejunal bypass (B-DJB, J-DJB); DS: Duodenal switch; Exp.: Experimental study design; HWC: Healthy weight controls; LSG: Laparoscopic sleeve gastrectomy; LGB: Laparoscopic gastric bypass; ObC: Obese weight controls; NCRT: Non randomized controlled trial; N.R.: Not reported; PCR: Polymerase chain reaction; RCT: Randomized controlled trial; RNC: Randomized not controlled trial; RYGB: Roux-en-Y gastric bypass; SD: Standard deviation; SOLiD: Sequencing by oligonucleotide ligation and detection; VBG: Vertical banded gastroplasty

Text S2: Result Summaries of Group 1 and Group 2 outcomes

Overview of microbiota changes following BS in humans (Group 1)

Twenty of the twenty-nine studies reported alpha diversity (richness or biodiversity) after BS and resulted in a predominantly uniform picture. Ten studies reported an increased richness after surgery (RYGB^{39,47,52,55,59,94}; LSG^{46,49,50,59}; AGB³⁹; DJB⁴¹) and six reported nil change (RYGB^{37,38,54,56,76}; LSG^{37,38,52,56,58}). The biodiversity was reported to increase (n=7: RYGB^{42,55,59,75,94}; LSG^{46,59}; DJB⁴¹) or remain stable (n=7: RYGB^{53,54,56,76}; LSG^{50,52,53,56,58}) after BS. Two studies reported lower bacterial richness and biodiversity following surgery, specifically after BIB⁵³ and after AGB in comparison to Conservative weight loss (CWL) control.⁴⁴

In regards to Community Structure (beta diversity), sixteen studies reported dissimilarity following surgery in a pre-post design (RYGB^{39,51,53-56,59,78,79,94}; LSG^{42,50,51,53,56,58,59}; AGB^{39,94}; DJB⁴¹; BIB^{43,57}), whereas similarity was reported by 2 pre-post studies (RYGB and AGB⁴⁸; LSG⁴⁶). Five studies reported beta-diversity parameters for BS in comparison to a control group, reporting dissimilarity (n=4: RYGB^{78,79,94}; AGB⁹⁴; LSG⁴⁶) and similarity (n=2: RYGB⁷⁶; VGB⁷⁸) in these comparisons. Wang *et al.* compared the community structure of patients following RYGB and LSG, finding dissimilarity between the groups.⁵⁹ Conversely, Tremaroli *et al.* also compared their groups and reported similarity following RYGB and VBG.⁷⁸

In regards to changes in Firmicutes abundance after BS, twenty studies reported changes at the phylum level, with five reporting a decrease (LSG^{37,38,42,58}; RYGB⁴⁵; DJB⁴¹) and fourteen remained stable (RYGB^{40,48,51,53-56,59}; LSG^{46,49,52,53,56,59}; BIB⁵⁷; ABG⁴⁷). The Bacteroidetes phylum abundance was found to remain stable after BS in thirteen studies (RYGB^{48,51,53-56,59}; LSG^{37,38,46,49,53,56,58,59}; AGB⁴⁸; BIB⁵⁷), increased in four studies (LSG^{42,52}; DJB⁴¹; RYGB⁴⁰) and decreased in five studies (RYGB^{37,38,46,49,53,56,58,59}; AGB⁴⁸; BIB⁵⁷). Kellerer *et al.* and Palmisano *et al.* also assessed Bacteroidetes at phylum level and found higher abundance in the LSG group when compared to healthy weight controls⁴⁶ and RYGB group⁵⁶, respectively. Guitierrez-Repiso *et al.* compared the microbiota of patients following RYGB classified by their degree of postoperative weight loss, finding no significant difference at phylum level between RYGB patients.⁷⁶

Within the Proteobacteria phylum, Gammaproteobacteria at the class level was assessed by four studies and reported consistently increased abundance after RYGB^{56,94} and after RYGB when compared to controls (patients with obesity).^{78,79} At species level, *E. coli* belonging to Proteobacteria increased abundance in four of four reported studies (RYGB^{44,45,55}; LSG⁵¹) and *F. prausnitzii* bellowing to Firmicutes increased abundance in three studies (RYGB^{44,48}; LSG⁴²) and decreased in two studies (RYGB^{45,55}). All studies which reported on Akkermansia/*Akkermansia muciniphila* of the Verrucomicrobia phylum (n=8) found a significant increase (DJB⁴¹; RYGB^{45,48,55,56}; ABG⁴⁸; LSG^{50,51}; RYGB compared to controls (patients with obesity)⁷⁹).

Overview of microbiota changes following BS in vertebrates other than humans (Group 2)

Twelve of the twenty-five non-human studies reported alpha diversity (richness or biodiversity) after BS. Diversity richness following BS was predominately reported as not significantly differing from sham operated controls (n=6: RYGB^{84,85}; LSG^{61,80,84,85}; GG⁸¹; DJB⁹³), with only two studies reporting higher (RYGB⁹⁰; LSG^{90,92}) and one reporting lower (BPD/DS and DS⁶⁶) than sham. Biodiversity was reported as higher (n=2: GG⁸¹; RYGB⁸⁵), lower (n=3: DJB⁹¹; RYGB⁶⁸; BPD/DS and DS⁶⁶) and similar (n=5: LSG^{61,80,84,92}; RYGB^{65,84}) to sham groups. Community Structure (beta-diversity) was reported by twelve studies, with ten reported dissimilarity between BS and sham operated groups (LSG^{84,85,90,92}; RYGB^{64,65,68,84,85,90}; GG⁸¹; DJB⁹¹; BPD/DS and DS⁶⁶). Similarity was only reported by Kim *et al.* in DES⁸⁶ and Jahansouz *et al.* and Shao *et al.* (2017) in LSG^{61,68}.

Overall taxonomy abundances at phylum level were assessed by twenty studies. Firmicutes phylum was reported lower following BS than sham controls by six studies (RYGB^{65,69,90}; LSG^{60,61,90,92}), higher in four studies (DJB^{91,93}; RYGB^{62,85} and not significantly different in ten^{60,66,68,80,81,83,84,86,87,95}. Bacteroidetes was found to have similar abundance after BS to sham in thirteen studies (RYGB^{62,68,84,85,89,90}; LSG^{60,66,68,80,84,90}; GG⁸¹; IT⁸³; DJB^{87,95}; BDP/DS⁶⁶). LSG was associated with higher abundance in Bacteroidetes compared to sham controls (LSG^{60,61,92}), whereas lower abundance was found in DJB and DES groups (DJB^{91,93}; DES⁸⁶). At phylum level Verrucomicrobia abundance increased in five studies (RYGB⁹⁰; LSG^{61,90,92}; DJB⁹¹; DES⁸⁶), however was also not significant in fifteen studies (RYGB^{62,65,68,84,85,89}; LSG^{60,61,66,68,80,84,85}; DJB^{87,93,95}; GG⁸¹; IT⁸³; BDP/DS⁶⁶). Guo *et al.* compared the phyla of RYGB and LSG groups, finding higher Firmicutes and Proteobacteria abundance in the RYGB group compared to LSG, and higher Bacteroidetes and Actinobacteria abundance in the LSG group.⁸⁵

Analysis at the class level showed a higher abundance in Gammaproteobacteria within the Proteobacteria phylum (n=5: GG⁸¹; IT⁸³; DJB⁹⁵; RYGB compared to LSG and sham groups^{68,85}) and mixed outcomes for the Bacilli class within Firmicutes (Increase n=1: GG⁷²; Decrease n=2: LSG^{85,92}; Stable n=2: RYGB⁶², DJB⁹⁵). Twelve studies reported results at the genus level. Bifidobacterium genus within the Actinobacteria phylum was observed in higher abundance than sham operated vertebrates in five reporting studies (LSG⁹²; RYGB⁸⁸; DES⁸⁶; DJB⁸⁷; BDP/DS⁶⁶). Similarly, Akkermansia genus within Verrucomicrobia was also higher in the four reporting studies (RYGB^{64,91}; LSG^{90,92}; DJB⁹¹). Within the Firmicutes phylum, Ruminococcus genus was lower following BS than sham controls in four studies (GG⁸¹; RYGB^{84,90}; LSG^{60,90}) and Clostridium in three studies (LSG^{60,84}; DJB⁸⁷).

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Aron- Wisnewsky <i>et</i> <i>al.,</i> 2018	RYGB resulted in more observed micriobial changes than LSG. RYGB resulted in multiple genus and species increases	↑ After RYGB and AGB in the timecourse	N.R.	RYGB: B2 (Bacteroides- Prevotella) to B1 enterotype switch; Dissimilarity between pre- and post intervention, especially for RYGB	genus After RYGB: ↑ Oscillibacter spp. ↑ Clostridium sp. ↑ Roseburia spp. ↓ Coprobacillus spp. ↓ Coprobacillus spp. \$pecies ↑ Hungatella hathewayi 1 ↓ Anaerostipes hadrus	genus After RYGB: ↑ Alistipes shahii ↑ Butyricimonas species After AGB and RYGB: ↑ Butyricimonas virosa After AGB: ↑ Bacteroides finegoldi	N.R.	N.R:	N.R.	species ↑ <i>F. nucleatum</i> after RYGB	N.R.
Bjoerneklett <i>et al.,</i> 1981	↑ Bacterial numbers in anaerobic than in aerobic cultures No significant difference between surgery groups	 ↔ No differences in bacterial numbers 	N.R.	N.R.	N.R:	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
Campisciano et al., 2018 Campisciano et al., 2017	LSG resulted in a change from a Prevotella to a Bacteroides enterotype - better aligning with HWC.	↔ After bypass and LSG (Chao1)	N.R.	N.R.	phylum ↑ After bypass ↓ After LSG	<pre>phylum ↓ After bypass ↔ After LSG genus After bypass: ↑ Prevotella</pre>	phylum ↓ After LSG and bypass	phylum ↓ After LSG ↑ After bypass	phylum ↔ After LSG and bypass	N.R.	N.R.
Chen H. <i>et</i> <i>al.,</i> 2017	Increases observed for Bacteroidetes and Bifiodobacterium, and decrease in Escherichia associated with decreased inflammatory markers	N.R.	N.R.	N.R.	phylum ↔ After RYGB genus After RYGB: ↔ Lactobacillus ↔ Enterocuccus	phylum ↑ After RYGB	phylum ↔ After RYGB genus After RYGB: ↑ <i>Bifidobacterium</i>	phylum ↔ After RYGB genus After RYGB: ↓ <i>Escherichia</i>	phylum ↔ After RYGB	N.R.	N.R.
Cortez <i>et al.,</i> 2018	DJB resulted in increased microbiota richness, and increases in Bacteroides, Akkermansia and Dialister.	After DJB: ↑ At 12M (Chao1)	After DJB: ↓ At 6M ↑ At 12M (Shannon) ↑ At 6 and 12M (Simpson)	Dissimilarity between pre- and post DJB Similarity in ctrl.	phylum ↓ At 6M after DJB genus After DJB: ↑ Dialister ↔ Strepococcus ↔ Christensen- ellaceae ↔ Lachnospiraceae ↔ Roseburia ↔ Faecalib- acterium ↔ Eubacterium	phylum ↑ At 12M after DJB genus After DJB: ↑ Bacteroides ↓ Alistipes ↔ Parabacteroides ↔ Prevotella	phylum ↔ After DJB	phylum ↔ After DJB	phylum ↑ At 12M after DJB After DJB: genus ↑ Akkermansia species ↑ Akkermansia muciniphila	N.R.	N.R.

