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Abstract: Arterial remodelling refers to the alteration in the structure of blood vessel that contributes
to the progression of hypertension and other cardiovascular complications. Arterial remodelling is
orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC).
Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol
that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both
the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial
remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune
system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in
cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently,
there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the
formation of neointimal hyperplasia in response to injury. The change in population of the gut
microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to
VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong
evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review
aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing
on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota
that modulate arterial remodelling.
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1. Introduction

Cardiovascular disease is the current leading global cause of death and is expected to cause more
than 23.6 million deaths by 2030 [1,2]. Hypertension is a strong risk factor for almost all cardiovascular
diseases. Hypertension can result from varying factors such as genetics, diet and lifestyle, as well
as the gut microbiota [3,4]. Essential hypertension is characterized by the increase of peripheral
vascular resistance to blood flow, which generally occurs in small arteries and arterioles that undergo
remodelling [5,6]. Arterial remodelling is an active process of structural alteration that includes
vascular cell proliferation, migration, death and changes in the extracellular matrix of the artery [6].
The progression of arterial remodelling is modulated by the crosstalk between endothelium and
vascular smooth muscle cells (VSMC). The endothelium can sense shear stress generated from blood
flow and activate signalling pathways in VSMC [6]. The mechanical effects of blood flow and shear
stress in the endothelium and vascular smooth muscles, inflammation, as well as the controls from
the renin-angiotensin-aldosterone system, endothelins, adipokines from perivascular adipose tissue
(PVAT), are the key factors in the pathophysiology of arterial remodelling and the progression of
hypertension [5].
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Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a plant polyphenol phytoalexin found mainly in
grape fruits and red wine [7,8]. Resveratrol has anti-oxidant and anti-inflammatory activities [9–11].
Massive laboratory and preclinical studies have reported the protective effects of resveratrol in different
disease models, including cancer, cardiovascular, metabolic, and neurodegenerative diseases [7,12,13].
Resveratrol is well-studied for its beneficial effects on cardiovascular protection by increasing the
production of nitric oxide (NO) in endothelial cells. Resveratrol can upregulate endothelial NO
synthase (eNOS) expression, stimulate eNOS activity, and prevent eNOS uncoupling [14]. In addition,
resveratrol modulates the function of immune cells, inhibits immune cell infiltration, and improves
PVAT function [15,16]. The protective effect of resveratrol against adverse arterial remodelling has been
reported recently. Arterial remodelling is an important feature of the progression of hypertension [6,17].
Resveratrol has been studied for its effect on modulating gut microbiota and arterial remodelling,
respectively [14,18]. Currently, accumulating evidence has suggested that gut microbiota may
participate in the development of metabolic and cardiovascular diseases by interacting with the
immune system and inflammatory processes [19]. Targeting the gut microbiota may be an alternative
for the treatment of arterial remodelling in cardiovascular diseases, especially in hypertension [20,21].
In this review, we summarize current knowledge of the beneficial effects of resveratrol supplementation
in cardiovascular health, focusing on arterial remodelling and gut microbiota and highlight the potential
protective effects of resveratrol on arterial remodelling by modulation of gut microbiota population
and metabolites.

2. Resveratrol and Arterial Remodelling

2.1. Improvement of Endothelial Function

Endothelial function plays an important role in regulating arterial remodelling. Removal of the
endothelium significantly limits the ability of the vessel to remodel [22]. The shear stress or frictional
force generated by the blood flow on the vessel lumen triggers the endothelium to release vasoactive
autacoids including NO, prostaglandins, endothelium-derived hyperpolarizing signals and growth
factors. These endothelium-derived molecules regulate the ability of the vessel to remodel against
different conditions [23,24]. Therefore, the endothelium is the key regulator of blood pressure and
vascular tone. Deterioration of endothelial function and smooth muscle tone lead to the stiffening
of elastic and muscular arteries [25]. Vasoconstrictors, such as noradrenaline, endothelin-1 (ET-1) or
angiotensin II (Ang II), increase artery stiffness [26,27], whereas vasodilators such as glyceryl trinitrate
elicit opposite effects [27–30].

