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Abstract: Several conditions are risk factors for iron deficiency (ID), some of which are highly prevalent
in older individuals. Despite the amount of evidence pointing for a role of ID in cognition, mood and
physical functional ability, the research addressing these associations in older individuals is still
scarce. In the present study, 162 older community-dwelling individuals (29.53% classified as ID)
were enrolled in a cross-sectional analysis and characterized regarding cognition, mood, functional
ability, general nutritional intake and iron status. Assessment of iron status was performed using
several blood biomarkers. Storage and erythropoiesis dimensions were positively associated with
memory, along with an interaction (moderator effect) between iron storage and nutritional status.
A more depressed mood was negatively associated with (iron) transport, transport saturation and
erythropoiesis dimensions, and functional tiredness was positively associated with the erythropoiesis
dimension. These observations indicate that lower iron status is associated with depressive
mood, functional tiredness and poorer memory ability, with the latter moderated by nutritional
status. These findings suggest that using iron as a continuous variable may be useful in finding
associations with iron homeostasis, eventually missed when iron levels are considered within the
usual classification groups.
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1. Introduction

Imbalance in iron homeostasis, both excess and deficiency, are deleterious to human health and have
been associated with medical conditions; these include neurodegenerative disorders (i.e., Parkinson and
Alzheimer diseases), type II diabetes, and anemia [1–3]. Paradoxically, although iron is one of the most
abundant elements on the planet, iron deficiency (ID) is the most common nutritional deficiency [4].
The World Health Organization estimates that more individuals have ID anemia than any other health
problem [5]. The rise of life expectancy in the last century has led to an increase of the older population
worldwide [6]. This current demographic and societal phenomenon will result in an increasing number
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of older individuals with various age-associated health problems and pathologies [7,8]. Furthermore,
older individuals are also the largest consumers of prescribed drugs [9]. On this, of relevant note,
several morbidities (e.g., gastric and duodenal ulcers, adenomatous polyps and erosive gastritis)
and therapeutic drugs (e.g., antacids, H2 antagonists, proton pump inhibitors, aspirin or nonsteroidal
anti-inflammatory drug), that are prevalent in older individuals, are also possible causes of ID [10].

Although a matter of concern across all age groups; infants, adolescents, women of childbearing
age or pregnant, and older individuals, are particularly susceptible to ID [11]. In older adults,
ID may be caused by insufficient dietary iron intake, malabsorption or blood losses from the
gastrointestinal tract [12]. In adults, data from epidemiological and interventional studies indicate
that ID can result or be associated with a wide range of adverse effects, including: fatigue [13,14],
reduced work performance, diminished exercise capacity [15], impaired thermoregulation [16],
immune dysfunction [17], and neurocognitive impairment. The potential negative impact of ID
in cognition at older ages may come from cerebral hypoxia, poor myelin integrity or insufficient
neurotransmitter synthesis [12].

Taken together, aging and ID can negatively impact on health and wellbeing, including in cognitive
and physical ability capabilities. Notably, extremely little focused research regarding ID has been
conducted in this population stratum. A systematic review and meta-analysis of epidemiological
longitudinal studies [18] found an increased risk of incident dementia in anemic individuals; however,
the type of anemia was not addressed. Although anemia is used as an indicator of ID and the terms
anemia, ID and ID anemia are used interchangeably, it should be noticed that anemia can also be
caused by vitamin B12 deficiency, which is a well-known cause of dementia [19,20]. Furthermore,
physical functional ability in the elder has been associated with anemia [21–24]. Still, to the best of
our knowledge no study has clearly addressed the potential implications of ID in older individuals,
which here we performed by exploring the association between iron status, cognitive ability and
physical functional performance in a cohort of community-dwelling middle-aged/older individuals,
without dementia and/or neuropathology.

2. Materials and Methods

2.1. Subjects

Since the first aim of this work is to explore differences in cognition, mood and physical functional
ability between individuals with ID and iron sufficiency, sample size was calculated using GPower
(v. 3.1.9.7 program written by Franz Faul, Universität Kiel, Germany) for the difference between two
independent means considering a medium effect size (d = 0.5), power = 0.8, α = 0.05 and allocation
ratio iron sufficiency group/ID group = 0.3. This estimation indicated a sample size of 142 individuals
(iron sufficiency group = 109 and ID group = 33).

A convenience sample of 303 individuals was contacted and invited to participate from primary
health care centers (Braga and Guimarães/Vizela) and internal medicine outpatient care (Hospital de
Braga), until the calculated sample size was reached. We further included 20 additional participants
to account for exclusions and drop-outs. Participants were community-dwelling individuals aged
55 years or older, males and females, with a general good health status, integrated in the community
and with independency/autonomy to perform the activities of the daily living. Initial exclusion
criteria included incapacity and/or inability to attend the assessment sessions, cognitive impairment,
dementia diagnosis and/or inability to understand informed consent, disorders of the central nervous
system and/or overt thyroid pathology. The assessment of exclusion criteria was initially based on
self-report; the presence or absence of medical conditions was next confirmed from medical records.
As shown in Figure 1, n = 162 participants accepted to participate in the study. From those, 11 subjects
were further excluded due to: malnutrition (n = 2, mini-nutritional assessment (MNA) score < 17),
chronic kidney disease (n = 1; creatinine > 2.5 mg/dL), high inflammatory status (n = 7; high sensitivity
C reactive protein (hsCRP) >10 mg/L) and iron overload (n = 1; transferrin (TF) saturation > 55%).
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Other exclusion criterium was severe anemia (hemoglobin < 9 mg/dL), but no participant presented
such criterium. After exclusion, the study sample comprised 149 individuals [females, n = 81 (54.4%);
males, n = 68 (45.6%)]. In some measures, we were not able to collect data from participants, due to
refusal of participants or due to contraindications, such as pacemaker in bioelectrical impedance
analysis (BIA). Even with missing data for some measures we decided to use all available data from
each participant. The sample size for each variable is presented as footnote in the tables.