Table S2a: Group 1 - Microbiota changes following BS in humans Results

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Damms- Machado et al., 2014	Bacteroidetes negatively correlated with body weight; Firmicutes positively correlated with body weight following LSG	N.R.	N.R.	Dissimilarity between pre- and post intervention, especially for LSG	phylum ↓ After LSG After LSG: genus ↓ Coprococcus ↓ Dorea ↓ Ruminococcus ↔ Eubacterium ↔ Faecali- bacterium species ↑ F. prausnitzii	phylum ↑ After LSG After LSG: genus ↔ Bacteroides	phylum ↔ After LSG	phylum ↔ After LSG	phylum ↔ After LSG	N.R.	N.R.
Federico <i>et</i> <i>al.,</i> 2016	Changes in microbiota following BIB associated in beneficial changes in metabolite production	N.R.	N.R.	↓ Within similarity between pre- and post BIB	genus After BIB: ↓ Butyrivibrio ↓ Roseburia ↓ Dorea longicatena	N.R:	N.R.	N.R.	N.R.	N.R.	N.R.
Fouladi <i>et al.,</i> 2019	Increases observed for Lactobacillales and Micrococcales after RYGB regardless of weight loss success (compared to ctrl)	N.R.	↑ After RYBG (both groups) compaired to ctrl (Shannon)	N.R.	After RYGB with successful weight loss compared to ctrl: order ↑ Lactobacillales genus ↑ Streptococcus ↔ Oscillibacter ↔ Lactobacillus	N.R	After RYGB with successful weight loss compared to ctrl: order ↑ Micrococcales genus ↑ Rothia	genus After RYGB with successful weight loss compared to ctrl: ↔ Enterobacter	After RYGB with successful weight loss compared to ctrl: order ↔Verrucomicro- biales genus ↔ Akkermansia	N.R.	N.R.
Furet <i>et al.,</i> 2010	Increases observed for Bacteroides/Prevot ella and E.coli, decreases for Bifidobacterium and Lactobacillus	N.R.	N.R.	N.R.	species After RYGB: ↑ F. prausnitzii ↔ Clostridium coccoides ↔ Clostridium leptum	genus After RYGB: ↑ <i>Bacteroides</i> ↑ <i>Prevotella</i>	genus After RYGB: ↓ <i>Bifidobacterium</i>	species After RYGB: ↑ <i>E.coli</i>	N.R.	N.R.	N.R.
Graessler <i>et</i> <i>al.</i> , 2013	↓ Firmicutes and Bacteroidetes ↑ Proteobacteria, specifically <i>E.</i> <i>cancerogenus</i>	N.R.	N.R.	N.R.	phylum ↓ After RYGB: genus ↓ Faecalibacterium ↓ Coprococcus ↓ Anaerostipes ↑ Veillonella species ↓ F. prausnitzii ↓ Eubacterium rectale ↓ Dialister invisus ↑ Veillonella parvula ↓ Lactobacilli ↓ Clostridium spiroform	phylum ↓ After RYGB	phylum ↓ After RYGB After RYGB: genus ↓ Nakamurella species ↓ Myobacterium kansasii	phylum ↑ After RYGB After RYGB: genus ↓ Helicobacter ↑ Enterobacteria ↑ Citrobacter ↑ Salmonella ↑ Shigella species ↑ E. cancerogenus ↑ Shigella boydii ↑ Salmonella enterica ↑ Klebsiella pneumonia, ↑ E. coli ↓ C. comes	phylum ↑ After RYGB species After RYGB: ↑ Akkermansia muciniphila	phylum ↓ Cyanobacteria ↑ Fusobacteria	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Gutiérrez- Repiso <i>et al.,</i> 2019	Compared the microbiota of post- op RYGB dependent of weight loss success - finding a more diverse core microbiome with successful weight loss group	↔ No difference between groups (Chao1)	↔ No difference between groups (Shannon)	Similarity between groups according to weight status	<pre>phylum ↔ After RYGB when compared between weight loss success genus ↑ Sarcina ↑ Butyrivibrio ↑ Lachnospira ↑ Alkaliphilus after RYGB without regain compared to weight regain group</pre>	phylum ↔ After RYGB when compared between weight loss success genus ↑ 5-7N15 ↑ AF12 after RYGB with successful weight loss compared to weight regain group	phylum ↔ After RYGB when compared between weight loss success	<pre>phylum ↔ After RYGB when compared between weight loss success genus ↑ Pseudoalteromanes after RYGB with successful weight loss compared to weight regain group</pre>	phylum ↔ After RYGB when compared between weight loss success	<pre>phylum</pre>	N.R.
Ilhan <i>et al.,</i> 2017	More substancial microbiota changes were observed post RYGB than AGB	↑ After RYGB than AGB and PreB-ctrl.	↑ After RYGB than AGB and PreB-Ob groups ↑ Equitability scores in ctrl. and RYGB than AGB and PreB-ctrl.	Dissimilarity between PreB- OP and post- surgery patients, especially RYGB	phylum ↔ After RYGB and AGB compared to ctrl After RYGB compared to ctrl: class ↑ Bacilli genus ↑ Veillonella ↑ Enterococcus After AGB compared to RYGB: ↑ Holdemania	<pre>phylum</pre>	phylum ↔ After RYGB and AGB compared to ctrl	phylum ↔ After RYGB and AGB compared to ctrl After RYGB compared to AGB: class ↑ Gammaproteo- bacteria genus ↑ <i>Escherichia spp.</i> After RYGB compared to ctrl: ↑ <i>Haemophilus</i>	phylum ↔ After RYGB and AGB compared to ctrl	class After RYGB compared to ctrl: ↑ Fusobacteria	N.R.
Kellerer et al., 2019	LSG results in taxomy changes in the direction of HWC.	↑ after LSG	↑ after LSG (shannon)	Dissimilarity between LSG and ctrls. Similarity between pre and post LSG.	phylum ↔After LSG ↓ After LSG compared to HWC genus After LSG: ↓ Anaerostipes ↑ Ruminococcacae NK5A214	<pre>phylum ↔ After LSG ↑ After LSG compared to HWC After LSG compared to HWC: order ↑ Bacteroidales family ↓ Prevotellaceae After LSG: ↑ Rikenellaceae</pre>	phylum ↔After LSG	phylum ↔After LSG ↔ After LSG and compared to HWC	phylum ↔After LSG	N.R.	N.R.
Kong <i>et al.,</i> 2013	RYGB resulted in increases for Bacteroidetes, proteobacteria, and decreases in Firmicutes and bifiodacterium.	↑ After RYGB (Chao1, ACE)	N.R.	N.R.	genus After RYGB: ↓ Lactobacillus ↓ Dorea ↓ Blautia ↑ Peptostreptococcus	genus After RYGB: ↑ Bacteroides ↑ Alistipes	genus After RYGB: ↓ <i>Bifîdobacterium</i>	genus After RYGB: ↑ <i>Escherichia spp</i> .	N.R.	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Lee <i>et al.,</i> 2019	Greater microbial changes were observed following RYGB than AGB, including increased F.prausnitzii following RYGB.	↓ After AGB compared to After RYGB and CWL (chao1)	↓ After AGB compared to After RYGB and CWL (PD)	Similarity between pre- and post intervention	phylum ↔ After RYGB and AGB genus After RYGB compared to AGB and CWL: ↑ Faecalibacterium	phylum ↔ After RYGB and AGB genus After RYGB and AGB: ↔ Bacteroides	phylum ↑ After RYGB ↔ After AGB	phylum ↑ After RYGB and AGB	phylum ← After RYGB and AGB genus After RYGB, AGB and CWL ↑ Akkermansia	N.R.	N.R.
Lin <i>et al.,</i> 2019	LSG resulted in increases in diversity, <i>Pseudobutyrivibrio</i> and <i>prevotella</i> when compared to lifestyle intervention weight loss.	↑ At 3M after LSG and after LSG compared to CWL (Chao1 and ACE)	N.R.	N.R.	phylum ↔After LSG After LSG compared to CWL: genus ↑ Pseudobutyrivibrio species ↑ Peptoniphilus lacrimalis ↑ Selenomonas sputigena	phylum ↔ After LSG genus After LSG compared to CWL: ↑ <i>Prevotella sp.</i>	phylum ⇔After LSG	phylum ⇔After LSG	N.R.	N.R.	N.R.
Liu R.X. et al., 2017	LSG resulted in increases in Akkermansia muciniphila and total gene count.	↑ Gene count After LSG	↔ After LSG (shannon)	Dissimilarity between pre- and post LSG	genus After LSG: ↓Dorea sp. ↓Coprococcus sp. ↓Ruminococcus sp. ↔Faecalibacterium sp.	genus After LSG: \uparrow <i>Bacteroides sp.</i> \leftrightarrow <i>Alistipes sp.</i>	N.R.	N.R.	species After LSG: ↑ Akkermansia muciniphila	N.R.	N.R.
Medina <i>et al.,</i> 2017	BS resulted in more microbial changes than CWL, with clinical changes associated with a reduction in Bacteroidetes. Specific microbiota changes differed following different surgery options.	N.R.	N.R.	Dissimilarity between pre- and post surgery, Similarity of MT	phylum ↑ After LSG ↔After RYGB genus After RYGB and LSG: ↑ Streptococcus luteciae species After RYGB: ↑ Lactobacillales sp. ↑ Succiniclastum sp.	phylum ↓ After LSG ↔ After RYGB species After RYGB: ↑ Bacteroides eggerthii ↑ Bacteroides coprophilus	phylum ↑ After RGYB ↔After LSG	phylum ↑ After RGYB and LSG species After LSG: ↑ <i>E. coli</i>	phylum ↔After RYGB and LSG species After LSG: ↑ <i>Akkermansia</i> muciniphila	N.R.	N.R.
Murphy et al., 2017	RYGB resulted in more significant microbiota changes, including increased alpha- diversity, Firmicutes and Actinobacteria. Contrasting changes were observed for Bacteroidetes.	↑ After RYGB ↔ After LSG	↑ After RYGB ↔ After LSG	N.R.	phylum ↑ After RGYB ↔ After LSG species After RYGB and LSG: ↑ <i>Roseburia</i> <i>intestinalis</i>	phylum ↓ after RGYB ↑ after LSG	phylum ↑ After RGYB ↔ After LSG	phylum ↔After RYGB and LSG	phylum ↔After RYGB and LSG	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Paganelli <i>et</i> al., 2019	Microbial changes observed during pre-surgery diet phase. BS restored most microbial changes induced by VLCD.	N.R.	↔ After RYGB and LSG (shannon)	Dissimilarity between pre- and post surgery, Similarity between RYGB and LSG	phylum ↔ After RYGB and LSG family After RYGB and LSG: ↑ Streptococcaceae ↑ Veillonellaceae	phylum ↔ After RYGB and LSG	phylum ↓ After RGYB and LSG family After RYGB and LSG: ↓ Bifidobacteriaceae	phylum ↑ After RGYB and LSG family After RYGB and LSG: ↑ Enterobacteriaceae	phylum ↔ After RYGB and LSG	N.R.	N.R.
Pajecki <i>et al.,</i> 2019	Significant reduction in Proteobacteria was observed follwing RYGB.	↔ After RYGB (Chao1)	↔ After RYGB (shannon)	Dissimilar between pre- and post surgery for unweighted unifrac (weighted unifrac p=0.08)	phylum ↔ After RYGB genus After RYGB: ↔ <i>Roseburia</i>	phylum ↔ After RYGB family After RYGB ↔ Rikenellaceae	phylum ↔ After RYGB genus After RYGB: ↔ <i>Bifidobacterium</i>	phylum ↔ After RYGB family After RYGB ↔ Enterobacteriaceae	phylum ↔ After RYGB	N.R.	N.R.
Palleja <i>et al.,</i> 2016	Increased diversity observed following RYGB, correlated with observed metabolic improvements following surgery.	↑ Species richness after RYGB	↑ Gene richness: After RYGB (Shannon)	Dissimilarity between pre- and post surgery	phylum ↔After RYGB genus After RYGB: ↑ Veillonella ↑ Streptococcus species ↑ E. faecalis ↓ F. prausnitzii	phylum ⇔After RYGB genus After RYGB: ↑ <i>Alistipes</i>	phylum ↔After RYGB species After RYGB: ↑ <i>Bifidobacterium</i> <i>dentium</i>	phylum ↑ After RYGB species After RYGB: ↑ <i>E.coli</i> ↑ <i>Klebsiella</i> pneumoniae	phylum ⇔After RYGB species After RYGB: ↑ <i>Akkermansia</i> <i>muciniphila</i>	phylum ↑ Fusobacteria after RYGB species After RYGB: ↑ <i>F. nucleatum</i>	N.R.
Palmisano et al., 2019	RYGB resulted in significant short and longer term changes in taxonomy. No significant changes were observed following LSG.	↔ No significant difference observed (Chaol)	↔ No significant difference observed (Shannon, simpson)	Dissimilarity between pre- and post surgery	phylum ↔After RYGB and LSG After RYGB to HWC: class ↓ Clostridia species ↑ Veillonella dypica ↑ Veillonella dypica ↑ Stephrococcus gordonii ↑ S. australis	phylum ↔After RYGB and LSG ↑ After LSG compared to RYGB	phylum ↔After RYGB and LSG	phylum ↔After LSG ↑ After RYGB at 3M After RYGB: class ↑ Gammaproteo- bacteria species ↑ Yokenella regensburgei	phylum ↔After RYGB and LSG ↑ After RYGB compared to HWC species After RYGB: ↑ <i>Akkermansia</i> <i>munciniphila</i>	phylum ↑ Fusobacteria After RYGB compared to HWC species After RYGB compared to HWC: ↑ Fusobacter- ium varium	↓ Preference for carbohydrates at 6M postoperative ↔ Preference for protein, vegetables and fats at 6M postoperative
Patrone <i>et al.,</i> 2016	Decreased diversity observed following BIB, with decreases in families in the Firmicutes phylum and increase in Enterobacteriaceae observed.	↓ After BIB (Chao1)	↓ At 6M after BIB (Simpson, Shannon)	Dissimilarity between pre- and post surgery	phylum ↔ After BIB After BIB: family ↓ Lachnospiraceae ↓ Clostridiaceae ↓ Ruminococcaceae ↓ Eubacteriaceae genus ↑ Lactobacillus ↑ Megasphaera ↑ Acidaminococcus	phylum ↔ After BIB	phylum ↔ After BIB family After BIB: ↓ Coriobacteriaceae	phylum ↔ After BIB family After BIB: ↑ Enterobacteriaceae	phylum ↔ After BIB	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Rosina <i>et al.,</i> 1993	Aerobic and anaerobic colonic microbiota observed in the ileum.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
Sanmiguel <i>et</i> <i>al.,</i> 2017	LSG resulted in increased Fusobacteria and decreased Firmicutes and Bifidobacteriacaea.	↔ No significant changes after LSG	↔ No significant changes after LSG	Dissimilarity trend between pre- and post LSG	phylum ↓ After LSG genus After LSG: ↑ <i>Bulleidia</i>	phylum ↔ After LSG	phylum ↔ After LSG After LSG: family ↓ Bifidobacteriaceae genus ↑ Atopobium	phylum ↔ After LSG	phylum ↔ After LSG	phylum After LSG: ↑ Fusobacteria	YFAS score showed ↓ desire for high-calorie foods after LSG compared with baseline. ↓ Ratings for hedonic eating after LSG change was associated with alterations of the gut microbiome
Tremaroli <i>et</i> <i>al.</i> , 2015	RYGB and VBG resulted in microbiota changes, independent of BMI changes. Decreases in Firmicutes species were observed in both RYGB and VBG compared to obese controls.	N.R.	N.R.	Dissimilarity between RYGB and Obesity but not VBG ans obesity, Similarity for RYGB and VBG	phylum ↔ RYGB and VBG compared to ObC species After RYGB compared to ObC: ↓ Clostridium difficile ↓ Clostridium hiranonis ↓ Gemella sanguinis After VBG compared to ObC: ↓ Eubacterium rectale ↓ Roseburia intestinalis	phylum ↔ RYGB and VBG compared to ObC	phylum ↔ RYGB and VBG compared to ObC genus After RYGB compared to VBG: ↓ <i>Bifidobacterium</i>	phylum ↑ After RYGB compared to ObC ↔ VBG compared to ObC After RYGB compared to ObC: class ↑ Gammaproteo- bacteria genus ↑ <i>Escherichia</i> ↑ <i>Klebsiella</i> ↑ <i>Pseudomona</i> species After VBG compared to ObC: ↑ <i>E. coli</i>	phylum ↔ RYGB and VGB compared to ObC	N.R.	N.R.
Wang <i>et al.,</i> 2019	RYGB and LSG resulted in increases in alpha diversity and increases in genus and species in both Firmicutes and Bacteroidetes phyla.	↑ after RYGB and LSG (chao1)	↑ after RYGB and LSG (shannon)	Dissimilarity between pre- and post surgery, beta diversity↑ in patients with obesity versus ctrl. After surgery beta diversity↓	phylum ↔ After RYGB and LSG After RYGB and LSG: family ↑ Streptococcaceae genus ↑ Streptococcus species ↑ S. Salivarius ↑ S. Thermophilus After RYGB: genus ↓ Faecalibacterium	phylum ↔ After RYGB and LSG After LSG: family ↑ Rikenellaceae ↑ Porphyromonadaceae genus ↑ Alistipes species ↑ Alistipes Finegoldii	phylum ↔ After RYGB and LSG	phylum ↔ After RYGB and LSG	phylum ↔ After RYGB and LSG	phylum After RYGB and LSG: ↔ Fusobacteria	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Zhang <i>et al.,</i> 2009	Microbiota taxonomy after RYGB differ from both HWC and ObC.	N.R.	N.R.	Dissimilarity between patients with obesity and ctrl.	family After RYGB compared to ObC: ↔ Erysipelotrichaceae genus After RYGB compared to HWC: ↓ Clostridia	family ↓ Prevotellaceae After RYGB compared to ObC.	family ↔ Coriobacteriaceae in ObC	After RYGB compared to ctrls: class ↑ Gammaproteo- bacteria family ↔ Alcaligenaceae ↑ Enterobacteriacea	genus ↑ Akkermansia compared to ObC	family After RYGB: ↔ Fusobacteriace ae	N.R.