The congenital absence of eNOS causes adverse vascular remodelling [31,32]. eNOS produces
NO which is responsible for the regulation of arterial remodelling [22]. Endothelium-derived
NO inhibits growth factor-stimulated proliferation and migration of VSMC [33]. eNOS knockout
mice show hyperplasia in the media layer of abnormally remodeled vessels, evidenced by the
significant wall thickening, increase in number of nuclei and the incorporation of bromodeoxyuridine.
These characteristics are reminiscent of the phenotype of arterial thickening in atherosclerotic and
hypertensive patients [34]. The beneficial effects of resveratrol in endothelial function have been widely
studied and reported in the aspect of enhancing endothelial NO production, reducing endothelial
oxidative stress and ET-1 synthesis (Figure 1) [14,35]. These indicate that resveratrol can target arterial
remodelling via enhancing the endothelial NO production.
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Figure 1. Resveratrol enhances NO production and prevents NO breakdown. Resveratrol activates 
SIRT1 directly (in a substrate-dependent manner) or indirectly (by either inhibiting 
phosphodiesterases or enhancing the effect of lamin A). SIRT1 stimulates endothelial NO synthase 
(eNOS) activity through deacetylation, enhances eNOS expression by deacetylating Forkhead box O 
(FOXO) transcription factors, and prevents eNOS uncoupling by upregulating GTP cyclohydrolase 1 
(GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis. AMP-activated protein 
kinase (AMPK) and nuclear factor-erythroid-derived 2-related factor-2 (Nrf2) are indirect targets of 
resveratrol. AMPK phosphorylates eNOS at serine 1177. eNOS can also be phosphorylated by Erk1/2, 
which is stimulated by a pathway involving estrogen receptors (ER) and the tyrosine kinase Src. 
Caveolin-1 (Cav-1) is an eNOS-interacting protein that negatively regulates eNOS activity. 
Asymmetric dimethylarginine (ADMA) is an endogenous eNOS inhibitor that is degraded by 
dimethylarginine dimethylaminohydrolase (DDAH). The resveratrol targets for DDAH upregulation 
or for NADPH oxidase downregulation have not been identified so far. Reproduced from Xia et al. 
Molecules. 2014 [174], under the terms of the Creative Commons Attribution-Noncommercial License 
CC BY-NC. 

Figure 1. Resveratrol enhances NO production and prevents NO breakdown. Resveratrol activates
SIRT1 directly (in a substrate-dependent manner) or indirectly (by either inhibiting phosphodiesterases
or enhancing the effect of lamin A). SIRT1 stimulates endothelial NO synthase (eNOS) activity through
deacetylation, enhances eNOS expression by deacetylating Forkhead box O (FOXO) transcription
factors, and prevents eNOS uncoupling by upregulating GTP cyclohydrolase 1 (GCH1), the rate-limiting
enzyme in tetrahydrobiopterin (BH4) biosynthesis. AMP-activated protein kinase (AMPK) and
nuclear factor-erythroid-derived 2-related factor-2 (Nrf2) are indirect targets of resveratrol. AMPK
phosphorylates eNOS at serine 1177. eNOS can also be phosphorylated by Erk1/2, which is
stimulated by a pathway involving estrogen receptors (ER) and the tyrosine kinase Src. Caveolin-1
(Cav-1) is an eNOS-interacting protein that negatively regulates eNOS activity. Asymmetric
dimethylarginine (ADMA) is an endogenous eNOS inhibitor that is degraded by dimethylarginine
dimethylaminohydrolase (DDAH). The resveratrol targets for DDAH upregulation or for NADPH
oxidase downregulation have not been identified so far. Reproduced from Xia et al. Molecules. 2014 [36],
under the terms of the Creative Commons Attribution-Noncommercial License CC BY-NC.

Sirtuin 1 (SIRT1), which can be activated directly or indirectly by resveratrol, is also known
to activate eNOS and enhance endothelial function. Also, resveratrol could improve endothelial
function by activating SIRT1 [35]. Activation of SIRT1 by resveratrol is highly controversial. Although
resveratrol has been shown to inhibit SIRT1 in some cancer cell models, [37], the beneficial effects of
resveratrol in cardiovascular diseases can also be shown in various in vivo experiments which show
calorie restriction or SIRT1-overexpression-mimetic effects [38,39]. The exact molecular mechanism of
SIRT1 activation by resveratrol remains to be explored, which could be either by parallel or downstream
pathways [40].

In endothelial cells, the knocking-down of SIRT1 prevents the resveratrol-induced upregulation
and activation of eNOS [41]. Therefore, resveratrol-induced upregulation of eNOS is likely to be
SIRT1-dependent. On the other hand, SIRT1/FOXO is involved in the resveratrol-induced eNOS
transcriptional activation [42]. In addition to SIRT1/FOXO, endothelial function is also regulated by the
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SIRT1/Krüpple link factor 2 (KLF2) interaction [43]. In addition, overexpression of endothelial SIRT1
has been shown to prevent adverse arterial remodelling by downregulating LKB1. SIRT1 promotes
the protein complex formation between LKB1 and HECT and the RLD domain containing E3
ubiquitin-protein ligase 2 (HERC2) which leads to LKB1 degradation [44]. In clinical studies, the genetic
variations of SIRT1 have been reported to be correlated to intimal-medial thickening in human carotid
arteries, suggesting that endothelial SIRT1 is important in regulating arterial remodelling [45].

Flow-mediated dilatation (FMD) is commonly used as a noninvasive method to measure the
endothelial function in patients [46]. Resveratrol has been shown to reduce blood pressure and improve
FMD responses in clinical studies involving patients with metabolic syndromes or hypertension
(Table 1). It is conceivable that the improvement of endothelial function and activation of endothelial
SIRT1 by resveratrol supplementation are beneficial for preventing arterial remodelling and stiffening.

Table 1. Resveratrol improves endothelial function in metabolic syndromes or hypertension.