The cohort was established in accordance with the principles expressed in the Declaration of Helsinki
and the work approved by the national ethical committee (Comissão Nacional de Protecção de Dados)
(approval n.◦ 352/2011–07/02/2011) and by local ethics review boards (approval n.◦ 10/CES–07/05/2010).
The goals and nature of the tests were explained to potential participants and all volunteers provided
informed consent. Socio-demographic characteristics and clinical measures were self-reported and
confirmed from medical records.
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Figure 1. Schematic representation of recruitment and inclusion of participants in the study.

2.2. Laboratory Analyses

Blood samples were collected by venipuncture before the cognitive and functional ability
assessments and immediately sent to the Pathology Laboratory at the Hospital de Braga for analysis.
Blood cells count and hemogram were performed using certified standardized methods and comprised
red blood cells count (RBC; 1012/L), hemoglobin (mg/dL), hematocrit (%), mean corpuscular volume
(MCV; fL), mean corpuscular hemoglobin (MCH; pg), mean corpuscular hemoglobin concentration
(MCHC; g/dL) and red cell distribution width (RDW; %). Serum iron (Fe; µg/dL) and total iron
binding capacity (TIBC; µg/dL) were determined by a colorimetric method using Dimension Vista
System Flex reagent cartridge (Siemens, Frimley, Camberly, UK). High sensitivity C reactive protein
(hsCRP; mg/dL), transferrin (TF; mg/dL), ferritin (FT; ng/mL) and serum concentration of soluble
transferrin receptors (sTFR; mg/dL) were measured by chemiluminescent immunoassays. Dimension
Vista System Flex reagent cartridge (Siemens, Frimley, Camberly, UK) was used to measure TF, FT and
sTFR; the BN* II and BN ProSpec System (Siemens, Frimley, Camberly, UK) was used to measure
hsCRP. All determinations were performed following the manufacturers’ instructions. Detection limits
for hsCRP, Fe, TIBC, TF, FT and sTFR were 0.175 mg/dL, 5 µg/dL, 8 µg/dL, 8.75 mg/dL, 0.5 ng/mL and
0.017 mg/L, respectively. TF sat. (%) was calculated as a percentage of serum total iron divided by TIBC.
The sTFR-logFT index was calculated by sTFR divided by the logarithm of FT. Body iron was calculated
using the Cook algorithm [25] as follows: body iron (mg/kg) = −[log(sTFR*1000/FT) − 2.8229/0.1207].
ID was defined as low serum FT level (FT < 15 ng/mL) or as the presence of two biomarkers indicating
ID as described elsewhere [26–28] (MCV < 80 fL, MCHC < 32 g/dL, RDW > 14%, Fe < 71 µg/dL,
TF sat. < 20%, TIBC ≥ 360 µg/dL, sTFR > 1.76 mg/L and sTFr-logFT index > 1.5).

2.3. Neurocognitive and Physical Functional Assessment

Tests were selected to provide cognitive profiles (general cognitive status, and executive and
memory functions), as previously reported [29,30]. The cognitive/psychological characterization
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was performed by a team of trained psychologists following the instructions provided in a standard
operating procedures manual. The following cognitive measures were used: global cognitive status
was assessed with the mini-mental state examination (MMSE) [31]; short-term verbal memory with the
digit span (DS) forward test (DS forward; subtest of the Wechsler adult intelligence test—WAIS III),
verbal working memory with the DS backward test (DS backward; subtest of the Wechsler adult
intelligence test WAIS III) and DS total score (DS total; calculated by the summation of DS forward
and DS backward) [32]; multiple trial verbal learning and memory with the selective reminding test
[SRT—List A; parameters: consistent long term retrieval (CLTR), long term storage (LTS), delayed recall
(DR) and intrusions] [33], and the Consortium to Establish a Registry for Alzheimer′s disease-word list
test [CERAD, parameters: total hits and DR hits] [34]; response inhibition/cognitive flexibility with the
Stroop color and word test [Stroop, parameters: words (W), colors (C) and words/colors (W&C)] [32].
The geriatric depression scale (GDS, long-version) [35] was used for depressive mood evaluation;
higher values represent a more depressive mood. The physical functional ability to perform physical
activities of daily living (PADL) was assessed using the questionnaire of physical functional ability
(QoFA) [36]. This instrument is composed of three subscales assessing tiredness, [(i) mobility tiredness,
(ii) lower limb tiredness, and (iii) upper limb tiredness] and of two subscales assessing dependency
[(iv) mobility help and (v) PADL help]. Higher values in each subscale represent higher functionality.
The instrument was applied by a registered dietitian/nutritionist after a brief explanation of its structure
and aims.

2.4. Nutritional Status and Anthropometric Characterization

The full version of the MNA was used to identify malnourishment (MNA score < 17) or those at
risk of malnutrition (MNA score from 17 to 23.5) [37]. MNA is a validated questionnaire designed
to provide a single and rapid measure of nutritional status in older individuals. It is composed by
anthropometric measures, questions related to medication, mobility, autonomy of feeding, number of
meals, food and fluid intake and self-perception on health and nutrition [38]. With respect to food
intake, there are three questions (at least one serving of dairy products (milk, cheese, yoghurt) per day;
two or more servings of legumes or eggs per week and meat, fish or poultry every day). Questions were
applied in a face-to-face interview. Data on body mass index (BMI), mid arm circumference and calf
circumference were obtained during the anthropometric characterization. Weight and relative body fat
mass (%BF) were measured with the participants wearing light wear using a Tanita® BF 350 Body
Composition Analyzer (Tanita Corporation, Tokyo, Japan), which uses the foot-to-foot BIA to estimate
%BF. The output variables were calculated according to the manufacturer’s embedded software.
Height was measured without shoes using a stand-alone stadiometer Seca® 217 (Seca GmBH & Co Kg,
Hamburg, Germany).