AGB: Adjustable gastric banding; BIB: Bilio-intestinal bypass; ctrl: control group; CWL: Conservative weight loss; DJB: Duodenal-jejunal bypass (B-DJB, J-DJB); HWC: Healthy weight controls; LSG: Laparoscopic sleeve gastrectomy; ObC: Obese weight controls; Not reported; RYGB: Roux-en-Y gastric bypass; VBG: Vertical Banded Gastroplasty; VLCD: Very low calorie diet; YFAS: Yale food addiction scale.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Alvarez et al., 2018	↔ No intestinal microbiome differences observed comparing LSG1, LSG2 and sham	↔ After LSG1, LSG2 and sham. (Chao1, ACE)	↔ After LSG1, LSG2 and sham. (Shannon)	N.R.	phylum ↔ After LSG1 and LSG2 compared to sham	phylum ↔ After LSG1 and LSG2 compared to sham	phylum ↑ After LSG2 compared to LSG1 and sham ↔ After LSG1 compared to sham	phylum ↔ After LSG1 and LSG2 compared to sham	phylum ↔ After LSG1 and LSG2 compared to sham	phylum ↔ After LSG1 and LSG2 compared to sham	N.R.
Basso <i>et al.,</i> 2016	Glandular gastrectomy resulted in higher gammaproteobact eria and Lactobacillus, and lower Ruminococcus compared to sham.	↔ After GG and sham (Chao1)	↑ After GG compared to sham (Shannon)	Dissimilarity between GG and ctrl.	phylum ↔ After GG compared to sham class After GG compared to sham: ↑ Bacilli ↑ Erysipelotrichia ↓ Clostridia genus ↓ Ruminococcus ↑ Lactobacillus ↔ Roseburia	phylum ↔ After GG compared to sham genus After GG compared to sham: ↔ Bacteroides ↔ Prevotella	phylum ↔ After GG compared to sham After GG compared to sham: class ↑ Actinobacteria genus ↑ Collinsella	phylum ↔ After GG compared to sham After GG compared to sham: class ↑ Gammaproteo- bacteria	phylum ↔ After GG compared to sham	N.R.	N.R.
Bastos <i>et al.,</i> 2018	Higher bacterial concentrations in the intestine was observed in BL and RG compared to sham	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
Cummings et al., 2013	Phyla levels did not different between groups, however Gammaproteobact eria was observed higher in IT compared to sham or control.	N.R.	N.R.	N.R.	phylum ↔ After IT compared to sham and ctrl genus After IT compared to sham: ↔ Ruminococcus ↔ Lactobacillus ↔ Roseburia ↔ Oscillibacter	phylum ↔ After IT compared to sham and ctrl genus After IT compared to sham: ↔ Bacteroides ↔ Alistipes	phylum ↔ After IT compared to sham and ctrl	<pre>phylum</pre>	phylum ↔ After IT compared to sham and ctrl	N.R.	N.R.
Duboc <i>et al.,</i> 2017	Both RYGB and LSG resulted in lower Ruminococcus than sham. LSG resulted in lower Clostridium and higher Enterobactiacae.	 ↔ No differences among RYGB, LSG, sham (Chao1) 	 ↔ No changes among RYGB, LSG, sham (Simpson, Shannon) 	Dissimilarity between LSG and sham, trend dissimilarity between RYGB and sham; dissimilarity between RYGB and LSG	phylum → After RYGB and LSG compared to sham After RYGB and LSG compared to sham: genus ↓ Ruminoccocus After LSG compared to RYGB: genus ↓ Clostridium species ↓ Clostridium perfringens	phylum ↔ After RYGB and LSG compared to sham	phylum ↔ After RYGB and LSG compared to sham	phylum ↔ After RYGB and LSG compared to sham After LSG compared to RYGB and sham: genus ↑ Enterobacteriaceae	phylum ↔ After RYGB and LSG compared to sham	N.R.	N.R.