Dose and Period Study Design Subject Status Main Findings Reference

100 mg tablet, oligo-stilbene
27.97 mg/100 mg/day, 12 weeks

25 volunteers; Double
blind, randomized,
placebo-controlled

T2D
↓ systolic BP;

↓ cardio-ankle vascular
index

[47]

ResVida™; 6 capsules, 30, 90,
and 270 mg, single dose

19 volunteers; Double
blind, randomized,
placebo-controlled

Overweight/obese/post-menopausal
untreated borderline hypertension ↑ FMD response [48]

ResVida™; 75 mg capsule/day,
6 weeks

28 obese volunteers;
Double blind,
randomized,

placebo-controlled

Healthy
↑ FMD response; no

effect on BP and
arterial compliance

[49]

Longevinex, 100 mg/day, 3 months

34 patients with
metabolic syndromes;

Double blind,
randomized,

placebo-controlled

Metabolic syndromes and
lifestyle-related disease

↑ FMD response; no
effect on body

composition, lipid
profile, interleukin-6

(IL-6) and
high-sensitive

C-reactive protein
(hsCRP).

[50]

300 mg (Bioderm Pharmacy)
once daily

24 hypertensive adults;
Double blind, cross-over,

randomized,
placebo-controlled

Hypertension

↑ FMD response; no
effect on

Augmentation Index,
aortic SBP and
peripheral BP

[50]

BP: blood pressure. FMD: flow-mediated dilatation. SBP: systolic blood pressure. T2D: type 2 diabetes.

2.2. Inhibition of Neointima Formation

Mature VSMCs are capable of modifying their phenotype in physiological and pathophysiological
settings in response to both intrinsic and extrinsic vessel signalling. Normally, differentiated
VSMCs have limited synthetic activity, slow proliferation and a specific set of contractile protein
expressions [51]. Upon stimulation by various growth factors, or in response to vascular injury, VSMCs
show phenotype-switching through proliferation, de-differentiation, and migration to the injury site
for vascular repair and remodelling [51]. While this phenotypic plasticity of VSMC is important for the
repair and maintenance of the vasculature, excessive activation and proliferation of VSMCs can lead
to the development of restenosis, atherosclerosis and hypertension [52]. Also, physical parameters,
such as arterial wall pressure, could lead to changes in the contractile state and/or the synthetic activity
of VSMCs [53].

Resveratrol has been shown to promote vascular health by maintaining and enhancing
the phenotypic plasticity of the VSMC [51,54,55]. Intimal hyperplasia refers to the structural
change, including the proliferation and migration of VSMCs from the media and adventitia in
the subendothelium with subsequent deposition of significant quantities of extracellular connective
tissue [56]. Resveratrol can inhibit VSMC proliferation induced by various pathways including
mechanistic Target of Rapamycin (mTOR), protein kinase B (AKT) and 5′ AMP-activated protein
kinase (AMPK) [14]. In cultured primary VSMCs, resveratrol has been shown to suppress high
glucose-induced oxidative stress and VSMC proliferation by reducing the generation of reactive oxygen
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species (ROS) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH), downregulating
the phosphorylation of Akt/p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases
(JNK)/extracellular signal–regulated kinases (ERK), and reducing the activities of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [57]. NF-κB is a major transcription factor
participating in inflammatory responses and involving in the initiation and progression of vascular
inflammation [58]. Endothelial blockade of intracellular NF-κB signalling markedly suppresses intimal
hyperplasia [59]. Resveratrol treatment prevents the proinflammatory properties of the aged VSMC
secretome via inhibiting NF-κB [60]. Furthermore, resveratrol has been shown to suppress oxidized
low-density lipoprotein (ox-LDL)-induced proliferation of cultured bovine VSMCs [61]. Resveratrol
also inhibits parathyroid hormone (PTH)-induced apoptosis in cultured human aortic smooth muscle
cells [57].

Neointima formation is associated with the reduced expression of SIRT1, while SIRT1
overexpression in VSMCs prevents neointima formation in response to vascular injury [62]. Also,
SIRT1 inhibition increases p53 and plasminogen activator inhibitor-1 (PAI-1) expression, which
subsequently leads to injury-induced neointimal formation and remodelling [63]. Resveratrol
downregulates Ang II type 1 receptor expression in VSMCs by activating SIRT1 both in vivo
and in vitro [64]. Resveratrol also reduces serum Ang II level and prorenin receptor (PRR) and
angiotensin-converting enzyme (ACE and ACE2), Ang II type 2 receptor (AT2R), and Mas receptor
(MasR) expression in the aorta. Resveratrol can prevent Ang II-induced hypertrophy of VSMCs by
normalizing the oxidative stress and activating Proto-oncogene tyrosine-protein kinase (c-Src), growth
factor receptors, and MAPK/AKT signalling [65]. Moreover, resveratrol can normalize the ACE, Ang I
and II, AT2R, and MasR expression through restoring the expression of SIRT1 in high fat diet (HFD)-fed
mice [66] and HFD-fed rats [67]. Therefore, the beneficial effects of resveratrol in neointima formation
could be mediated by SIRT1, renin–angiotensin–aldosterone system (RAAS) and NF-κB signalling [68].