2.5. Statistical Analysis

Characteristics of the participants are presented as mean and standard deviation (mean; SD)
for normal distributed variables and as median and interquartile range (median; IQR) for variables with a
non-normal distribution. To evaluate normal distribution of the variables, skewness and kurtosis values
were calculated and the approximate normal distribution was defined for variables with absolute values
of skewness below 3 and of kurtosis below 8 [39]. Log transformations were performed to normalize
the distribution of skewly distributed variables (hsCRP, FT; sTFR and sTFR-logFT index). Independent
samples t-test (for variables with normal distribution) and Mann–Whitney U test (for variables
with non-normal distribution) were performed to analyze the differences in socio-demographic,
anthropometric, psychological, cognitive, physical functional ability and hematological variables
between individuals with or without ID. Differences in categorical variables were assessed using
Chi-squared test. When assumptions for Chi-square tests on contingency tables were violated, the two
tailed significance level of Fisher exact test was used. All variables were converted into z-scores so to
be expressed in the same scale.
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Principal component analysis (PCA) was conducted to reduce the number of variables with a
minimum loss of information and, therefore, reducing the number of comparisons. For these analyses,
log-transformation of non-normal distributed variables transformed into z-scores (FT, sTFR and
sTFr-logFT index) were used. In some cases, z-scores of variables were inverted to make higher values
represent higher iron status (RDW, TF, TIBC, sTFR and sTFr-logFT index). New component scores
were obtained (using the regression method) and were used in subsequent analyses. The reliability of
each component was analyzed using Cronbach’s alpha. Components were considered reliable when
Cronbach’s alpha was higher than 0.6 [40]. Variables not included in PCA were analyzed independently.

ANCOVA was used to test differences in dependent variables (psychological, cognitive and
physical functional ability) between individuals with or without ID, controlling for the principal
confounding factors (age, education, gender and hsCRP for psychological variables; the previous plus
GDS score for cognitive variables and dimensions; and age, BMI and hsCRP for physical functional
ability dimensions). Education was converted to a dummy variable (school years; <4 = 0; ≥4 = 1)
due to the high number of individuals with four years of formal education.

Binary logistic regression analysis was used to test whether nutritional status (MNA) and body
composition (BMI and %BF) were significant predictors of ID when controlled for potential confounding
factors (age, gender and hsCRP).

Hierarchical regression analysis was performed to test different hematological dimensions
(that resulted from the PCA) as predictors of the previously mentioned dependent variables controlling
for the principal, abovementioned, confounding factors.

A moderation analysis was performed to test the significance of the interactions of MNA and
hematological dimensions, adjusted for the confounding factors above mentioned, using PROCESS v3.5
for IBM SPSS Statistics [41]. A statistically significant interaction indicates that the moderator variable
(MNA) changes the strength or trend (positive/negative) of the association between the dependent
variable and the independent variable (hematological dimensions). To allow the visualization of
the moderation effect, pick-a-point plots were obtained using the syntax provided on PROCEESS
output at mean and mean ± 1 SD. The Johnson–Neyman technique was used to identify the regions of
significance for the moderator.

Statistical analysis was conducted using the SPSS package v25 (IBM SPSS Statistics, IBM Corp.,
Armonk, NY, USA) and statistical significance was defined at p < 0.05 level.

3. Results

3.1. Sample Characterization

Characterization on iron status is presented in Table 1. From the 149 participants, n = 44 individuals
(29.53% |ID = 36; ID anemia = 8) were classified as ID and n = 105 individuals (70.47% | anemic = 15;
normal = 90) as iron sufficient. No participant presented severe anemia (Hb < 9mg/dL). Height was
significantly higher in the iron sufficient which can be attributed to the differences in gender distribution
since more male individuals were in this group. Iron sufficient participants presented a statistically
significant higher score in the MNA; yet, no significant differences in the distribution of risk of
malnutrition was observed between iron sufficient and ID participants. It is important to highlight that
in this work we excluded malnourished individuals and the mean value of the MNA score in both
groups is high. While within the normal range, hsCRP was significantly higher in the ID group.
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Table 1. Characteristics of participants and differences by group of iron status.

Variables Iron Sufficiency Iron Deficiency

Socio-Demographic (Mean; SD) t(df); p; Cohen’s d

Age (years) 66; 8 66; 7 0.197(147); 0.844; 0.036
Education (school years) 5; 4 5; 4 −0.043(147); 0.966; 0.008

Anthropometric (mean; SD) t(df); p; Cohen’s d

Weight (kg) a 74; 2 71; 2 1.426(138); 0.156; 0.267
Height (m) a 1.60; 0.08 1.56; 0.08 2.218(138); 0.028; 0.415

BMI (kg/m2) a 29; 4 29; 4 −0.236(138); 0.814; 0.044
%BF (%) b 32; 8 34; 8 −1.394(134); 0.166; 0.266