Table S2b: Group 2 - Microbiota changes following BS in vertebrates other than humans Results

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Guo <i>et al.,</i> 2016	RYGB resulted in higher Proteobacteria/Ga mmaproteobacteri a, Fusobacteria and Clostridium, whereas SG resulted higher Actinobacteria, compared with other groups.	 ↔ No differences among RYGB, LSG, sham (Chao1, ACE) 	↑ After RYGB and LSG than sham groups (Shannon)	Dissimilarity between RYGB and LSG and sham	phylum ↑ After RYGB compared to LSG and sham ↓ After LSG compared to RYGB and sham class After LSG compared to RYGB and sham: ↓ Bacilli After RYGB and LSG compared to sham: ↑ Clostridia	phylum ↑ After LSG compared to RYGB and sham ↔ After RYGB compared to sham class After LSG compared to RYGB and sham: ↑ Bacteroidia	phylum ↑ After LSG compared to RYGB and sham ↔ After RYGB compared to sham	phylum ↑ After RYGB compared to LSG and sham ↔ After LSG compared to sham class After RYGB compared to LSG and sham: ↑ Betaproteobacteria ↑ Gammaproteo- bacteria	phylum ↔ After RYGB and LSG compared to sham	genus After RYGB compared to LSG and sham ↑ Fusobacteria	N.R.
Huang <i>et al.,</i> 2014	Microbial changes in both diabetic and non-diabetic rats after LSG. Nil phylum changes observed in sham.	N.R.	N.R.	N.R.	phylum ↓ After LSG ↔ After LSG compared to sham genus After LSG: ↓ Clostridium ↓ Ruminococcus	phylum ↑ After LSG ↔ After LSG compared to sham genus After LSG: ↑ Prevotella ↑ Parabacteroides	phylum ↔ After LSG compared to sham	phylum ↔ After LSG compared to sham	phylum ↔ After LSG compared to sham	N.R.	N.R.
Huh <i>et al.,</i> 2019	Both RYGB and LSG resulted in decreases in Firmicutes and increases in Proteobacteria and Verrucomicrobia. Sham resulted in decreased diveristy in microbiota.	↑After RYGB and LSG ↑ After RYGB and LSG compared to sham (chao1)	N.R.	Dissimilarity between groups at week 1. RYGB and LSG groups remained dissimilar to sham at 4 and 8 weeks after surgery	phylum ↓ After RYGB and LSG and compared to sham genus After RYGB and LSG: ↓ Lactococcus ↓ Dorea ↓ Ruminococcus ↓ Clostridiales ↓ Ruminococcaceae	<pre>phylum</pre>	<pre>phylum</pre>	phylum ↑ After RYGB and LSG and compared to sham genus After RYGB and LSG: ↑ Sutterella ↑ Enterobacteriaceae After LSG: ↑ Psychrobacter	phylum ↑ After RYGB and LSG compared to sham genus After RYGB and LSG: ↑ Akkermansia	N.R.	N.R.
Jahansouz <i>et</i> al., 2017	LSG resulted in decrease in Firmicutes and increase in Bacteroidetes (both compared to pre-op and sham group).	↔ No differences after LSG or compared to sham (ACE)	↔ No differences after LSG or compared to sham (Shannon)	Similarity between individually housed LSG and sham	phylum ↓ After LSG ↓ After LSG compared to sham (for comparisons of co- housed and individually housed)	phylum ↑ After LSG ↑ After LSG compared to sham (for comparisons of co- housed and individually housed)	phylum ← After LSG compared to sham for comparison of individually housed) ↓ After LSG compared to sham for comparison of cohoused housed)	phylum ↔ After LSG compared to sham (for comparisons of co- housed and individually housed)	phylum ↔ After LSG compared to sham (for comparisons of co- housed and individually housed)	N.R.	↔ Cohousing did not affect metabolic outcomes of LSG or sham.
Jiang <i>et al.,</i> 2016	DJB resulted in ↑ Firmicutes and ↓ Actinobacteria and Proteobacteria compared to sham. These were correlated with reduced inflammation.	N.R.	↓ After DJB compared to sham	Dissimilarity between DJB and sham	phylum ↑ After DJB compared to sham class After DJB: ↓ Clostridiales	phylum ↓ After DJB compared to sham	phylum ↓ After DJB compared to sham	phylum ↓ After DJB compared to sham	phylum ↑ After DJB compared to sham After DJB compared to sham: family ↑ Verrucomicro- biaceae genus ↑ Akkermansia	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	– Verrucomicrobia	Other	- Psychological/ behavioural outcome
Kashihara et al., 2015	DJB resulted in lower Bacteroidia and higher Gammaproteobact eria than sham and ctrl.	N.R.	N.R.	N.R.	phylum ↔ After DJB compared to sham class After DJB compared to sham and ctrl: ↔ Bacilli ↔ Clostridia	phylum ↔ After DJB compared to sham class After DJB compared to sham and ctrl: ↓ Bacteroidia	phylum ↔ After DJB compared to sham	phylum	phylum ↔ After DJB compared to sham	N.R.	N.R.
Kim <i>et al.,</i> 2017	DES resulted in higher Akkermansia muciniphila and Bifidobacteria than sham. Nil significant difference between DES and sham for Firmicutes phylum and lower Bacteroidetes phlyum in DES was observed.	N.R.	N.R.	Similarity in clustering of DES and ctrl groups	<pre>phylum</pre>	phylum ↓ After DES compared to sham After DES compared to sham: class ↓ Bacteroidia genus ↓ Prevotella ↑ Parabacteroides	phylum ↔ After DES compared to sham genus After DES compared to sham: ↓ <i>Rothia</i> ↑ <i>Bifidobacterium</i>	phylum ↔ After DES compared to sham	phylum ↑ after DES compared to sham species After DES compared to sham: ↑ Akkermansia muciniphila	After DES compared to sham: class ↑ Mollicutes	N.R.
Li J.V. <i>et al.,</i> 2011	Shift toward Gammaproteobac- teria after RYGB particularly <i>Enterobacter</i> <i>hormaechei</i> compared with ctrl. Strong correlations between relative suspension growth (RSG) and the Enterobacteriacea e and Pasteurellaceae	N.R.	N.R.	N.R.	phylum ↑ after RYGB compared to sham After RYGB compared to sham: class ↔ Bacilli ↓ Clostridia	phylum ↔ After RYGB compared to sham	phylum ↔ After RYGB compared to sham	phylum ↑ after RYGB compared to sham After RYGB compared to sham: class ↑ Gammaproteo- bacteria	phylum ↔ After RYGB compared to sham	N.R.	N.R.
Li S. <i>et al.,</i> 2017	↓ Intestinal inflammation after DJB in DSS- induced colitis.	N.R.	N.R.	N.R.	family After DJB and LSG compared to sham: ↑ Lactobacillales	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
Liou <i>et al.,</i> 2013	RYGB resulted in higher Enterobacteriales and Verrucomicrobiale s compared to sham. ↑ Archeae After RYGB	N.R.	N.R.	Dissimilarity between pre- and post RYGB. Dissimilarity between RYGB and sham/food restricted weight loss	phylum ↓ After RYGB compared to sham After RYGB compared to sham: order ↑ Clostridiales genus ↑ Clostridiales Lactobacillus	phylum ↑ After RYGB compared to sham After RYGB compared to sham: order ↔ Bacteroidales genus ↑ Alistipes	phylum ↔ After RYGB compared to sham	phylum ↑ After RYGB compared to sham order After RYGB compared to sham: ↑ Enterobacteriales	phylum ↑ After RYGB compared to sham After RYGB compared to sham: order ↑ Verrucomicrobiales genus ↑ Akkermansia	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Liu <i>et al.,</i> 2018	RYGB resulted in increased Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria, with decreased Firmicutes.	N.R.	↔ After RYGB compared to sham	Dissimilarity between RYGB and sham	phylum ↓ After RYGB and when compared to sham order After RYGB compared to sham: ↑ Lactobacillales ↓ Clostridiales	phylum ↑ After RYGB and when compared to sham	phylum ↑ After RYGB ↔ After RYGB compared to sham	phylum ↔ After RYGB compared to sham order After RYGB compared to sham: ↑ Burkholderiales ↑ Enterobacteriales	phylum ↔ After RYGB compared to sham order ↓ Verrucomicrobia after RYGB compared to sham	phylum After RYGB: ↑ Fusobacteria	N.R.
Miyachi <i>et</i> <i>al.,</i> 2017	B-DJB resulted in higher Bifidobacterium and lower clostridium than other methods.	N.R.	N.R.	N.R.	phylum ↔ After DJB compared to sham genus After B-DJB compared to J-DJB and sham: ↓ Clostridium ↓ Turicibacter ↔ Lactobacillus	phylum ↔ After DJB compared to sham genus After B-DJB compared to J-DJB and sham: ↓ Bacteroides	phylum ↔ After DJB compared to sham genus After B-DJB compared to J-DJB and sham: ↑ Bifidobacterium ↑ Olsenella	phylum ↔ After DJB compared to sham	phylum ↔ After DJB compared to sham	N.R.	N.R.
Mukorako <i>et</i> al., 2019	↑ Bifidobacterium and ↓ Peptostreptococca ceae and Clostridiaccae in common and alimentary limbs After BPD/DS and DS	↓ After DS compared to sham ↔ After BPD/DS and LSG compared to sham (Chao1)	↓ After BPD/DS and DS compared to sham ↔ After LSG compared to sham (shannon)	Dissimilarity between BPD/DS and DS compared to sham	<pre>phylum</pre>	phylum ↔ After BDP/DS, DS and LSG compared to sham order After BDP/DS and DS compared to sham: ↓ <i>Bacteroidales</i>	<pre>phylum</pre>	phylum ↔ After BDP/DS, DS and LSG compared to sham	phylum ↔ After BDP/DS, DS and LSG compared to sham	N.R.	N.R.
Osto <i>et al.,</i> 2013	Most substantial shifts in the composition of the microbiota in the alimentary limb and the common channel.	N.R.	N.R.	N.R.	genus After RYGB compared to sham: ↓ Lactobacillus spp.	genus After RYGB compared to sham: ↑ <i>Prevotella spp.</i> (common channel, the alimentary limb and in the colon)	genus After RYGB compared to sham: ↑ <i>Bifidobacterium spp.</i> (common channel, the alimentary limb and in the colon)	N.R.	N.R.	N.R	N.R.
Schippers <i>et</i> <i>al.,</i> 1996	↑ organisms in the stomach, Roux limb, jejunum and duodenum; the highest numbers near the gastro- jejunostomy ↑ Numbers in the bacterial microbiota similar in aerobic and anaerobic bacteria	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.