In a mice wire-injured arteries model, oral administration of resveratrol significantly suppresses
intimal hyperplasia [69,70]. In a rat carotid artery injury model, Intraperitoneal injection of
resveratrol inhibits intimal hyperplasia [71]. In addition, periadventitial application of resveratrol
has shown significant improvements in intimal hyperplasia, impairment of re-endothelialization and
constrictive arterial remodelling, which are the three major pathologies contributing to restenosis [72].
Periadventitial delivery of resveratrol has a greater neointima-inhibiting effect (86%) than systemic
resveratrol administration. Moreover, resveratrol promotes post-surgery endothelial recovery without
causing constrictive arterial remodelling [72]. These are compelling advantages compared to the current
drug-eluting stents used in clinical settings. However, recent study suggests that high concentrations
of resveratrol exhibit arginase inhibitory activity in VSMCs that could enhance vasoconstrictor
responses [73]. Therefore, the optimal delivery method of resveratrol treatment in arterial remodelling
should be further investigated.

2.3. Prevention of Arterial Stiffening

Systolic blood pressure is attributed to arterial stiffness which continuously increases with age [74].
Aortic pressure is the instantaneous summation of the reservoir pressure and the effects of the flow wave.
Augmented arterial stiffness leads to the increase in blood flow velocity and a backward-travelling
reflected wave which further increases systolic pressure [75,76]. Arterial stiffening is a major hallmark
of aging and the consequence of many complications such as diabetes, atherosclerosis, and chronic
renal diseases [77,78]. Arterial stiffness mainly occurs in the large arteries [6]. Arterial stiffening
represents the sum of the passive stiffness, which is mainly contributed to by elastic and collagen fibres,
and the active stiffness generated by the smooth muscle tone [79]. Changes in endothelial function and
smooth muscle tone can influence the stiffness of the elastic and muscular arteries [25]. Although the
stiffening of vasculature is a universal change associated with aging, it is also part of the phenotype in
diseases such as hypertension and diabetes where complex cellular mechanisms conspire to accentuate
arterial remodelling.
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Resveratrol has been shown to prevent arterial remodelling and stiffening in both animal and
clinical studies. In rats, both low-dose and high-dose resveratrol treatments improve flow-mediated
outward remodelling [80]. A long-term low-dose dietary resveratrol supplement reduces arterial
stiffness (measured by the aortic pulse wave velocity) in rats [81]. Surprisingly, resveratrol limits the
increase in compliance of spontaneously hypertensive rat (SHR) by its inhibitory effect on arterial
remodelling and ERK signalling rather than the effect on blood pressure or arterial wall stiffening [82].
In a recent double blind, randomized, placebo-controlled study, resveratrol supplementation has been
shown to reduce arterial stiffness (measured by Cardio Ankle Vascular Index) in patients with type 2
diabetes [47].

In vasculature, collagen and elastin deposition is regulated by matrix metalloproteinases
(MMPs) [83]. The latency of MMPs is modulated by eNOS and NO, which can be regulated by
resveratrol [84–86]. Under pathological conditions, up-regulation of MMPs, as well as the activation
of zymogens and infiltration of inflammatory cells lead to arterial remodelling and stiffening [87,88].
Resveratrol has been shown to inhibit MMP expression in various tissues including brain, tumour,
as well as VSMCs [89–91]. The activity of MMP-2 and MMP-9 is inhibited by resveratrol treatment
in different models [90,92,93]. In human VSMCs, tumour necrosis factor alpha (TNF-α)-induced
expression of MMP-9 can be inhibited by resveratrol [94]. Upregulation of MMP-2, MMP-9 and
their downstream molecule, transforming growth factor-beta 1 (TGF-β1) are responsible for arterial
stiffening and blood pressure increase [95]. Therefore, resveratrol could reduce arterial remodelling by
regulating the latency of MMPs.

Resveratrol also regulates MMPs and many other inflammatory and pro-oxidative genes
associated with remodelling via inhibition of NF-κB signal pathway [15]. Resveratrol inhibits
monocrotaline-induced pulmonary arterial remodelling by suppressing sphingosine kinase 1
(SphK1)-mediated NF-κB activation [96]. In H2O2-treated VSMCs, resveratrol treatment downregulates
MMP-9 expression, as well as augmenting the production of tissue inhibitors of metalloproteinases
(TIMP-1) [91]. In mice, resveratrol has been shown to prevent high-fat, high-sucrose diet
(HFHS)-induced arterial stiffening [97]. Similar results can be obtained with other SIRT1 activators
or by global overexpression of SIRT1 [97]. In addition, overnight fasting decreases arterial stiffness
acutely in wildtype mice but not in mice with SIRT1-KO in VSMC. Conversely, VSMC-specific SIRT1
overexpression prevents diet-induced arterial stiffness. The anti-remodelling property of SIRT1 is
related to its antioxidant and anti-inflammatory effect by inhibiting NF-κB, vascular cell adhesion
molecule-1 (VCAM-1) and p47phox expression [97]. These results suggest that inhibition of NF-κB
could be a critical mechanism of resveratrol’s beneficial effect in targeting neointima formation and
arterial stiffening.