Gender (n; %) χ2
(df); p; ϕ

Female 49; 33 32; 21 8.488(1); 0.004; −0.239
Male 56; 38 12; 8

Education, class (n; %) χ2
(df); p; ϕ

<4 years 82; 55 29; 19 2.424(1); 0.120; 0.128
≥4 years 23; 15 15; 10

BMI class (n; %) χ2
(df); p; ϕc

Normal 17; 12 5; 3 0.756(2); 0.679; 0.073
Overweight 47; 34 19; 14

Obesity 35; 25 17; 12

MNA score (mean; SD) t(df); p; Cohen’s d

MNA score (points) 27; 2 26; 3 2.731(138); 0.007; 0.490

Nutritional status (n; %) χ2
(df); p; ϕ

Risk of malnutrition 11; 8 8; 6 1.745(1); 0.277; −0.112
Normal 88; 63 33; 24

Inflammatory indices (mean; SD) Z(U); p; r £

hsCRP (mg/dL) ¥ £ 1.56; 2.42 2.90; 2.27 −2.880(1617.5); 0.004; 0.236
a n = 140 (iron sufficiency = 99 (70.71%), iron deficiency = 41 (29.29%)); b n = 136 (iron sufficiency = 97 (71.32%), iron
deficiency = 39 (28.68%)). ¥ Variables not normally distributed. Data presented as median and interquartile range
(median, IQR); £ Mann–Whitney U test, results presented as Z(U); p; r.

3.2. Mood, Cognitive and Functional Characterization

Two cognitive dimensions were obtained from the PCA, termed: (i) executive dimension and
(ii) memory dimension. The executive dimension (Cronbach’s alpha: 0.880) was composed of the Stroop
(W, C and W&C) and DS (backward and total) parameters. The variables DS forward and MMSE total
score were included in the initial analysis; however, since they provided low communalities, were later
removed from the final model. The memory dimension (Cronbach’s alpha: 0.933) was composed of
the SRT (CLTR, LTS and DR) and the CERAD (total hits and DR) parameters. Descriptive statistics for
psychological and cognitive variables for iron sufficient and iron deficient individuals are presented
in Table A1. As show in Figure 2, GDS presented a higher mean value in the ID group. No other
significant differences between groups were observed.

Similarly, two dimensions were obtained from the subscales of the QoFA: (i) functional-T dimension
(functional tiredness, Cronbach’s alpha: 0.763), composed by mobility tiredness, lower limb tiredness
and upper limb tiredness subscales; and (ii) functional-H dimension (functional help, Cronbach’s
alpha: 0.690), composed by mobility help and PADL help. Like the variables of origin, higher scores
represent higher functionality, so higher scores on functional-T represent less tiredness and higher
scores on functional-H represent less need of help. Data from physical functional ability (Table A2)
showed no statistically significant differences between iron sufficient and deficient participants.

After controlling for principal confounding factors, there were no differences between groups of
iron status for mood, cognition and physical functionality (Table A3).
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3.3. Hematological Characterization

Similar to previously described by Murray–Kolb et al. [26], dimensions of hematologic variables
were obtained (here using PCA). Specifically, five components were obtained using the hematologic
variables, four of which were similar to the factors described by Murray–Kolb et al. [26]: (i) storage,
(ii) transport, (iii) red cells characteristics (red cells C) and (iv) erythropoiesis. A new component was
obtained from the remaining biomarkers: (v) transport saturation (transport S). Storage dimension
(storage of iron; Cronbach’s alpha: 0.925) was composed by FT, body iron, sTFR and sTFr-logFT index.
Transport dimension (iron transport in blood stream; Cronbach’s alpha: 0.856) included Fe and TF sat.
Transport S dimension (saturation of iron carrying capacity in the blood stream; Cronbach’s alpha:
0.979) was obtained by the reduction of TF and TIBC. Red cells C dimension (composition, dimension
and variability of red cells; Cronbach’s alpha: 0.822) constructed with MCV, MCH, MCHC and RDW.
Erythropoiesis dimension (number and relative volume of red cells and hemoglobin sufficiency;
Cronbach’s alpha: 0.967) composed by RBC, hemoglobin and hematocrit. Higher values in these
dimensions represent higher iron status. As expected, significant differences were observed for almost
all hematologic variables and dimensions between groups of iron status (Table A4), with the iron
sufficient group presenting higher values.

3.4. Nutritional Status is a Predictor of ID

To test whether nutritional status (MNA) and/or body composition (BMI and %BF) were predictors
of ID, logistic regression models were conducted (Table A5). For all models, gender and hsCRP (log)
were significant predictors of ID. Indicating that the odds of ID presence are lower (OR = 0.197 to 0.398)
in males than in females, and for each fold increase in hsCRP an increase in the odds of the presence of
ID is observed (OR = 7.834 to 9.625). The Wald criterion demonstrated that nutritional status, measured
by the MNA total score, made a significant contribution to prediction of ID (Wald(1) = 5.389; p = 0.020).
For each unit increase (1 point in the MNA total score) in nutritional status the odds of ID presence
decreased 1.211 times (OR = 0.826). Body composition variables did not contribute significantly to the
prediction of ID.
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3.5. Iron Hematological Dimensions Predict Memory, Mood and Functional Ability

Results from hierarchical regression models are presented in Table 2. All final models significantly
explained the dependent variables. Memory and GDS scores were significantly predicted by
the hematological dimensions considered. Specifically, memory by storage and erythropoiesis
dimensions, and GDS by transport, transport S and erythropoiesis. For the functional dimensions,
only erythropoiesis predicted functional-T.

Table 2. Hierarchical regression models for hematological dimensions predicting cognition, mood and
physical functional ability based on hematological dimensions.