Study	General findings	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community structure/beta- diversity	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other	Psychological/ behavioural outcome
Shao <i>et al.,</i> 2017	RYGB resulted in more substancial and persistent microbial changes than LSG, including increased Proteobacteria, Gammproteobacte ria and Bacteroidaceae.	N.R.	↓ After RYGB and compared to LSG and sham (Shannon)	Similarity between LSG and sham; Dissimilarity between RYGB and sham.	phylum ↔ After RYGB and LSG compared to sham After RYGB compared to LSG and sham: order ↑ Lactobacillales ↑ Erysipelotrichales ↓ Clostridiales	phylum ↔ After RYGB and LSG compared to sham family After RYGB: ↑ Bacteroidaceae	phylum ↔ After RYGB and LSG compared to sham	phylum ↑ After RYGB compared to sham ↔ After LSG compared to sham class After RYGB compared to LSG and sham: ↑ Gammaproteo- bacteria order After LSG: ↑ Desulfo- vibrionaceae	phylum ↔ After RYGB and LSG compared to sham	phylum After LSG: ↑ Cyanobacteria	N.R.
Shao <i>et al.,</i> 2018	↑ Diminished diurnal oscillation of gut microbiota after LSG ↑ Richness of gut microbiota after LSG	↑ After LSG compared to sham (Chao1)	↔ No difference between LSG and sham (Shannon)	Dissimilarity between LSG and sham	phylum ↓ After LSG compared to sham class After LSG: ↓ Erysipelotrichia ↓ Bacilli	phylum ↑ After LSG compared to sham genus After LSG: ↑ Bacteroides ↑ Parabacteroides	phylum ↔ After LSG compared to sham genus After LSG: ↑ <i>Bifidobacterium</i>	phylum ↔ After LSG compared to sham	phylum ↑ After LSG compared to sham genus After LSG: ↑ Akkermansia	N.R.	N.R.
Wang <i>et al.,</i> 2019	RYGB observed to reduce inflammation, and resulted in lower Firmicutes and higher Proteobacteria compared to sham.	N.R.	N.R.	N.R.	phylum ↓ After RYGB compared to sham After RYGB compared to sham: order ↔ Erysipelotrichales ↓ Lactobacillales family ↓ Clostridiaceae	phylum ↔ After RYGB compared to sham	phylum ↔ After RYGB compared to sham	phylum ↑ After RYGB compared to sham order After RYGB compared to sham: ↑ Enterobacteriales	phylum ↔ After RYGB compared to sham	N.R.	N.R.
Yang <i>et al.,</i> 2016	DJB altered microbiota, reduced intestinal permeability and induced mucosal hypertorphy. ↑ bacterial numbers in alimentay and common limb after DJB compared to sham.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.
Zhang X. <i>et</i> <i>al.</i> , 2016	DJB resulted in ↓ Bacteroidia and ↑ Firmicutes and Proteobacteria compared to sham.	↔ After DJB and sham (Chao1, ACE)	N.R.	N.R.	phylum ↑ After DJB compared to sham	phylum ↓ After DJB compared to sham	phylum ↔ After DJB compared to sham	phylum ↑ After DJB compared to sham	phylum ↔ After DJB compared to sham	N.R.	N.R.

BL: Blind loop; BPD/DS: Bilopancreal diversion with duodenal switch; ctrl: Control group; DES: Duodenal endoluminal barrier sleeve; DJB: Duodenal-jejunal bypass (B-DJB, J-DJB); DS: Duodenal switch; GG: Glandular gastrectomy; IT: Ileal Interposition; LSG: Laparoscopic sleeve gastrectomy; N.R.: Not reported; RG: resection group; RYGB: Roux-en-Y gastric bypass

Study	Sample size & characterization	Study type, length, follow-up	Type of surgery	Probiotic: application, dosage [CFU/day]	Methods	Outcomes	Microbiota outcomes
Chen J.C. <i>et</i> <i>al.</i> , 2016	Total n=60 (f/m=41/19), Mean age 35.1 ± 8.3 years, Mean BMI 29.2 ± 6.4 kg/m ² PB1: n=20 PB2: n=20 Digestive enzymes group C: n=20; Taiwan	RNCT 14 days Follow-up: no	(i) RYGB (ii) Mini gastric bypass	 PB1: 1 g Clostridium butyrium MIYAIRI (5 * 10⁹) PB2: 300 mg Bifidobacterium longum BB536 (8 * 10⁹) Ctrl: Digestive enzymes (Aczym, containing 100 mg takadiastase N, 20 mg cellulase AP, 50 mg lipase MY, 100 mg pancreatin) Twice daily (Application N.R.) 	Quality of life: modified Gastrointestinal Quality of Life Index (mGIQLI) at baseline and at 14 days postoperative	 ↑ mGIQLI after the 2-week intervention in all 3 groups regardless of operative procedure and prescriptions ↑ Improvement of complaints of abdominal pain, abdominal bloating, excessive passage of gas, foul smell of flatulence, belching, abdominal noises, and heartburn in the entire sample; Probiotics and digestive enzymes had similar efficacy. post BMI: N.R. 	N.R.
Kazzi <i>et</i> <i>al.,</i> 2018	Total n=40 (f/m=31/9), Mean age 48.0 ± 12.7 years Mean BMI 46.2 ± 8.0 kg/m ² PB: n=18 Ctrl: n=22; USA	RCT 3M Follow-up: 6 weeks	LSG	PB: LactoWise®: 4.5 * 10 ⁹ of Bacillus coagulans and galactomannans (300 mg); Ctrl: 600 mg of calcium citrate yielding 126 mg of elemental calcium Once daily (capsule)	Quality of life: Gastrointestinal Quality of Life Index (GIQLI) at baseline and at 2 and 6 weeks and at 3M postoperative	↑ GIQLI over time in PB and ctrl. ↔ No group differences regarding the degree of improvement in the GIQLI post BMI: N.R.	N.R.
Sherf- Dagan <i>et</i> <i>al.</i> , 2016	Total n=100 (f/m=60/40), Mean age 41.9 \pm 9.8 years, Mean BMI 42.3 \pm 4.7 kg/m ² Morbidly obese non- alcoholic fatty liver disease (NAFLD), PB: n=50 Ctrl: n=50; <i>Israel</i>	RCT 6M Follow-up: 6M	LSG	 PB: Bio-25;Supherb: 1) Lactobacillus acidophilus 2) Bifidobacterium bifidum 3) Lactobacillus rhamnosus 4) Lactococcus lactis 5) Lactobacillus casei 6) Bifidobacterium breve 7) Streptococcus thermophiles 8) Bifidobacterium longum 9) Lactobacillus paracasei 10) Lactobacillus plantarum 11) Bifidobacterium infatis >25 * 10° Ctrl: Placebo Twice daily (capsule)	Liver associated outcomes: Abdominal- ultrasound (HRI score) Biochemical parameters: uniform laboratory methods Fibrosis associated outcomes: Shear-wave elastography Quality of life (QoL): SF-12 test Microbiota composition: faecal samples at baseline, 6M, 12M and stored at -80 °C; 16S rRNA sequencing (Illumina MiSeq) at baseline, and at 3, 6, 12M	Primary outcome ↓ In liver fat content and NAFLD remission in PB and ctrl Secondary outcome ↓ Fibrosis, liver-enzymes, C-reactive protein (CRP), leptin and cytokeratin-18 levels in PB and ctrl ↑ Biochemical metabolic parameters glucose, haemoglobin A1c, Homeostasis Model Assessment, total cholesterol and triglycerides ↑ QOL in PB and ctrl at 6M ↔ No significant difference between PB and ctrl regarding BMI and waist circumference, ↔ No group differences regarding the degree of improvement in the mGIQLI score	 ↔ Alpha diversity at each timepoint between PB and ctrl ↔ No significant difference between PB and ctrl regarding microbiota composition, except at 6M for ↑ Proteobacteria, Actinobacteria, <i>Collinsella</i> genus in PB - All N.S. at 12M ↑ Ratio of Firmicutes/Bacteroidetes in PB and ctrl
Woodard et al., 2008	Total n=44 PB: n=22 (f=90.9%), Mean age 48.6 years, Mean BMI 45.7 kg/m ² Ctrl: n=22 (f=84.2%), Mean age 41.2 years Mean BMI 49.6 kg/m ² USA	RCT 6M Follow-up: no	RYGB	Pb: Puritan's Pride®: Lactobacillus 2.4 * 10 ⁹ Ctrl: N.R. Once daily (capsule)	Quality of life: Gastrointestinal-related quality-of-life index (GIQOL), BO measurement was determined by hydrogen (H2) breath testing using the HBT Sleuth® at baseline and at 3, 6M	↓ H2 measures in PB ↑ Excess weight loss in PB than in ctrl at 6 week and 3M, ↑ Vitamin B12 levels in PB ↑ GIQOL in PB and ctrl at all time points ↔ No group differences regarding the degree of improvement in the GIQOL score	↓ BO at 6M in PB

Table S3: Group 3 – Bariatric surgery and probiotics

BMI: Body mass index, BO: Bacterial overgrowth, CFU: Colony forming unit; ctrl: Control group f/m: female/male; GIQLI: Gastrointestinal-related Quality of Life;H2: hydrogen, LSG: Laparoscopic sleeve gastrectomy; mGIQLI: modified Gastrointestinal Quality of Life index; NAFLD: Non-alcoholic fatty liver disease, N.R.: Not reported; PB: Probiotic group, QoL: Quality of life; RYGB: Roux-en-Y gastric bypass, SF-12: Short-Form health survey