TGF-β1 is an important profibrogenic factor that induces the proliferation of VSMCs and collagen
secretion [98,99]. Resveratrol has been demonstrated to block the TGF-β1-stimulated KLF5 production
and VSMC de-differentiation [72]. Advanced glycation end-products (AGEs) stimulate non-enzymatic
protein glycation forming irreversible cross-links in proteins like collagen. This cross-linking prevents
the collagen from regulatory turnover and becomes stiffer [100]. Resveratrol can normalize the
AGEs-stimulated TGF-β1 expression and collagen synthesis in cultured rat aortic smooth muscle
cells [101]. In addition, overexpression of SIRT1 has been shown to prevent arterial remodelling via
reducing TGF-β1-mediated collagen deposition [44]. These results may suggest that resveratrol can
target TGF-β1 and NF-κB expression and signalling partly through the activation of SIRT1.

3. Gut Microbiota and Microbiota-Derived Metabolites Modulates Arterial Remodelling

3.1. Gut Microbiota and Arterial Remodelling

Gut microbiota refers to an ecosystem that consists of numerous species of microbials in the
digestive system of the host organism from birth. Gut microbiota is highly interactive with the host
and forms a symbiotic signalling mechanism that mutually influences both the host environment and
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the population of gut microbiota [102]. Currently, gut microbiota is considered a ‘virtual’ endocrine
which the microbial metabolites can communicate with distal organs and affect their physiologies
and functions. Gut microbiota mainly consists of five phyla—Bacteroidetes, Firmicutes, Actinobacteria,
Proteobacteria and Verrucomicrobia. Different individuals have a distinct abundance and diversity of
microbials but the anaerobic Firmicutes and Bacteroidetes usually occupy more than 90% of the total
microbial population [103,104]. The Firmicutes to Bacteroidetes ratio varies across individuals and the
variations are mainly caused by differences in host genomic and environmental factors, such as lifestyle,
hygiene status, diet and antibiotic or probiotics treatments [104]. A high Firmicutes to Bacteroidetes ratio
is commonly found to be associated with metabolic and cardiovascular complications [105].

Accumulating evidence has shown that gut microbiota plays an important role in host’s health and
diseases [102,106]. Changes in the composition of gut microbiota are linked to the pathology of different
cardiovascular complications. In addition to the gut microbiota itself, the microbiota metabolites
are also recognized as major contributing factors in the progression of cardiovascular complications.
Various clinical and animal studies have provided strong evidence that links specific species to
the pathophysiology of different cardiovascular diseases and complications [107]. Nevertheless,
the underlying mechanism on how specific bacteria species triggers the progression of cardiovascular
diseases is largely unknown.

In recent years, the linkage between gut microbiota and arterial remodelling has become a hot topic.
Different animal models have been used to address the association between the gut microbiota and
arterial remodelling. In long-term Western diet fed mice, the gut dysbiosis is associated with endothelial
dysfunction and arterial stiffening [108]. The observed endothelial dysfunction is correlated with the
reduction in the population of Bifidobacterium spp. Upon antibiotic treatment, Western diet-induced
endothelial dysfunction and arterial stiffening are normalized [108]. In another study, cecal microbiota
transplantation from obese mice results in the induction of cardiac ischemic and aortic stiffening in wild
type mice. In old mice, antibiotic treatments can reverse endothelial dysfunction and arterial stiffening
(measured by pulse wave velocity) accompanied by lower oxidative stress and greater antioxidant
enzyme expression [109]. The transplantation of the gut microbiota also associates with increased
gut permeability and reduced cecal short-chain fatty acids (SCFA) concentrations [110]. Moreover,
after carotid ligation, germ-free mice shows attenuated neointimal hyperplasia development as well as
an increased arterial infiltration of anti-inflammatory M2 macrophages and a reduced proportion of
mature neutrophils in arteries compared to conventional mouse [111]. These animal studies highlight
the importance of healthy gut microbiota in regulating arterial remodelling.

In humans, a recent multivariate analysis shows significant positive associations between
VCAM-1 and Veillonellaceae, and between ICAM-1 and Ruminococcus in obese children, suggesting the
interrelationship between endothelial function and gut microbiota [112]. Another recent clinical study
suggests that gut microbiome diversity is inversely associated with arterial stiffness in women [21].
A low microbiome diversity correlates with greater arterial stiffness and blood pressure in women.
The study also reveals seven operational taxonomic units associated with arterial stiffness (measured
by pulse wave velocity) after adjusting for covariates, which includes members of the SCFA-producing
Ruminococcaceae and Rikenallaceae families. While women are more prone to the adverse effects of
arterial stiffening including greater augmentation indices and ventricular remodelling [113], this study
addresses the relationship between the gut microbiota, arterial remodelling and blood pressure in
women. Moreover, aging, a determining factor in arterial remodelling, has been shown to induce critical
changes to the population of gut microbiota, such as reduced diversity, a shift in dominant species,
increased Firmicutes to Bacteroidetes ratio, reduced SCFA, and a greater inter-individual variation [114].
Although these studies provide solid evidence that gut microbiome diversity is important in modulating
arterial remodelling and stiffening, further studies focusing on a particular microbiota population are
needed to design alternative treatments for adverse arterial remodelling.

