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Abstract: Oligosaccharides (OS) are commonly added to infant formulas, however, their physiological
impact, particularly on adult health programming, is poorly described. In adult animals, OS modify
microbiota and stimulate colonic fermentation and enteroendocrine cell (EEC) activity. Since neonatal
changes in microbiota and/or EEC density could be long-lasting and EEC-derived peptides do
regulate short-term food intake, we hypothesized that neonatal OS consumption could modulate
early EECs, with possible consequences for adult eating behavior. Suckling rats were supplemented
with fructo-oligosaccharides (FOS), beta-galacto-oligosaccharides/inulin (GOS/In) mix, alpha-galacto-
oligosaccharides (αGOS) at 3.2 g/kg, or a control solution (CTL) between postnatal day (PND) 5 and
14/15. Pups were either sacrificed at PND14/15 or weaned at PND21 onto standard chow. The effects
on both microbiota and EEC were characterized at PND14/15, and eating behavior at adulthood.
Very early OS supplementation drastically impacted the intestinal environment, endocrine lineage
proliferation/differentiation particularly in the ileum, and the density of GLP-1 cells and production
of satiety-related peptides (GLP-1 and PYY) in the neonatal period. However, it failed to induce
any significant lasting changes on intestinal microbiota, enteropeptide secretion or eating behavior
later in life. Overall, the results did not demonstrate any OS programming effect on satiety peptides
secreted by L-cells or on food consumption, an observation which is a reassuring outlook from a
human perspective.
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1. Introduction

Preventing unhealthy feeding behavior is highly desirable since deleterious eating habits are
associated with health problems, including a higher risk of overweight and obesity [1]. Since eating
behavior is the result of integrated central and peripheral biological systems that are influenced by
genetic, psychological, and environmental factors [2], its optimization is highly complex and requires
the full elucidation of the mechanisms that control eating behavior. Central regulation of appetite
is mediated by peripheral inputs generated by stomach distension, through signals from the gut
epithelium when it senses the availability of nutrients, such as satiety-regulating peptides synthetized
and released by enteroendocrine cells (EECs), as well as by long-term energy signals released by
adipose tissue and cerebral inputs generated by hedonics and rewards circuits [2,3].
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In addition to the evident progress in understanding these interconnections, recent advances
include two major findings: first, eating behavior may be programmed very early in life, and second,
it could be regulated by intestinal microbiota.

According to the developmental origin of health and disease (DOHaD) theory, adverse early-life
conditions may predispose a person to disordered eating [4]. Among the environmental stressors that
may have an effect, it is suggested in both animal and human studies that perinatal nutrition could
program the appetite (see [5,6] for reviews). In rodents, experiments based on restricting maternal
nutrition and/or manipulating litter size have demonstrated that both pre- and post-natal nutrition
may alter food intake [7–9] and/or food preference [10] in offspring, with subsequent repercussions in
adulthood. In humans, although controversial results have been observed concerning the influence of
prenatal nutrition on later eating behavior (see [11] for review), some observational evidence suggests
that early nutrition/growth affects appetite regulation [12–14] and food preference programming,
as demonstrated after repeated exposure to new flavors [15].

With regard to the involvement of intestinal microbiota in feeding behavior, although it has been
known for several years that fermentation catalyzed by intestinal microbiota stimulates the expression
of satiety peptides by EECs [16,17], it is only recently, in connection with the growing appreciation
of the role that intestinal microbiota play in regulating host physiology, that this topic has generated
renewed interest [18,19]. As pointed out in these reviews, some observations objectively support
the involvement of intestinal microbiota in the regulation of feeding behavior. Thus, in ascending
order of convincing power, we can quote: (i) the differences observed in microbiota composition
or diversity in patients with anorexia nervosa (see [18] for review, [20]); (ii) the fact that feeding
behavior differs between germ-free and conventional animals (see [21] for an example), (iii) the ability
of certain microbiota modulating agents—e.g., certain prebiotic oligosaccharides [22,23]—to affect
feeding behavior, and (iv) the delineation of mechanistic pathways that link microbiota with central
and peripheral neuroendocrine systems responsible for feeding behavior, a finding which supports
the existence of a causative link. For example, EECs that secrete appetite-regulating peptides can be
mentioned since they have a large diversity of receptors enabling them to sense microbial inputs such
as fermentation-derived short chain fatty acids (SCFA), secondary biliary salts or pathogen-associated
molecular patterns [see 18 for review].