Executive a Memory a MMSE a GDS b Functional-T c Functional-H c

Storage (β; p) 0.112; 0.131 0.167; 0.037 0.051; 0.506 −0.144; 0.085 0.094; 0.248 0.002; 0.976
R2

adjusted; F; p 0.377; 14.804;
<0.0001

0.289; 9.679;
<0.001

0.248; 8.971;
<0.001

0.115; 4.773;
<0.001

0.188; 7.281;
<0.001

0.165; 6.375;
<0.001

Transport (β; p) 0.014; 0.857 0.124; 0.134 0.096; 0.221 −0.176; 0.036 0.091; 0.283 −0.055; 0.521
R2

adjusted; F; p 0.366; 14.178;
<0.001

0.277; 9.166;
<0.001

0.254; 9.218;
<0.001

0.124; 5.115;
<0.001

0.186; 7.235;
<0.001

0.168; 6.477;
<0.001

Transport S. (β; p) 0.042; 0.556 0.070; 0.383 0.038; 0.618 −0.181; 0.025 −0.018; 0.827 −0.039; 0.633
R2

adjusted; F; p 0.367; 14.265;
<0.001

0.268; 8.808;
<0.001

0.247; 8.927;
<0.001

0.128; 5.257;
<0.001

0.180; 6.953;
<0.001

0.166; 6.431;
<0.001

Red cells C. (β; p) 0.094; 0.196 0.084; 0.300 0.051; 0.504 −0.078; 0.354 0.148; 0.069 −0.013; 0.879
R2

adjusted; F; p 0.364; 14.040;
<0.001

0.266; 8.731;
<0.001

0.243; 8.758;
<0.001

0.085; 3.690;
0.004

0.201; 7.827;
<0.001

0.153; 5.905;
<0.001

Erythropoiesis (β; p) 0.007; 0.930 0.227; 0.015 0.074; 0.412 −0.301; 0.001 0.197; 0.032 −0.012; 0.902
R2

adjusted; F; p 0.355; 13.587;
<0.001

0.295; 9.916;
<0.001

0.244; 8.811;
<0.001

0.144; 5.886;
<0.001

0.209; 8.173;
<0.001

0.153; 5.903;
<0.001

a Controlled for age, education, gender, high sensitivity C reactive protein (hsCRP) (log) and GDS; b controlled for
age, education, gender and hsCRP (log); c controlled for age, gender, body mass index (BMI) and hsCRP (log).

Results from the moderation analysis testing the effect of nutritional status (MNA) on the
association between hematological dimensions and cognition, mood and functional ability are presented
in Table A6. The only significant MNA moderation effect was observed in the association between
storage and memory. Johnson–Neyman significance regions indicate that for MNA values above 26
the association is positive and statistically significant, becoming stronger with the increase in the MNA
score (Figure 3).
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4. Discussion

The participants enrolled in this study were cognitively healthy middle-age/older community
dwellers and were classified as ID (or not) using a comprehensive panel of iron biomarkers. Iron research
usually distinguishes between iron sufficient and deficient in accordance with established cut-offs.
Using this approach, the present study did not find associations between iron status, cognition,
mood and physical ability. In other populations (namely children, adolescents and women of
childbearing age), ID has been associated with impairments on cognition, mood and physical
performance [42–45]. Here, no differences were seen between the iron deficient and sufficient groups,
probably because ID was not sufficiently severe. From the literature it is clear that the focus of low
iron status research and cognition has been based on the categorical classification of ID, particularly in
children, anemic individuals [46–49], and animal models [50]. Here, the number of subjects in each
condition (ID = 36; ID anemia = 8; anemic = 15; normal = 90) prevented us from conducting an analysis
regarding anemia or ID anemia. Interestingly, when iron status is considered as a continuum, and after
controlling for the main confounding factors, iron status is associated with the memory dimension,
GDS and with functional tiredness. These findings suggest that, from the point of view of cognitive
function, mood and physical ability, classifying individuals as ID may not necessarily constitute the
best strategy [51].

We next approached iron homeostasis considering function dimensions (hematologic
variables) [26]. The erythropoiesis dimension was associated with memory but not with the executive
dimension or MMSE. This is consistent with the findings by Shah et al. [52] who reported lower
memory ability in individuals with lower levels of hemoglobin. Similarly, the iron storage dimension
was a predictor of memory. Interestingly, the iron storage dimension was also a predictor of memory.
ID is recognized to be deleterious for learning and memory, particularly when occurring in critical
time windows of brain development [50]. These effects, which may remain into adulthood [53,54],
have been associated with abnormal hippocampal structure and plasticity [50]. No other associations
were observed between the remaining hematological variables and memory and executive function.
Interestingly, others have described an association between ID and MMSE in “healthy” older adults [28].
In other population groups, namely young women, iron status has been associated with executive
function and cognition; however, in some cases, these associations were found between the time to
complete a task and not the result of the task (as we did here) [26,55]. During the aging process, a certain
degree of brain iron accumulation is observed and may be deleterious [56]. Insights from experiments
on animal models of ID provide clues that possibly explain this finding; particularly in brain areas
related to memory such as the hippocampus [57]. ID has been shown, in rats, to influence resting
energy status, neurotransmission and myelination [58]. The precise molecular mechanisms mediating
its effects, particularly during aging, remain to be identified and are likely to involve molecules such as
hippocampal brain-derived neurotrophic factor [59].

Erythropoiesis, transport S and transport dimensions were significant predictors of GDS score,
which is concordant with previous studies examining the association of anemia and depressive mood.
In the InChianti study [60] a higher prevalence of anemia was observed among the individuals displaying
depressive symptoms. In the same line, the results of the English Longitudinal Study of Ageing [61]
showed that, at baseline, anemia was associated with depressive mood. More recently Stewart et al. [62]
found anemia to be associated with depressive mood; although, it was reflecting primarily the anemia of
chronic disease. This result should be interpreted with caution, since inflammation is a component of
anemia of chronic disease and is associated with depression per se [63].