Study	Alpha- diversity: richness	Alpha- diversity: biodiveristy	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Campisciano <i>et al.,</i> 2018 Campisciano <i>et al.,</i> 2017	Chao1 Bypass: ↔ LSG: ↔	N.R.	N.R.	After LSG: phylum:↓ Firmicutes After bypass: phylum:↑ Firmicutes	After LSG: phylum: ↔ Bacteroidetes After bypass: phylum: ↓ Bacteroidetes genus: ↑ <i>Prevotella</i>	After LSG: phylum: ↓ Actinobacteria After bypass: phylum: ↓ Actinobacteria	After LSG: phylum: ↓Proteobacteria After bypass: phylum: ↑Proteobacteria	After LSG and bypass: phylum: ↔ Verrucomicrobia	N.R.
Chen H. <i>et al.,</i> 2017	N.R.	N.R.	N.R.	After RYGB: phylum: ↔ Firmicutes genus: ↔ Lactobacillus, Enterocuccus	After RYGB: phylum: ↑ Bacteroidetes	After RYGB: phylum: ↔ Actinobacteria genus: ↑ <i>Bifidobacterium</i>	After RYGB: phylum: ↔ Proteobacteria genus: ↓ <i>Escherichia</i>	After RYGB: phylum: ↔ Verrucomicrobia	N.R.
Cortez <i>et al.,</i> 2018	Chao1 DJB:↑at	Shannon, Simpson DJB: ↑ at	Dissimilarity	After DJB: phylum: ↓ Firmicutes genus: ↑ Dialister, ↔ Strepococcus, Christensenellaceae, Lachnospiraceae, Roseburia, Faecalibacterium, Eukacturium	After DJB; phylum: ↑ Bacteroidetes genus: ↑ Bacteroides, ↓ Alistipes, ↔ Baucheronicale, Branctalla	After DJB:	After DJB:	After DJB: phylum: ↑ Verrumicrobia genus: ↑ Akkermansia species: ↑ Akkermansia muainiabila	ND
Damms-Machado et al., 2014	N.R.	N.R.	Dissimilarity		After LSG: phylum: ↑ Bacteroidetes genus: ↔ <i>Bacteroides</i>	After LSG: phylum: ↔ Actinobacteria	After LSG: phylum: ↔ Proteobacteria	After LSG: phylum: ↔ Verrucomicrobia	N.R.
Graessler <i>et al.,</i> 2013	N.R.	N.R.	N.R.	After RYGB: phylum: ↓ Firmicutes genus: ↓ Faecalibacterium, Coprococcus, Anaerostipes, ↑ Veillonella species: ↓ F. prausnitzii, Lactobacilli, Eubacterium rectale, Dialister invisus, Clostridium spiroform, ↑ Veillonella parvula	After RYGB: phylum: ↓Bacteroidetes	After RYGB: phylum: ↓Actinobacteria genus: ↓ <i>Nakamurella</i> species: ↓ <i>Myobacterium</i> <i>kanasii</i>	After RYGB: phylum : ↑ Proteobacteria genus : ↑ Enterobacteria, Citrobacteria, Salmonella, Shigella, ↓ Heliobacter species : ↑ E. ancerogenus, Shigella boydii, Salmonella enterica, Klebsiella pneumonia, E.coli, ↓ C. comes	After RYGB: phylum: ↑ Verrucomicrobia species: ↑ Akkermansia muciniphila	After RYGB: phylum: ↓ Cyanobacteria,↑ Fusobacteria species: ↓ <i>Treponema</i> <i>pallidum, Brachyspira</i> <i>hyodysenteriae,</i> <i>Fusobacterium</i> <i>periodonticum</i>
Kellerer <i>et al.,</i> 2019	LSG: ↑	Shannon LSG: ↑	Similarity	After LSG: phylum: ↔ Firmicutes genus: ↑ <i>Ruminococcaceae</i> <i>NK5A214</i> , ↓ <i>Anaerostripes</i>	After LSG: phylum: ↔ Bacteroidetes family: ↑ Rikenellaceae	After LSG: phylum: ↔ Actinobacteria	After LSG: phylum: ↔ Proteobacteria	After LSG: phylum: ↔ Verrucomicrobia	N.R.
Kong <i>et al.,</i> 2013	Chao1, ACE RYGB:↑	N.R.	N.R.	After RYGB: genus: ↓ Lactobacillus, Dorea, Blautia, ↑ Peptostreptococcus	After RYGB: genus: ↑ Bacteroides, Alistripes	After RYGB: genus: ↓ Bifidobacterium	After RYGB: genus: ↑ <i>Escherichia</i>	N.R.	N.R.
Lee <i>et al.,</i> 2019	N.R.	N.R.	Similarity	After RYGB and AGB: phylum: ↔ Firmicutes After RYGB: genus: ↑ <i>Faecalibacterium</i> After AGB: genus: ↓ <i>Faecalibacterium</i>	After RYGB and AGB: phylum: ↔ Bacteroidetes genus: ↔ Bacteroides	After RYGB: phylum: ↑ Actinobacteria After AGB: phylum: ↔ Actinobacteria	After RYGB and AGB: phylum: ↑ Proteobacteria	After RYGB and AGB: phylum: ↔ Verrucomicrobia genus: ↑ <i>Akkermansia</i>	N.R.
Lin <i>et al.</i> , 2019	Chao1, ACE LSG: ↑	N.R.	N.R.	After LSG: phylum: ↔ Firmicutes	After LSG: phylum: ↔ Bacteroidetes	After LSG: phylum: ↔ Actinobacteria	After LSG: phylum: ↔ Proteobacteria	After LSG: phylum: ↔ Verrucomicrobia	N.R.

Table S4a: Subgroup 1 – Pre-post comparisons in Humans

Study	Alpha- diversity: richness	Alpha- diversity: biodiveristy	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Liu R.X. <i>et al.,</i> 2017	LSG:↑at 3M	N.R.	Dissimilarity	After LSG: genus: \downarrow Dorea sp., Coprococcus sp., Ruminococcus sp., \leftrightarrow Faecalibacterium sp.	After LSG: genus: ↑ Bacteroides sp., ↔ Alistipes sp.	N.R.	N.R.	After LSG: species: ↑ Akkermansia muciniphila	N.R.
Medina <i>et al.,</i> 2017	N.R.	N.R.	Dissimilarity	After LSG: phylum: ↑ Firmicutes After LSG and RYGB: genus: ↑ Streptococcus luteciae, ↓ Lactobacilliales After RYGB: phylum: ↔ Firmicutes species: ↑ Succiniclastum	After LSG: phylum: ↓ Bacteroidetes After RYGB: phylum: ↔ Bacteroidetes species: ↑ <i>Bacteroides</i> <i>eggerthit, Bacteroides</i> <i>coprophilus</i>	After RYGB: phylum: ↑ Actinobacteria After LSG: phylum: ↔ Actinobacteria	After RYGB and LSG: phylum: ↑ Proteobacteria After LSG: species: ↑ <i>E. cali</i>	After RYGB and LSG: phylum: ↔ Verrucomicrobia After LSG: species: ↑ Akkermansia muciniphila	NR
Murphy <i>et al.,</i> 2017	RYGB:↑ LSG:↔	RYGB:↑ LSG:↔	N.R.	After RYGB: phylum: ↑ Firmicutes After LSG: phylum: ↔ Firmicutes After RYGB and LSG: species: ↑ <i>Roseburia</i> <i>intestinalis</i>	After RYGB: phylum: ↓Bacteroidetes After LSG: phylum: ↑Bacteroidetes	After RYGB: phylum: ↑ Actinobacteria After LSG: phylum: ↔ Actinobacteria	After RYGB and LSG: phylum: ↔ Proteobacteria	After RYGB and LSG: phylum: ↔ Verrucomicrobia	N.R.
Paganelli <i>et al.,</i> 2019	N.R.	Shannon RYGB: ↔ LSG: ↔	Dissimilarity	After RYGB and LSG: phylum: ↔ Firmicutes family: ↑ Stephococcaceae, Veillonaceae	After RYGB and LSG: phylum: ↔ Bacteroidetes	After RYGB and LSG: phylum: ↓ Actinobacteria family: ↓ Bifidobacteriaceae	After RYGB and LSG: phylum: ↑ Proteobacteria family: ↑ Enterobacteriaceae	After RYGB and LSG: phylum: ↔ Verrucomicrobia	N.R.
Pajecki <i>et al.,</i> 2019	Chao1 RYGB: ↔	Shannon RYGB: ↔	Dissimilarity (unweighted)	After RYGB: phylum: ↔ Firmicutes genus: ↔ <i>Roseburia</i>	After RYGB: phylum: ↔ Bacteroidetes family: ↔ Rikenellaceae	After RYGB: phylum : ↔ Actinobacteria genus: ↔ <i>Bifidobacterium</i>	After RYGB: phylum: ↓ Proteobacteria family: ↔ Enterobacteriaceae	After RYGB: phylum: ↔ Verrucomicrobia	N.R.
Palleja <i>et al.,</i> 2016	RYGB:↑	Shannon RYGB: ↑ at 12M	Dissimilarity	After RYGB: phylum: ↔ Firmicutes genus: ↑ Veillonella, Streptocuccus species: ↓ F.prausnitzii,↑ Enterocuccus facecalis	After RYGB: phylum: ↔ Bacteroidetes genus: ↑ <i>Alistipes</i>	After RYGB: phylum: ↔ Actinobacteria species: ↑ <i>Bifidobacterium</i> <i>dentium</i>	After RYGB: phylum: ↑ Proteobacteria species: ↑ E. coli, Klebsiella pneumoniae	After RYGB: phylum: ↔ Verrucomicrobia species: ↑ <i>Akkermansia</i> <i>muciniphila</i>	After RYGB: phylum: ↑ Fusobacteria species: ↑ Fusobacterium nucleatum
Palmisano <i>et al.,</i> 2019	Chaol RYGB: ↔ LSG: ↔	Shannon, Simpson RYGB: ↔ LSG: ↔	Dissimilarity	After RYGB and LSG: phylum: ↔ Firmicutes	After RYGB and LSG: phylum: ↔ Bacteroidetes	After RYGB and LSG: phylum: ↔ Actinobacteria	After RYGB: phylum: ↑ Proteobacteria class: ↑ Gammaproteobacteria species: ↑ <i>Yokenella</i> <i>regensburgei</i> After LSG: phylum: ↔ Proteobacteria	After RYGB and LSG: phylum: ↔ Verrucomicrobia After RYGB: species: ↑ <i>Akkermansia</i> <i>muciniphila</i>	N.R.
Patrone <i>et al.,</i> 2016	Choal BIB:↓	Shannon, Simpson BIB:↓	Dissimilarity	After BIB: phylum: ↔ Firmicutes family: ↓ Lactnospiracaea, Clostridiaceae, Ruminococcaceae, Eubacteriaceae genus: ↑ <i>Lactobacillus,</i> <i>Magasphera,</i> <i>Acidaminocuccus</i>	After BIB: phylum: ↔ Bacteroidetes	After BIB: phylum: ↔ Actinobacteria family: ↓ Corio-bacteriaceae	After BIB: phylum: ↑ Proteobacteria family: ↑ Enterobacteriaceae	After BIB: phylum: ↔ Verrucomicrobia	N.R.