Gut microbiota has also been shown to exacerbate Ang II-induced arterial hypertension, vascular
inflammation and dysfunction in conventional mice compared to germ-free mice [115]. In addition,
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interleukin-4 (IL-4) and IL-10 are increased in the Ang II-treated conventional mice but not in
germ-free mice [115]. However, the authors have not proposed any particular population of gut
microbiota responsible for such phenotypes. The translocation of gut bacteria to the intraperitoneal
space, due to epithelial layer damage, can induce transitory infection with systemic elevation of
IL-12 [116]. IL-12 is shown to be associated with arterial stiffness in healthy individuals [117].
Interestingly, induced pulmonary arterial hypertension in rats also leads to a greater Firmicutes to
Bacteroidetes ratio in the gut microbiota [118]. The gut dysbiosis might play a pathophysiological
role in pulmonary arterial hypertension by altering the host immunologic, hormonal and metabolic
homeostasis. These studies also suggest a potential relationship between a gut microbial-immune
interaction and arterial remodelling.

3.2. Gut Microbiota Derived Metabolites and Arterial Remodelling

Targeting the microbiota metabolome may be a valuable alternative for the treatment of adverse
arterial remodelling. Gut microbiota is involved in the production of an array of bioactive substances,
known as gut microbiota-derived metabolites, contributing to normal physiological function or eliciting
diseases [119]. In recent years, different studies have suggested the association between cardiovascular
diseases and gut microbiota-derived metabolites [119,120]. While the identification and the modulation
of specific population of the gut microbiota could be challenging, the potential treatment interfering
the downstream metabolites is possible.

SCFA are saturated fatty acids that are mainly fermented from resistant starch or dietary fibre by
gut microbiota [121]. The most common SCFA are acetate, propionate and butyrate. SCFA are generally
considered to have beneficial effects on cardiovascular diseases. SCFA inhibit lipopolysaccharide
(LPS) or TNFα-induced endothelial inflammatory responses and excessive VCAM-1 expression [122].
SCFA have been shown to reduce blood pressure and arterial stiffness in mice [123]. To date, SCFA are
known to contribute to inflammation, gut homeostasis and cardiovascular diseases via binding to G
protein-coupled receptors (GPR41, 43, 109A) and vascular olfactory receptor 78 (Olfr78) [122]. Olfr78 is
found in olfactory neurons, renal afferent arterioles and in VSMC, where it plays a role in blood pressure
regulation [124]. In rats, oral vancomycin treatment exacerbates neointimal hyperplasia development
after carotid angioplasty [125]. However, oral supplementation of butyrate can reverse these changes
and inhibit VSMC proliferation, migration, and cell cycle progression in a dose-dependent manner
in vitro. Butyrate also inhibits superoxide production and consequent Nod-like receptor pyrin domain
3 (Nlrp3) inflammasome formation and activation, which is beneficial against vascular inflammation or
intimal hyperplasia [126]. These studies suggest that the association of gut microbial composition with
arterial remodelling could potentially occur through an inhibitory effect of butyrate on VSMCs [125].

A recent metagenome-based association study highlights the microbial associations to current and
future clinical outcomes related to cardiovascular diseases. The gut microbiota and their interactions
with diet and inflammation, including bacterial L-methionine and L-homocysteine biosynthesis,
are associated with the incidence and complication of cardiovascular diseases [127]. In rats, methionine
diet feeding has been shown to induce carotid arterial remodelling with significantly augmented
collagen content [128]. Homocysteinemia (elevated homocysteine level in blood) has been shown to
promote the attraction of monocytes and production of proinflammatory cells. Homocysteinemia
has been shown to induce arterial remodelling in different mice models [129,130]. Homocysteine
is proposed to induce macrophage maturation in arterial walls, as well as vascular inflammation,
endothelial dysfunction, VSMC proliferation and oxidative damage with deterioration of arterial wall
elastic material [131]. In patients with stable angina, homocysteinemia is associated with coronary
artery remodelling [132]. These results suggest that the bacterial L-methionine and L-homocysteine
biosynthesis could contribute to homocysteinemia and arterial remodelling.

Trimethylamine-N-oxide (TMAO) is generated by a two-step process between the host and gut
microbiota. Gut microbiota, especially Firmicutes and Proteobacteria, converts dietary L-carnitine, choline,
and lecithin to trimethylamine by the TMA-generating lyase (CutC/D). Then, the host flavin-containing
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monoamine oxidases (FMO) are responsible for the conversion to TMAO [133,134]. TMAO is critically
involved in the development of atherosclerosis and other cardiovascular diseases. TMAO induces
vascular inflammation through MAPK and NF-κB signalling [108]. Plasma TMAO concentration
increases with the mortality risk in patients with stable coronary artery disease, as well as the
carotid intima-media thickness in obese individuals or patients with thrombosis risk [107,120,135–137].
In women, the levels of different gut-derived metabolites, including TMAO, indolepropionate,
and phenylacetylglutamine are also associated with arterial stiffening and higher blood pressure [21].
In addition, TMAO level has been shown to increase with age, suggesting a correlation between TMAO
and aging-induced arterial remodelling [109,138].