Finally, we observed that erythropoiesis dimension was associated with the tiredness dimension
of physical functional ability. A possible explanation for the fatigability observed in individuals with
lower hematological dimension scores is the lower oxygenation of the muscles [22,51]. Literature
in the study of ID and physical ability in older subjects is surprisingly scarce, contrary to the large
amount of literature examining the same in anemia [21–24]. In iron-depleted nonanemic women,
iron supplementation was associated with a significant improvement in muscle fatigability [64].
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Furthermore, ID, particularly ID anemia, was associated with a compromised aerobic and endurance
capacity in a large number of studies from animal models to humans and it was hypothesized that,
in addition to deficient oxygen delivery, tissue ID may also play a role through reduced cellular
oxidative capacity [15].

It has been proposed that ID could be a surrogate marker for malnutrition [65,66]. Although the
MNA test was designed to detect protein-energy malnutrition and not micronutrient deficiency [67],
some authors [38,68] found significantly lower intakes of iron in individuals with low MNA scores.
In addition, iron replacement treatment was shown to have a positive impact on nutritional status of
older patients with ID and ID anemia [69]. Even though in theory, MNA scores can be associated with
iron status, to our knowledge, no studies had directly investigated this relationship. In our population
we observed that ID can be significantly predicted by MNA. Importantly, nutritional status has been for
a long time described to be associated with cognition [70], mood [71] and physical performance [72].

When addressing the moderation effect of nutritional status, we observed that the only interaction
with significant predictive value was MNA and storage on memory. This may indicate that, for individuals
with higher stores of iron, if in a good nutritional status, memory function will be at a potential maximum,
indicating that higher levels of insufficiency are necessary to impact on individuals with a better nutritional
status. This is an interesting novel finding that deserves further investigation.

Of notice, even within levels that exclude inflammatory states, hsCRP values differed between iron
sufficiency and ID cases, being higher in the latter. As expected, the ID group presented significantly
different values in the red cells indices, iron biomarkers and hematological dimensions, with exception
for RBC. The occurrence of hypoferremia during inflammation has been recognized for more than a
half of century [73]. Furthermore, it is known that inflammatory hallmarks are present in the etiology
of anemia of chronic disease and that this relation is mediated by hepcidin, which is overexpressed
in inflammatory states and negatively regulates iron availability [74,75]. Here, we cannot conclude
whether the classification of ID is absolute or functional, given the higher levels of hsCRP in the ID
group [76].

In an aging society, efforts to understand and identify factors that improve or maintain health and
wellbeing of agers are paramount. Cognition, mood and physical functioning are particularly relevant
to maintain independence. To the best of our knowledge this is the first population-based observational
study that examines the associations of iron status with cognitive function, psychological morbidity
and functional ability in middle-age/older community dwellers. As for all the observational studies,
no causality relationship can be established. In addition, the use of a convenience sample recruitment
strategy may be associated with selection bias; still, this does not hamper the associations observed.

In summary, the viewpoint that ID does not have consequences until the development of anemia
is here challenged. Considering iron status as a continuum may provide relevant information to assess
the consequences of low iron levels. This is accordance with the observations by Yavuz et al. [28],
who showed that ID has negative consequences on cognitive function independently of the presence
of anemia. Furthermore, ID seems to be deleterious even in the absence of erythropoietic effects [77].
In conclusion, low iron status in older individuals is associated with higher depressive mood,
higher tiredness, and lower memory, which seem to be modulated by nutritional status. Further
research is needed to replicate and confirm the present findings, including studies with longitudinal or
interventional designs.
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Appendix A

Table A1. Psychological and cognitive characteristics of participants and differences by group of
iron status.

Variables (Mean; SD) Iron Sufficiency Iron Deficiency

Psychological t(df); p; Cohen’s d

10.47; 5.89 13.20; 6.97 −2.449(147); 0.016; 0.443

Cognitive t(df); p; Cohen’s d

DS—Forward 7.70; 2.24 6.7; 2.13 0.714(147); 0.476; 0.129
DS—Backward 4.43; 2.50 3.48; 1.66 0.711(147); 0.478; 0.129

DS—Total 12.13; 4.37 1.18; 3.34 0.779(147); 0.437; 0.141
StroopVW a 65.85; 21.27 63.51; 22.39 0.586(141); 0.559; 0.109
Stroop—C b 48.30; 15.10 47.70; 13.81 0.225(144); 0.822; 0.041

Stroop—W&C b 3.12; 12.98 28.56; 13.10 0.660(144); 0.511; 0.121
SRT—LTS 26.26; 13.73 22.7; 13.61 1.444(147); 0.151; 0.261

SRT—CLTR 16.04; 12.90 14.39; 12.91 0.713(147); 0.477; 0.129
SRT—DR c 5.75; 2.85 5.39; 2.87 0.705(139); 0.482; 0.129

SRT—Intrusions 2.70; 4.24 3.34; 3.49 −0.879(147); 0.381; 0.159
17.66; 4.79 17.35; 5.31 0.335(138); 0.738; 0.063

CERAD—DR hits d 5.76; 2.47 5.70; 2.28 0.133(138); 0.895; 0.025
MMSE 26.53; 3.45 26.52; 2.72 0.018(147); 0.986; 0.003

Cognitive dimensions t(df); p; Cohen’s d

Executive e 0.08; 1.04 −0.21; 0.85 0.852(146); 0.396; 0.291
Memory f 0.05; 0.99 −0.14; 1.02 0.754(146); 0.452; 0.183

a n = 143 (Iron sufficiency = 102 (71.33%), iron deficiency = 41 (28.67%)); b n = 146 (iron sufficiency = 103 (70.55%),
iron deficiency = 43 (29.45%)); c n = 141 (iron sufficiency = 97 (68.79%), iron deficiency = 44 (31.21%));
d n = 140 (iron sufficiency = 100 (71.43%), iron deficiency = 40 (28.57%)); e n = 141 (iron sufficiency = 100 (70.92%),
iron deficiency = 41 (29.08%)); f n = 132 (iron sufficiency = 92 (69.7%), iron deficiency = 40 (30.3%)).