Reconciliating these two emerging issues related to the regulation of feeding behavior, i.e.,
its possible programming in early life and its control by intestinal microbiota, we hypothesized that
early modifications to microbiota may program adult feeding behavior. This programming could stem
from either the programming of intestinal microbiota (e.g., [24]) or the early impacts of microbiotal
changes with long-lasting consequences for the peripheral neuroendocrine systems that control adult
feeding behavior and/or the central sensing of it. In this respect, it is worth mentioning the ability
of microbiota-modulating agents to affect the hypothalamic expression of neurogenic factor (BDNF)
during the neonatal stage [25], and the potential programmable character of both the EECs [26] and
the vagal sensitivity [9]. In addition, the putative ability of the gut microbiota to act through epigenetic
mechanisms (see [27] for review) as well as the ability of the microbiota presence [28] and certain
microbiota modulating agents [e.g., in the case of prebiotics [29,30]) to modulate some behaviors in
adults mice can be cited, assuming that they are transposable in the neonatal period.

Using the rat as a model, we therefore evaluated whether neonatal modulation of the microbiota
induced by prebiotics could program eating behavior and the secretion of gastrointestinal peptides
in adulthood. We first verified that the presuppositions underlying our hypothesis were present in
our case, by investigating the immediate impact of the neonatal prebiotic supplementation on both
the intestinal microbiota and the maturation and functioning of EEC in suckled rats. We decided to
use indigestible oligosaccharides (OS) to modify the intestinal microbiota of the neonatal rats for two
reasons: first, OS are recognized as intensively-fermented prebiotics [31], which are also operant in
neonatal rats [24] and infants (see [32] for review) and have been shown to stimulate EEC proliferation
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and activity in adult animals [33,34]; second, they represent relevant nutrients in neonatal nutrition
since they are commonly added to infant formula to better mimic maternal milk [35].

2. Materials and Methods

2.1. Ethics Statement

All experiments were conducted in accordance with the European Union Directive on the
protection of animals used for scientific purposes (2010/63/EU). The protocols were approved by the
Ethics Committee for Animal Experiments for the Pays de la Loire region (France) and the French
Ministry of Research (APAFIS#3652-20 160 1 1910192893 v3). The animal facility is registered by the
French Veterinary Department as A44276.

2.2. Animal Experiment

Primiparous female Sprague-Dawley rats (n = 16) were obtained on day one of gestation (G1)
from Janvier-labs (le Genest Saint Isle, France) and housed individually (22 ± 2 ◦C, 12:12-h light/dark
cycle) with free access to water and chow (A03, Safe Diet, Augy, France). At birth, 8 litters were culled
to 8 male pups per mother with systematic cross fostering as previously described [24]. From day 5 to
day 14/15 of life (PND5 to PND14/15), the pups were given various solutions of FOS, GOS/In mix (9:1),
αGOS or a mix of the monomers present in the OS solutions (Table 1) by oral gavage. These OS were
selected either because they are already used in infant formula (GOS/In, FOS [35]) or because they
constitute a new source of OS, the physiological properties of which are to be characterized (αGOS).
Two pups from each litter were given one of the 4 solutions daily.

Table 1. Composition of solutions administered by gavage to pups from PND5 to PND14/15 (g·mL−1).

CTL FOS GOS/In αGOS

GOS syrup (VivinalGOS, FrieslandCampina Domo, LE Amersfoort,
The Netherlands) 0.65

Inulin powder (Raftiline HP, BENEO-Orafti S.A., Tienen, Belgium) 0.03
FOS powder (Beneo P95, BENEO-Orafti S.A., Tienen, Belgium) 0.34

αGOS powder (Olygose, Venette, France) 0.32
α-Lactose monohydrate (L3625, Sigma-Aldrich, St. Quentin Fallavier, France) 0.096 0.096 0.096

D(+)-glucose monohydrate (108342, Merck Santé SAS, Fontenay sous Bois, France) 0.087 0.082 0.087
D(+)-galactose monohydrate (104058, Merck Santé SAS, Fontenay sous Bois, France) 0.005 0.005 0.004