Study	Alpha- diversity: richness	Alpha- diversity: biodiveristy	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Sanmiguel <i>et al.,</i> 2017	LSG: ↔	LSG: ↔	Dissimilarity	After LSG: phylum:↓ Firmicutes genus: ↑ Bulleidia	After LSG: phylum: ↔ Bacteroidetes	After LSG: phylum: ↔ Actinobacteria family: ↓ Bifidobacteriaceae genus: ↑ <i>Atopobium</i>	After LSG: phylum: ↔ Proteobacteria	After LSG: phylum: ↔ Verrucomicrobia	After LSG: genus: ↑ <i>Fusobacterium</i>
Wang <i>et al.,</i> 2019	Chao1 LSG: ↑ RYGB: ↑	Shannon LSG: ↑ RYGB: ↑	Dissimilarity	After RYGB and LSG: phylum: ↔ Firmicutes family: ↑ Streptococcaceae genus: ↑ Steptoccus species: ↑ S. Salivarius, S. Thermophilus After RYGB: genus: ↓ Faecalibacterium	After RYGB and LSG: phylum: ↔ Bacteroidetes After LSG: family: ↑ Rikenellaceae, Porphyromonadaceae genus: ↑ Alistipes species: ↑ Alistipes Finegoldii	After RYGB and LSG: phylum: ↔ Actinobacteria	After RYGB and LSG: phylum: ↔ Proteobacteria	After RYGB and LSG: phylum: ↔ Verrucomicrobia	After RYGB and LSG: phylum: ↔ Fusobacteria

AGB: Adjustable gastric banding; BIB: Bilio-intestinal bypass; ctrl: control group; DJB: Duodenal-jejunal bypass; HWC: Healthy weight controls; LSG: Laparoscopic sleeve gastrectomy; Not reported; RYGB: Roux-en-Y gastric bypass

Study	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Alvarez <i>et al.,</i> 2018						After LSG2 compared to LSG1 and sham phylum: ↑ Actinobacteria After LSG1 compared to			After LSG compared to
	Chao1, ACE	Shannon I SG: ↔	NR	After LSG compared to sham:	After LSG compared to sham:	sham: phylum: ⇔ Actinobacteria	After LSG compared to sham:	After LSG compared to sham:	sham: phylum: ↔ Fusobacteria
Basso <i>et al.,</i>	L30.↔	L30. ↔	N.K.	After GG compared to sham: phylum: ↔ Firmicutes class: ↑ Bacilli, Erysipelothrichia, ↓	After GG compared to sham:	After GG compared to sham:	After GG compared to sham:	phynum.	Tusobaccita
2010	Chao GG: ↔	Shannon GG: ↑	Dissimilarity	Clostridia genus: ↑ <i>Lactobacillus,</i> ↓ <i>Ruminococcus, ↔ Roseburia</i>	phylum: ↔ Bacteroidetes genus: ↔ <i>Bacteroides,</i> <i>Prevotella</i>	phylum: ↔ Actinobacteria class: ↑ Actinobacteria genus: ↑ <i>Collinsella</i>	phylum: ↔ Proteobacteria class: ↑ Gammaproteobacteria	After GG compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Cummings et al., 2013				After IT compared to sham: phylum: ↔ Firmicutes genus : ↔ <i>Ruminococcus,</i> <i>Lactobacillus, Roseburia,</i>	After IT compared to sham: phylum: ↔ Bacteroidetes genus: ↔ <i>Bacteroides</i> ,	After IT compared to sham:	After IT compared to sham: phylum: ↔ Proteobacteria class: ↑ Gammaproteobacteria	After IT compared to sham:	
	N.R.	N.R.	N.R.	Oscillibacter	Alistipes	phylum: ↔ Actinobacteria	genus: † Escherichia	phylum: ↔ Verrucomicrobia	N.R.
Duboc <i>et al.,</i> 2017	Chaol RYGB, LSG: ↔	Shannon, Simpson RYGB, LSG: ↔	Dissimilarity	After RYGB and LSG compared to sham: phylum: ↔ Firmicutes species: ↓ <i>Ruminoccocus</i> After LSG compared to RYGB: genus: ↓ <i>Clostridium</i>	After RYGB and LSG compared to sham: phylum: ↔ Bacteroidetes	After RYGB and LSG compared to sham: phylum: ↔ Actinobacteria	After LSG compared to RYGB and sham: phylum: ↔ Proteobacteria genus: ↑ <i>Enterobacteriaceae</i>	After RYGB and LSG compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Guo <i>et al.,</i> 2016	Chao1, ACE RYGB, LSG: ↔	Shannon RYGB, LSG: ↑	Dissimilarity	After RYGB compared to sham: phylum: ↑ Firmicutes After LSG compared to sham: phylum: ↓ Firmicutes class: ↓ Bacilli After RYGB and LSG compared to sham: class: ↑ Clostridia	After LSG compared to sham: phylum: ↑ Bacteroidetes class: ↑ Bacteroidia After RYGB compared to sham: phylum: ↔ Bacteroidetes	After LSG compared to sham: phylum: ↑ Actinobacteria After RYGB compared to sham: phylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↑ Proteobacteria class: ↑ Betaproteobacteria, gammaproteobacteria After LSG compared to sham: phylum: ↔ Proteobacteria	After RYGB and LSG compared to sham: phylum: ↔ Verrucomicrobia	After RYGB compared to sham: phylum: ↑ Fusobacteria
Huang <i>et al.,</i> 2014	N.R.	N.R.	N.R.	After LSG compared to sham: phylum: ↔ Firmicutes	After LSG compared to sham: phylum: ↔ Bacteroidetes	After LSG compared to sham: phylum: ↔ Actinobacteria	After LSG compared to sham: phylum: ↔ Proteobacteria	After LSG compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Huh <i>et al.,</i> 2019	Chao1 RYGB, LSG: ↑	N.R.	Dissimilarity	After RYGB and LSG compared to sham: phylum: ↓ Firmicutes	After RYGB and LSG compared to sham: phylum: ↔ Bacteroidetes	After RYGB and LSG compared to sham: phylum: ↔ Actinobacteria	After RYGB and LSG compared to sham: phylum: ↑ Proteobacteria	After RYGB and LSG compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Jahansouz <i>et al.,</i> 2017	ACE LSG: ↔	Shannon LSG: \leftrightarrow	Similarity	After LSG compared to sham (individually and cohoused): phylum: ↓ Firmicutes	After LSG compared to sham (individually and cohoused): phylum: ↑ Bacteroidetes	After LSG compared to sham (individually housed): phylum: ↔ Actinobacteria After LSG compared to sham (cohoused): phylum: ↓ Actinobacteria	After LSG compared to sham (individually and cohoused): phylum: ↔ Proteobacteria	After LSG compared to sham (individually and cohoused): phylum: ↔ Verrucomicrobia	N.R.

Table S4b: Subgroup 2 – BS to sham operation comparisons in other vertebrates

Study	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Jiang <i>et al.,</i> 2016				After DIB compared to sham:	After DIB compared to sham:	After DIB compared to sham	After DIB compared to sham:	After DJB compared to sham: phylum: ↑ Verrucomicrobia family: ↑ Verrucomicrobiaceae	
	N.R.	DJB:↓	Dissimilarity	phylum: ↑ Firmicutes	phylum: ↓ Bacteroidetes	phylum: ↓ Actinobacteria	phylum: ↓ Proteobacteria	genus: ↑ Akkermansia	N.R.
Kashihara <i>et al.,</i> 2015	ND	ND	ND	After DJB compared to sham: phylum: ↔ Firmicutes closer ↔ Begilli Clostridia	After DJB compared to sham: phylum: ↔ Bacteroidetes	After DJB compared to sham:	After DJB compared to sham: phylum: ↔ Proteobacteria class: ↑ Commerced to be to b	After DJB compared to sham:	N D
Kim <i>et al.,</i> 2017	N.R.	N.R.	N.K. Similarity	After DES compared to sham: phylum: ↔ Firmicutes class: ↑ Erysipelotrichi genus: ↑ Enterococcus, Allobaculu, ↓ Lactobacillus, Streptokokken	After DES compared to sham: phylum: ↓ Bacteroidetes class: ↓ Bacteroidia genus: ↓ Prevotella, ↑ Parabacteroides	After DES compared to sham: phylum: \leftrightarrow Actinobacteria genus: \uparrow <i>Bifidobacterium</i> , \downarrow <i>Rothia</i>	After DES compared to sham: phylum: ↔ Proteobacteria	After DES compared to sham: phylum: ↑ Verrucomicrobia species: ↑ <i>Akkermansia</i> <i>muciniphila</i>	After DES compared to sham: phylum: ↑ Mollicutes
Li J.V. <i>et al.,</i> 2011	NR	NR	N R.	After RYGB compared to sham: phylum: ↑ Firmicutes class: ↔ Bacilli Clostridia	After RYGB compared to sham: nbylum: ↔ Bacteroidetes	After RYGB compared to sham: nbylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↑ Proteobacteria class: ↑ Gammproteobacteria	After RYGB compared to sham: nbylum: ↔ Verrucomicrobia	NR
Li S. <i>et al.,</i> 2017	N.R.	N.R.	N.R.	After DJB and LSG compared to sham: family: ↑ Lactobacillales	N.R.	N.R.	N.R.	N.R.	N.R.
Liou <i>et al.,</i> 2013	N.R.	N.R.	Dissimilarity	After RYGB compared to sham: phylum: ↓ Firmicutes order: ↑ Clostridiales genus: ↑ Clostridium, ↓ Lactobacillus	After RYGB compared to sham: phylum: ↑ Bacteroidetes order: ↔ Bacteroidales genus: ↑ <i>Alistipes</i>	After RYGB compared to sham: phylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↑ Proteobacteria order:↑ Enterobacteriales	After RYGB compared to sham: phylum: ↑ Verrucomicrobia order: ↑ Verrucomicrobiales genus: ↑ <i>Akkermansia</i>	N.R.
Liu <i>et al.,</i> 2018	N.R.	Shannon RYGB: ↔	Dissimilarity	After RYGB compared to sham: phylum: ↓ Firmicutes order: ↓ Clostridiales, ↑ Lactobacillales	After RYGB compared to sham: phylum: ↑ Bacteroidetes	After RYGB compared to sham: phylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↔ Proteobacteria order: ↑ Enterobacteriales, Burkholderiales	After RYGB compared to sham: phylum: ↔ Verrucomicrobia order: ↑ Verrucomicrobiales	After RYGB compared to sham: phylum: ↑ Fusobacteria
Miyachi <i>et al.,</i> 2017	N.R.	N.R.	N.R.	After DJB comapred to sham: phylum: ↔ Firmicutes After B-DJB compared to J- DJB and sham: genus: ↓ Clostridium, Turicibacter	After DJB compared to sham: phylum: ↔ Bacteroidetes After B-DJB compared to J- DJB and sham: genus: ↓ <i>Bacteroides</i>	After DJB compared to sham: phylum: ↔ Actinobacteria After B-DJB compared to J- DJB and sham: genus: ↑ <i>Bifidobacterium,</i> <i>Olsenella</i>	After DJB compared to sham: phylum: ↔ Proteobacteria	After DJB compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Mukorako <i>et al.,</i> 2019	Chao1 BPD/DS, LSG: ↔ DS: ↓	Shannon BPD/DS, DS: \downarrow LSG: \leftrightarrow	Dissimilarity	After BDP/DS, DS and LSG compared to sham: phylum: ↔ Firmicutes After BDP/DS and DS compared to sham: class: ↓ Clostridiales family: ↓ Peptostreptococcaceae, Clostridiaceae	After BDP/DS, DS and LSG compared to sham: phylum: ↔ Bacteroidetes After BDP/DS and DS compared to sham: order: ↓ Bacteroidales	After BDP/DS, DS and LSG compared to sham: phylum: ↔ Actinobacteria After BDP/DS and DS compared to sham: order: ↑ Bifidobactiales genus: ↑ <i>Bifidobacterium</i>	After BDP/DS, DS and LSG compared to sham: phylum: ↔ Proteobacteria	After BDP/DS, DS and LSG compared to sham: phylum: ↔ Verrucomicrobia	N.R.