Table A2. Physical functional ability characterization of participants and differences by group of
iron status.

Variables (Mean; SD) Iron Sufficiency Iron Deficiency

QoFA a t(df); p; Cohen’s d

Mobility tiredness 4.55; 1.98 4.30; 1.76 0.732(146); 0.465; 0.133
Lower limb tiredness 4.35; 1.15 4.02; 1.05 1.608(146); 0.110; 0.291
Upper limb tiredness 3.76; 0.81 3.82; 0.54 −0.441(146); 0.660; 0.080

Mobility help 5.53; 0.995 5.57; 0.998 −0.220(146); 0.826; 0.040
PADL help 8.46; 1.16 8.07; 1.63 1.450(62.01); 0.152; 0.275

Functional components a t(df); p; Cohen’s d

Functional tiredness 0.06; 1.05 −0.09; 0.75 0.852(146); 0.396; 0.154
Functional help 0.06; 0.91 −0.08; 1.05 0.832(146); 0.407; 0.142

a n = 148 (iron sufficiency = 104 (70.27%), iron deficiency = 44 (29.73%)).
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Table A3. ANCOVA for the test of differences between iron sufficiency and deficiency groups.

Iron Status a F(df1; df2) p η2
partial R2; R2

adjusted

Executive b 2.971(1; 134) 0.087 0.022 0.398; 0.371
Memory b 0.781(1; 125) 0.378 0.006 0.296; 0.262
MMSE b 0.409(1; 142) 0.523 0.003 0.271; 0.240

GDS c 3.792(1; 149) 0.053 0.026 0.148; 0.118
Functional-T d 0.006(1; 139) 0.940 0.000 0.211; 0.182
Functional-H d 0.018(1; 139) 0.894 0.000 0.182; 0.152

a Iron sufficiency = 0, iron deficiency = 1; b controlled for age, education, gender, hsCRP (log) and GDS; c controlled
for age, education, gender and hsCRP (log); d controlled for age, gender, BMI and hsCRP (log).

Table A4. Hematological characteristics of participants and differences by group of iron status.

Variables (Mean; SD) Iron Sufficiency Iron Deficiency

Red Cells Indices a t(df); p; Cohen’s d

RBC (1012/L) 4.60; 0.43 4.45; 0.43 1.911(144); 0.058; 0.352
Hemoglobin (mg/dL) 14.17; 1.48 12.88; 1.56 4.702(144); <0.001; 0.866

Hematocrit (%) 41.23; 3.83 38.23; 4.05 4.205(144); <0.001; 0.774
MCV (fL) 89.61; 3.64 85.9; 4.78 5.076(144); <0.001; 0.934
MCH (pg) 30.78; 1.44 28.92; 2.06 5.354(57.8); <0.001; 1.144

MCHC (g/dL) 34.35; 0.92 33.65; 0.97 4.075(144); <0.001; 0.750
RDW (%) 13.14; 0.64 13.95; 1.11 −4.439(52.49); <0.001; 1.015

Iron biomarkers b t(df); p; Cohen’s d

Fe (µg/dL) 102.83; 24.85 70.64; 27.12 6.986(144); <0.001; 1.269
TF (mg/dL) 232.34; 28.96 285.43; 46.29 −7.036(58.04); <0.001; 1.525

FT (mg/mL) ¥ £ 173.00; 209.25 35.50; 41.25 −7.190(55.75); <0.001; 0.595
TF sat. (%) 31.84; 8.06 18.87; 8.12 8.906(144); <0.001; 1.617

TIBC (µg/dL) 326.30; 40,32 388.34; 61.23 −6.168(59.7); <0.001; 1.314
sTFr (mg/L) c ¥ £ 1.02; 0.34 1.475; 0.80 −6.170(81.8); <0.001; 0.507

sTFr-logFT index ¥ £ 0.483; 0.19 0.888; 0.77 −7.810(41.3); <0.001; 0.646
Body iron (mg/kg) 17.02; 2.66 10.02; 4.70 9.249(55.2); <0.001; 2.072

Iron dimensions t(df); p; Cohen’s d

Storage b 0.43; 0.49 −1.01; 1.15 7.997(49.73); <0.001; 1.936
Transport b 0.37; 0.81 −0.85; 0.87 8.156(144); <0.001; 1.481

Transport S. b 0.36; 0.70 −0.84; 1.10 6.666(58.55); <0.001; 1.437
Red cells C. a 0.31; 0.72 −0.77; 1.17 5.575(54.05); <0.001; 1.247

Erythropoiesis a 0.19; 0.95 −0.46; 0.98 3.707(144); <0.001; 0.682
a n = 146 (iron sufficiency = 104 (71.23%), iron deficiency = 42 (28.77%)); b n = 146 (iron sufficiency = 102 (69.86%),
iron deficiency = 44 (30.14%)); c n = 148 (iron sufficiency = 104 (70.27%), iron deficiency = 44 (29.73%)); ¥ variables
not normally distributed. Data presented as median and interquartile range (median, IQR); £ Mann–Whitney U test,
results presented as Z(U); p; r.

Table A5. Binary logistic models for iron status.