Increased serum indoxylsulfate level is associated with arterial stiffening, aortic calcification
and increased mortality in patients with chronic kidney disease [139]. In primary human aortic
VSMCs, indoxylsulfate and indoxyl acetate promote thrombosis through upregulating the expression
of tissue factor and inhibiting its ubiquitination and degradation, as well as activating the aryl
hydrocarbon receptor (AhR) pathway [140]. AhR-deficient mice shows decreased arterial stiffening
and a concomitant increase in the activity of eNOS and NO production [141]. These suggest the
microbiota-derived indoxylsulfate and indoxyl acetate are associated with arterial remodelling while
AhR could be a potential treatment target.

The activation of Toll-like receptor 4 (TLR4) by LPS is involved in the outward carotid arterial
remodelling [142], while it also induces the expression of MMP-9 in VSMCs [143]. The binding
of LPS to TLR4 activates the downstream pathways including myeloid differentiation protein-88
(MYD88) and NF-κB and contributes to the increased production of pro-inflammatory cytokines such
as IL and TNF-α [144,145]. While the relationship between NF-κB and arterial remodelling has been
discussed above, MYD88 is also responsible for flow-mediated remodelling via superoxide-initiated
inflammation [146]. On the other hand, increased LPS binding protein (LBP) is associated with carotid
intima media thickening [147], as well as arterial stiffening [148].

4. The Interaction between Resveratrol, Gut Microbiota and Arterial Remodelling

Some reports have argued that the beneficial effects of resveratrol in the cardiovascular system are
limited due to the low bioavailability, which may hinder the development as therapeutic agents [149].
However, growing evidence supports the hypothesis that resveratrol is possibly acting through the
gut microbiota remodelling [150]. Recently, polyphenol is proposed as potential prebiotics which can
shape the gut microbiota composition [151,152]. Shaping the gut microbiota to favour specific species
or lowering the Firmicutes to Bacteroidetes ratio can provide protective effects to the host cardiovascular
system [106].

Interestingly, gut microbiota can influence the pathway of resveratrol metabolites production.
The gut microbiota is critically involved in the metabolism of resveratrol by increasing its availability
from precursors and producing resveratrol-derived metabolites [153]. Resveratrol can be modified
by glucuronidation and sulfation in the liver and intestine (Margherita Springer et al. 2019). Piceid
(or polydatin) is one of the glucoside forms of resveratrol, which has a higher bioavailability than
resveratrol [154]. Unlike resveratrol, which penetrates the cell membrane passively, piceid can enter
the cell via an active mechanism using glucose carriers [155]. It has been evidenced that Bacillus
cereus, Bifidobacteria infantis and Lactobacillus acidophilus in the gut microbiota are responsible for the
conversion of resveratrol into the piceid [156–158]. Interestingly, piceid have similar molecular targets,
including SIRT1 and NF-κB, to resveratrol, however, its antioxidant activity is higher than that of
resveratrol [153].

On the other hand, gut microbiota can also metabolize resveratrol into certain derivatives including
dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene and 3,4′-dihydroxybibenzyl [159]. Normally,
high concentrations of dihydroresveratrol and other resveratrol derivatives are detected in plasma and
tissues since resveratrol is rapidly metabolized in the body [160]. Currently, there are limited reports on
the effects of these resveratrol derivative in relation to metabolic syndrome and cardiovascular diseases.
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In LPS-treated endothelial cells, 3,4′-dihydroxybibenzyl reduces the expression of pro-inflammatory
mediators IL-8 and E-selectin [161]. Interestingly, a recent study suggests sex-related differences in
resveratrol metabolism by the gut microbiome [162]. This suggests the importance of the participation
of gut microbiota in the modulation of resveratrol effect in targeting arterial remodelling. It would
be interesting to elucidate whether these gut microbiota-mediated resveratrol derivatives are able to
trigger the beneficial effects in arterial remodelling.

Many studies have addressed the effect of resveratrol on gut microbiota diversity and composition.
Resveratrol has been shown to reduce the Firmicutes to Bacteroidetes ratio, increase the abundances
of Akkermansia, Lactobacillus and Bifidobacterium populations and reduce the growth of Enterococcus
faecalis [163–165]. Enterococcus faecalis is associated with high levels of extracellular superoxide [166].
A recent study suggests that resveratrol supplementation can increase the population of butyrate
producer Blautia and Dorea in the Lachnospiraceae family [167]. Resveratrol also increases the expression
of fasting-induced adipose factor (Fiaf), a key gene for triglycerides deposition, which may be associated
with the its prebiotic effect on gut microbiota [165]. Sung et al. have demonstrated that high-fat
high-salt-fed mice receiving faecal microbiota transplantations from resveratrol treated mice has
increased SCFA production [168]. Resveratrol can prevent the TMAO-induced atherosclerosis in
ApoE−/− mice, partly due to the decreased TMAO levels via gut microbiota remodelling [163]. Thus,
it is speculated that the beneficial effect of resveratrol in arterial remodelling is partly achieved by its
ability to alter the gut microbiota diversity.

Recently, intestinal epithelial SIRT1 has been shown to prevent intestinal inflammation by
regulating the gut microbiota [169]. The deletion of SIRT1 in the intestinal epithelium results in
a reduced abundance of Bacilli, particularly Lactobacillus, which has anti-inflammatory effect. It is
postulated that SIRT1 might be an important mediator of host-microbiome interactions.