.

Study	Alpha- diversity: richness	Alpha- diversity: biodiversity	Community Structure	Firmicutes	Bacteroidetes	Actinobacteria	Proteobacteria	Verrucomicrobia	Other
Shao <i>et al.,</i> 2017	N.R.	Shannon RYGB:↓ compared to LSG and Sham	LSG: Similarity RYGB: Dissimilarity	After RYGB and LSG compared to sham: phylum: ↔ Firmicutes	After RYGB and LSG compared to sham: phylum: ↔ Bacteroidetes	After RYGB and LSG compared to sham: phylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↑ Proteobacteria class: ↑ Gammaproteobacteria After LSG compared to sham: phylum: ↔ Proteobacteria	After RYGB and LSG compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Shao <i>et al.,</i> 2018	Chao1 LSG:↑	Shannon LSG: ↔	Dissimilarity	After LSG compared to sham: phylum: ↓Firmicutes class: ↓Erysipelotrichia, Bacilli	After LSG compared to sham: phylum: ↑ Bacteroidetes	After LSG compared to sham: phylum: ↔ Actinobacteria	After LSG compared to sham: phylum: ↔ Proteobacteria	After LSG compared to sham: phylum: ↑ Verrucomicrobia	N.R.
Wang <i>et al.</i> , 2019	N.R.	N.R.	N.R.	After RYGB compared to sham: phylum: ↓ Firmicutes order: ↓ Lactobacillales, ↔ Erysipelotrichales family: ↓ Clostridiaceae	After RYGB compared to sham: phylum: ↔ Bacteroidetes	After RYGB compared to sham: phylum: ↔ Actinobacteria	After RYGB compared to sham: phylum: ↑ Proteobacteria order: ↑ Enterobacteriales	After RYGB compared to sham: phylum: ↔ Verrucomicrobia	N.R.
Zhang X. <i>et al.,</i> 2016	Chao1, ACE DJB: ↔	N.R.	N.R.	After DJB compared to sham: phylum: ↑ Firmicutes	After DJB compared to sham: phylum: \downarrow Bacteroidetes	After DJB compared to sham: phylum: ↔ Actinobacteria	After DJB compared to sham: phylum: ↑ Proteobacteria	After DJB compared to sham: phylum: ↔ Verrucomicrobia	N.R.

BPD/DS: Bilopancreal diversion with duodenal switch; ctrl: Control group; DES: Duodenal endoluminal barrier sleeve; DJB: Duodenal-jejunal bypass (B-DJB, J-DJB); DS: Duodenal switch; GG: Glandular gastrectomy; IT: Ileal Interposition; LSG: Laparoscopic sleeve gastrectomy; N.R.: Not reported; RYGB: Roux-en-Y gastric bypass

Table S5 – OHAT: Risk of Bias

		SB			P	B	A/EB	DB			SRB		
Author (year)	1	2	3	4	5	6	7	8	9		10	11	12
Group 1: Bariatric surgery and m	icrobiota	in humans											
Aron-Wisnewsky et al. (2018)	NA	NA	_	+	NA	NA	_	+	+	NR	++	+	_
Bjorneklett et al. (1981)	NR	NR	NA	NA	NA	NR	NR	+	_	NR	+	+	NR
Campisciano et al. (2017)	_	NR	NA	NA	NA	NR	NR	+	++	NR	+	+	NR
Campisciano et al. (2018)	_	NR	NA	NA	NA	NR	NR	+	++	NR	+	+	NR
Chen et al. (2017)	NA	NA	NA	NR	NA	NA	NR	++	++	NR	++	+	++
Cortez et al. (2018)	NR	NR	NA	NA	NA	NR	-	_	++	NR	+	+	++
Damms-Machado et al. (2015)	NA	NA	+	NR	NA	NA	-	++	+	NR	+	+	++
Federico et al. (2016)	NA	NA	+	NR	NA	NA	+	++	++	NR	++	+	+
Fouladi et al. (2019)	NA	NA	+	+	NA	NA	++	+	+	NR	+	+	NR
Furet et al. (2010)	NA	NA	NR	+	NA	NA	_	+	++	NR	++	++	+
Graessler et al. (2013)	NA	NA	NA	++	NA	NA	++	+	++	NR	++	++	+
Gutierrez-Repiso et al. (2019)	NA	NA	+	NR	NA	NA	NR	++	+	NR	++	+	_
Ilhan et al. (2017)	NA	NA	+	+	NA	NA	++	+	+	NR	++	++	++
Kellerer et al. (2019)	NA	NA	+	+	+	NA	++	++	++	NR	++	+	+
Kong et al. (2013)	NA	NA	NA	NR	NA	NA	NR	+	++	NR	++	+	+
Lee et al. (2019)	++	++	NA	NA	NA	+	+	NR	+	+	+	+	++
Lin et al. (2019)	NA	NA	+	_	NA	NA	NR	+	++	NR	+	+	++
Liu et al. (2017)	NA	NA	++	+	NA	NA	++	++	++		++	++	+
Medina et al. (2017)	NA	NA	+	_	NA	NA	++	++	++	NR	++	+	+
Murphy et al. (2017)	+	+	NA	NA	NA	+	_	+	+	+	++	+	+
Paganlli et al. (2019)	NA	NA	++	++	NA	NA	++	++	+	++	NR	++	++
Pajecki et al. (2019)	NA	NA	NA	NR	NA	NA	+	++	++	NR	+	+	_
Palleja et al. (2016)	NA	NA	NA	NR	NA	NA	NR	+	++	NR	++	+	+
Palmisano et al. (2019)	NA	NA	+	+	NA	NA	++	+	++	NR	++	++	+
Patrone et al. (2016)	NA	NA	NA	++	NA	NA	++	++	++	NR	++	+	NR
Rosina et al. (1993)	NA	NA	NA	+	NA	NA	+	++	+	NR	++	+	NR
Sanmiguel et al. (2017)	NA	NA	NA	+	NA	NA		++	++	NR	++	+	NR
Tremaroli et al. (2015)	NA	NA	++	NR	NA	NA	++	++	++	+	++	+	+
Wang et al. (2019)	NA	NA	_	++	NA	NA		+	++	NR	+	+	NR
Zhang et al. (2009)	NA	NA	NR	+	NA	NA	++	++	++	NR	++	+	NR
Group 2: Bariatric surgery and m	icrobiota	in other ve	rtebrates										
Alvarez et al. (2018)	+	NA			++	NA	++	+	+	NA	++	++	NA
Basso et al.(2016)	+	NA			++	NA	_	+	+	NA	+	+	NA
Bastos et al. (2018)	+	NA			++	NA	+	+	++	NA	+	+	NA
Cummings et al. (2013)		NA			++	NA	_	+	++	NA	++	+	NA
Duboc et al. (2017)		NA			++	NA	NA	+	+	NA	+		NA
Guo et al. (2016)	+	NA			+	NA	_	+	+	NA	+	+	NA
Huang et al. (2014)	+	NA			+	NA	+	+	+	NA	+	_	NA
Huh et al.(2019)	++	NA			++	NA	+	++	+	NA	+	+	NA
Jahansouz et al. (2017)	+	NA			_	NA	+	+	+	NA	+	+	NA
Jiang et al. (2016)	_	NA			+	NA	_	+	_	NA	_	++	NA
Kashihara et al. (2015)	+	NA			+	NA				NA			NA
Kim et al. (2017)		NA			+	NA	_	+	+	NA	+	+	NA
Li J.V. et al. (2011)	_	NA			+	NA	NA	+	+	NA	+	+	NA
Li S. et al.(2017)	_	NA			+	NA	+	+	+	NA	+	+	NA
Liou et al.(2013)	_	NA			+	NA	_	_	+	NA	+	_	NA
Liu et al.(2018)	_	NA			+	NA	_	_	+	NA	+	_	NA
Miyachi et al.(2017)	+	NA			+	NA	_	+	+	NA	+	+	NA
Mukorako et al.(2019)	+	NA			++	NA	+	++	+	NA	+	++	NA
Osto et al.(2013)	+	NA			+	NA	NA	+	+	NA	+	+	NA
Schippers et al.(1996)	NA	NA			+	NA	++	++	+	NA	+	+	++
Shao et al.(2017)	+	NA			+	NA	+	+	+	NA	+		NA
Shao et al.(2018)	+	NA			+	NA		_	+	NA	+	+	NA

Wang et al. (2019)	++	NA			++	NA	+	++	+	NA	+	++	NA
Yang et al.(2015)	+	NA			+	NA	NA	NA	+	NA	+	+	NA
Zhang X. et al. (2015)	_	NA			+	NA	+	+	+	NA	+	+	NA
Group 3: Bariatric surgery and probiotics													
Chen et al. (2016)	+	++	NA	NA	NA	+	+	+	++	++	++	+	+
Kazzi et al. (2018)	NR	NR	NA	NA	NA		_	+	++			++	++
Sherf-Dagan et al. (2018)	++	++	NA	NA	NA	++	+	++	++	++	++	+	+
Woodard et al. (2009)	++	++	NA	NA	NA		+	+	+			+	+
Legend: definitely low:	"++"; pi	robably	low: "	+"; pro	bably h	igh: "-"	; defini	tely hig	h risk	of bias:	""; "	NA": r	not

applicable; "NR": not reported.