Iron Status a B SE Wald(df); p OR (CI 95%)

Age −0.028 0.027 1.141(1); 0.285 0.972 (0.923; 1.024)
Gender b −0.920 0.435 4.478(1); 0.034 0.398 (0.170; 0.934)

hsCRP (log) 1.817 0.598 9.236(1); 0.002 6.152 (1.906; 19.854)
MNA −0.191 0.082 5.389(1); 0.020 0.826 (0.704; 0.971)

χ2
(df); p; R2

Nagelkerke 5.533(1); p = 0.019; 0.217

Age −0.031 0.026 1.365(1); 0.243 0.970 (0.921; 1.021)
Gender b −1.211 0.435 7.746(1); 0.005 0.298 (0.127; 0.699)

hsCRP (log) 1.966 0.634 9.625(1); 0.002 7.145 (2.063; 24.749)
BMI −0.074 0.058 1.624(1); 0.203 0.929 (0.830; 1.040)

χ2
(df); p; R2

Nagelkerke 1.679(1); p = 0.195; 0.184

Age −0.026 0.026 0.940(1); 0.332 0.975 (0.926; 1.027)
Gender b −1.625 0.602 7.294(1); 0.007 0.197 (0.061; 0.640)

hsCRP (log) 1.742 0.623 7.834(1); 0.005 5.711 (1.686; 19.347)
%BF −0.048 0.036 1.775(1); 0.183 0.953 (0.887; 1.023)

χ2
(df); p; R2

Nagelkerke 1.786(1); p=.181; 0.166
a Iron sufficiency = 0, iron deficiency = 1; b female = 0, male = 1.
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Table A6. Moderation analysis testing the effect of nutritional status (MNA) on the association of
hematological dimensions with cognition, mood and functional ability.

Executive a Memory a MMSE a GDS b Functional-T c Functional-H c

MNA (β; p) 0.172; 0.038 0.076; 0.381 0.140; 0.111 0.427; <0.001 0.271; 0.001 0.194; 0.021
Storage (β; p) 0.074; 0.332 0.179; 0.025 0.048; 0.544 −0.068; 0.397 0.036; 0.652 −0.025; 0.766

Storage x MNA (β; p) 0.056; 0.439 0.199; 0.010 0.114; 0.140 −.079; 0.308 −0.030; 0.704 0.095; 0.242

R2
adjusted; F; p 0.381; 10.993;

<0.001
0.360; 8.371;

<0.001
0.263; 7.058;

<0.001
0.260; 7.831;

<0.001
0.249; 7.441;

<0.001
−0.189; 5.536;

<0.001

MNA (β; p) 0.163; 0.046 0.113; 0.242 0.129; 0.137 −0.411; <0.001 0.266; 0.001 0.200; 0.017
Transport (β; p) −0.037; 0.632 0.093; 0.275 0.111; 0.175 −0.095; 0.250 0.036; 0.664 −0.092; 0.287

Transport x MNA (β; p) −0.047; 0.521 0.169; 0.053 0.112; 0.146 −0.022; 0.778 −0.060; 0.445 0.080; 0.329

R2
adjusted; F; p 0.377; 10.823;

<0.001
0.287; 7.392;

<0.001
0.271; 7.326;

<0.001
0.259; 7.783;

<0.001
0.252; 7.520;

<0.001
0.193; 5.639;

<0.001

MNA (β; p) 0.163; 0.045 0.063; 0.475 0.130; 0.134 −0.405; <0.001 0.288; <0.001 0.202; 0.015
Transport S. (β; p) 0.018; 0.811 0.060; 0.466 0.008; 0.919 −0.109; 0.163 −0.061; 0.432 −0.076; 0.348

Transport S. x MNA (β; p) −0.020; 0.794 0.060; 0.459 0.074; 0.354 0.005; 0.946 −0.035; 0.657 0.121; 0.138

R2
adjusted; F; p 0.374; 10.714;

<0.001
0.260; 6.576;

<0.001
0.254; 6.782;

<0.001
0.262; 7.895;

<0.001
0.252; 7.541;

<0.001
0.198; 5.789;

<0.001

MNA (β; p) 0.187; 0.024 0.091; 0.312 0.127; 0.141 −0.414; <0.001 0.271; 0.001 0.185; 0.026
Red cells C. (β; p) 0.044; 0.574 0.105; 0.215 0.062; 0.455 0.066; 0.942 0.098; 0.236 −0.023; 0.790

Red cells C. x MNA (β; p) 0.055; 0.466 0.146; 0.077 0.119; 0.133 0.023; 0.777 0.004; 0.955 0.087; 0.298

R2
adjusted; F; p 0.370; 10.534;

<0.001
0.275; 7.017;

<0.001
0.257; 6.891;

<0.001
0.230; 6.794;

<0.001
0.258; 7.764;

<0.001
0.0176; 5.140;

<0.001

MNA (β; p) 0.183; 0.025 0.086; 0.337 0.126; 0.145 −0.406; <0.001 0.271; 0.001 0.181; 0.030
Erythropoiesis (β; p) 0.007; 0.939 0.229; 0.015 0.103; 0.262 −0.222; 0.014 0.162; 0.066 −0.029, 0.753

Erythropoiesis x MNA (β; p) −0.004; 0.954 0.75; 0.352 0.41; 0.594 −0.053; 0.492 −0.010; 0.896 0.064; 0.432

R2
adjusted; F; p 0.366; 10.389;

<0.001
0.293; 7.568;

<0.001
0.252; 6.728;

<0.001
0.267, 8.073;

<0.001
0.269; 8.165;

<0.001
0.172; 5.023;

<0.001
a Controlled for age, education, gender, hsCRP (log) and GDS; b controlled for age, education, gender and hsCRP
(log); c controlled for age, gender, BMI and hsCRP (log).
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