Supplementary material

Table S1. Bacterial strains used for the screening of the choline utilization activity. All strains were available at the culture collection of the division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan. Bacterial strains that displayed the choline-utilization activity are reported in red. MRS, DeMan-Rogosa-Sharpe broth; RCM, Reinforced Clostridial Medium; LB, Luria Bertani broth; cMRS, MRS supplemented with 0.05 % cysteine-HCl. MRS, M17 and reagents for LB were from Difco (Difco Laboratories Inc., Detroit, MI); RCM was from Oxoid (Basingstoke, UK).

Phylum		Bacterial strain	Growth medium	Incubation temperature	Phylum		Bacterial strain	Growth medium	Incubation temperature
Firmicutes	1	Carnobacterium divergens 3b-5ba		37°C	Firmicutes	33	Lactococcus garvieae MIMGr		37°C
	2	Carnobacterium divergens ML1-94				34	Enterococcus gilvus MD179	- M17	
	3	Carnobacterium divergens N14				35	Enterococcus hirae MD160		
	4	Carnobacterium divergens N20				36	Leuconostoc mesenteroides To 3.4		
	5	Carnobacterium divergens Ovb-3				37	Streptococcus agalactiae A1.9		
	6	Carnobacterium maltaromaticum F29-1				38	Streptococcus dysgalactiae 485		
	7	Carnobacterium maltaromaticum F46-1				39	Streptococcus dysgalactiae 486		
	8	Carnobacterium maltaromaticum FM-C4				40	Streptococcus dysgalactiae A1.3		
	9	Carnobacterium maltaromaticum ML1-95				41	Weissella cibaria CR23		
	10	Carnobacterium maltaromaticum ML1-97				42	Weissella confusa CR55		
	11	Carnobacterium maltaromaticum N1				43	Clostridium butyricum DSM 10702	RCM	
	12	Lactobacillus harbinensis 95				44	Clostridium tyrobutyricum DSM 2637		
	13	Lactobacillus helveticus 103			Actinobactoria	45	Bifidobacterium animalis subsp. lactis BB12	CMPS	
	14	Lactobacillus acidophilus LA5			Actinobacteria	46	Bifidobacterium bifidum MIMBb23sg	CIVIL	
	15	Lactobacillus acidophilus NCFM			Proteobacteria	47	Escherichia coli 1.1	 LB	
	16	Lactobacillus brevis 92	MRS			48	Escherichia coli 1.2		
	17	Lactobacillus casei LMG				49	Escherichia coli 1.3		
	18	Lactobacillus coryniformis 94				50	Escherichia coli 2.1		
	19	Lactobacillus delbrueckii subsp. bulgaricus MIM-Y				51	Escherichia coli 2.2		
	20	Lactobacillus delbrueckii subsp. lactis MIM-F				52	Escherichia coli 2.2		
	21	Lactobacillus fermentum 2				53	Escherichia coli 3.1		
	22	Lactobacillus helveticus MIMLh5				54	Escherichia coli DSM 1003		
	23	Lactobacillus johnsonii DSM 10533				55	Escherichia coli DSM 682		
	24	Lactobacillus parabuchneri 58				56	Enterobacter agglomerans 1.1	 	30°C
	25	Lactobacillus paracasei 134				57	Enterobacter agglomerans 1.2		
	26	Lactobacillus paracasei DG				58	Enterobacter agglomerans 1.4		
	27	Lactobacillus paracasei S01				59	Enterobacter agglomerans 1.6		
	28	Lactobacillus paracasei Shirota				60	Enterobacter cloacae 1.1		
	29	Lactobacillus plantarum 93				61	Klebsiella oxytoca MIMgr		
	30	Lactobacillus reuteri DSM 17938				62	Klebsiella sp. A1.2		
	31	Lactobacillus rhamnosus 13				63	Serratia marcescens 1.2		
	32	Lactobacillus rhamnosus GG				64	Serratia marcescens 1.3		

Subject	Sex	Age
(n=16)	(4F/12M)	(21-45)
S02	Μ	33
S04	F	34
S05	М	25
S06	Μ	28
S07	М	27
S10	М	33
S11	Μ	40
S13	F	26
S14	М	26
S15	Μ	45
S16	F	33
S17	М	30
S18	Μ	24
S19	F	28
S21	Μ	21
S22	Μ	24

Table S2. Basic characteristics of study participants.

Figure S1. UPGMA hierarchical clustering based on ClustalW alignment of amino acid sequences of the choline trimethylamine lyase CutC. Sequences have been selected as described in material and methods. The GenBank accession number of the nucleotide sequence corresponding to each item is reported on the right of the tree. +, *cutC* gene of *Klebsiella pneumoniae* Amm1 (Kalnins et al 2015). ++, *cutC* gene of *Desulfovibrio desulfuricans* ATCC 27774 (Craciun and Balskus 2012). *Forward* and *Reverse* refer to the primer pairs designed to amplify all sequences in the corresponding cluster.

Figure S2. Verification of choline utilization and TMA production by single bacterial strains. Typical results by negative (A) and positive (B) representative strains are shown. Nuclear magnetic resonance (¹H-NMR) and mass spectrometry (MS) spectra are reported on the left and right, respectively. A, M17 broth supplemented with choline after incubation with *Lactococcus garvieae* MIMGr A; B, M17 broth supplemented with choline after incubation with *Klebsiella oxytoca* MIMgr; C, choline and TMA standards (50 mM in 0.1 M phosphate buffer, H₂O, pH = 6.7).

Figure S3. Bacterial community structure of fecal samples. **A**, principal coordinates analysis of weighted Unifrac distances based on 16S rRNA gene profiling data; lines connect samples from the same subject; the percentage of variance of the coordinates are explained in brackets. **B**, stacked histograms of bacterial genera in each fecal sample. The 14 most abundant bacterial genera are shown; other genera are shown in greyscale color. *und.*, undefined.

Weighted UNIFRAC 0.3 S10 S11 S13 0.2 S14 S15 S16 PC2 (15 %) S17 S18 S19 S21 S22 S 2 6 S4 S 5 -0.1 S 6 S 7 -0.2 -0.2 0.2 0.4 -0.4 0.0 PC1 (34 %)

Α

Supplementary material

Figure S4. Tukey box and whiskers plots representing the most abundant genera (**A**) and families (**B**) detected by 16S rRNA gene profiling in fecal samples collected from the adult volunteers participating to this study.

Figure S5. Correlations among the fecal relative abundances of choline TMA-lyase gene *cutC* and bacterial taxa. *cutC* abundances were determined by qPCR with primer pairs cut-Dd and cut-Kp; 16S rRNA gene profiling data were used to determine the relative abundance of bacterial taxa at the taxonomic levels of phylum (p_{-}), class (c_{-}), order (o_{-}), family (f_{-}) and genus (g_{-}). The analysis was performed using median data of three measurements per subject. The heatmap represents the R value of Spearman's correlation (minimum to maximum values are indicated in heatmap legend). Asterisks indicate the Kendall rank correlation: *P < 0.05; **P < 0.01; ***P < 0.001.

References

Craciun S, Balskus EP (2012). Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. *Proc Natl Acad Sci U S A* **109:** 21307-21312.

Kalnins G, Kuka J, Grinberga S, Makrecka-Kuka M, Liepinsh E, Dambrova M *et al* (2015). Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae. *The Journal of biological chemistry* **290**: 21732-21740.