Summary and Future Directions

The protective effects of resveratrol in cardiovascular complications and diseases have been well
documented. In future, dissecting the resveratrol effects on modulating both gut microbiota and
cardiovascular diseases is crucial. While there are some reports showing resveratrol supplementation
results in distinct and even opposite biological effects, one explanation would be the dose-dependent
and time-dependent effect of resveratrol. The direction effect of resveratrol in the activation of
SIRT1 remains unclear and controversial. It is highly possible that the in vivo action of resveratrol is
modulated by the host’s gut microbiota. Recently, Nohr et al. suggest that the anti-inflammatory effect of
resveratrol could be attributed to the inhibition of Gram-negative bacteria-derived lipopolysaccharides
in the gut [170]. When considering gut microbiota as an important modulator, the controversy between
experiment and clinical studies of resveratrol may be explained partly by the individualized gut
microbiota population. Therefore, research in resveratrol supplementation should be improved by
considering the population of the gut microbiota in the experimental model, especially with the help
of advancement of the microbiota sequencing techniques.

To date, the human clinical trials available have shown conflicting or controversial results about
the beneficial effects of resveratrol [171]. The use of a humanized (gnotobiotic) rodent model, germ-free
animals inoculated with the human faecal microbiota, could be an alternative to address further
research questions in the crosstalk between microbiota and resveratrol [172]. So far, no studies
have reported the compositional changes of the gut microbiota in humanized rodents treated with
resveratrol. The application of metabolomics approaches could identify all gut microbiota metabolites
altered by resveratrol treatment and will help to elucidate mechanisms and targets of their activity in
arterial remodelling.

Considering the observations made from different studies, we currently hypothesize that gut
microbiota is a critical player in the effect of resveratrol on cardiovascular health, especially in arterial
remodelling (Figure 2). Resveratrol’s effects on the alteration of the gut microbiota may lead to the
change in microbiota-derived metabolites including SCFA, homocysteine, TMAO. However, reports
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on the direct effect of these metabolites in the cardiovascular system are limited and the underlying
mechanisms remain unclear. Further studies should at least include the monitoring of these important
microbiota-derived metabolites, as well as to dissect the molecular mechanisms. The translocation of
gut microbiota and the induced inflammation can cause arterial remodelling. SIRT1 is an important
regulator for cardiovascular health [44,173,174]. The controversy of SIRT1 activation and resveratrol,
and the interaction with the gut microbiota, remain an interesting topic that is important in studying
the crosstalk between gut microbiota and cardiovascular system.Nutrients 2020, 12, 119 13 of 22 
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Figure 2. Gut microbiota is a critical player in the effect of resveratrol in arterial remodelling.
Environments factors such as diets can affect the population of the gut microbiota. Inappropriate
diet such as high fat diet (HFD), as well as aging and obesity, can cause gut dysbiosis. Gut dysbiosis
includes the reduction of species diversity, increased F/B ratio and the reduction of good microbes
(e.g., Baillus, Lactobacillus, Ruminococcaceae, Akkermansia, etc.) can cause arterial remodelling and other
cardiovascular complications. Interestingly, germ-free mice show reduced Ang II activation compared
to conventional mice. Resveratrol has been shown to normalize the gut dysbiosis in certain diet models,
increase the microbial diversity and good bacteria and reduce the F/B ratio. Resveratrol isoforms
and derivatives are modulated by the gut microbiota and have more potent effect in antioxidant
and anti-inflammation. Gut dysbiosis also results in the changes in microbiota derived metabolites,
including the increase in TMAO, homocysteine, LPS and indoxylsulfate, and the reduction of SCFA
(e.g., butyrate). Further studies directions may address the potential pathways and/or targets that
are modulated by the microbiota derived metabolites in responsible for arterial remodelling. Also,
the association between the known pathways that induce arterial remodelling and gut microbiota and
metabolites should be dissected. HM diet: high methionine diet. HFHS diet: high fat high salt diet.
F/B: Firmicutes to Bacteroidetes ratio. TMAO, Trimethylamine-N-oxide. LPS, lipopolysaccharide. SCFA,
short-chain fatty acids. NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells. TGF-β1,
transforming growth factor-beta 1. AGE, Advanced glycation end-product. eNOS, endothelial nitric
oxide synthase. NO, nitric oxide. MMP, matrix metalloproteinases. TLR4, toll-like receptor 4. AhR,
aryl hydrocarbon receptor. Ang II, angiotensin II.

The scattered evidence from different studies of resveratrol treatment in cardiovascular
complications or gut microbiota suggests that the beneficial effects of resveratrol on arterial remodelling
and gut microbiota can be linked. This review highlights the importance of a healthy gut microbiota
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in manifesting the protective effects of resveratrol in cardiovascular disease, especially in arterial
remodelling. Supplementation together with specific probiotic may synergize the bioavailability
and beneficial effects of resveratrol. Targeting the microbiome may be a valuable alternative for the
treatment of arterial remodelling as well as other cardiovascular complications.
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