D(−)-fructose (F0127, Sigma-Aldrich, St. Quentin Fallavier, France) 0.015 0.015 0.015
Saccharose (S9378, Sigma-Aldrich, St. Quentin Fallavier, France) 0.002 0.002 0.002

Total oligosaccharides § 0.30 0.30 0.30
Total digestible sugars § !! 0.20 0.20 0.20 0.20

CTL, control; FOS, fructo-oligosaccharides; 93.2% dry matter composed of 90.4% oligomers and 6.6% monomers,
providing 0.015 g·mL−1 of fructose, 0.005 g·mL−1 of glucose and 0.002 g·mL−1 of saccharose; GOS/In, mix (9:1) of
galacto-oligosaccharides and long chain fructo-oligosaccharides (In, inuline). For GOS: 75% dry matter composed of
59% oligomers and 41% monomers; for inulin: 97% dry matter composed of 99.5% oligomers, the mix was providing
0.095 g·mL−1 of lactose, 0.086 g·mL−1 of glucose and 0.005 g·mL−1 of galactose; αGOS: alpha galacto-oligosaccharides
(95.9% dry matter composed of 99.4% oligomers, providing 0.001 g·mL−1 of galactose. !!, § These calculations take
into account the dry matter of the components, their purity, and the amount of digestible sugars they contain.

The pups were weighed daily and the administered volume was adapted to body weight to reach
3.2 g/kg in order to approximate the dosage actually consumed by babies fed with prebiotic enriched
formula, taking into account both the difference in metabolic rate between rats and humans and the
true prebiotic content of infant formula [35].

Four of the 8 litters were used for our main objective, i.e., to assess eating behavior programming:
rats from these 4 litters (n = 8 per group) were weaned at PND21 onto standard chow (A03, Safe Diet,
Augy, France) in individual cages until PND124/126, when they were sacrificed by decapitation after
induction of deep anesthesia (isoflurane/O2, 5 L·min−1). During the follow-up, food consumption was
measured 3 times a week. Rats from the 4 remaining litters (n = 8 per group except for FOS where
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n = 7 as explained below) were sacrificed at PND14/15 by the method described above to investigate
the immediate impact of the neonatal prebiotic supplementation on both intestinal microbiota and the
maturation and functioning of EECs.

This experimental set-up was designed to form 8 supplemented males, originating from 4 different
litters, per group at each studied age. Due to the death of one of the pups during the supplementation
period (this pup was then replaced by an untreated one to equilibrate the litter size), the number of
pups in the FOS group at PND14/15 was reduced to 7. These values are maximum numbers that
are not always found in each of the analyses (see the illustration legends). This stemed from either
physiological reasons (e.g., 2 animals did not eat at all during the fasting-refeeding test), or because of
quality requirements (e.g., reliable data from in physiological cages could only be obtained for n = 7 in
CTL and GOS/In groups; n = 6 in FOS group and n = 5 in αGOS group), or statistical inconsistency (e.g.,
outliers identified by the Dixon’s Q test were excluded in RT-qPCR analysis as well as food/beverage
consumption follow-ups), or technical problems (e.g., accidental spillage of supernatant before analysis
of bacterial end-products or sequencing failure during 16S rDNA analysis or poor quality of some
tissue sections in the case of immunochemical analysis). Nevertheless, in all analyses, the 4 different
litters were always represented.

2.3. Tissue Collection

Under anesthesia, intracardiac blood was collected in a tube containing EDTA (Microtubes 1.3 mL
K3E, Sarstedt MG & Co, Marnay, France) and plasma collected after centrifugation 2000× g, 15 min,
4 ◦C) was frozen at −20 ◦C for further analysis. The contents of the most distal 15 cm of the ileum were
harvested by flushing, using 1 mL of Hanks’ Balanced Salt Solution (HBSS, Thermo Fisher Scientific,
St-Herblain, France), and the cecocolonic (PND14/15) or cecal (PND124/126) content was collected,
weighed, mixed with 5-fold or 2-fold their volume of sterile water (PND14/15 and PND124/126,
respectively). After complete homogenization, these cecocolonic/cecal suspensions were centrifuged
7800× g, 20 min, 4 ◦C) then both supernatants and pellets were frozen at −20 ◦C for analysis of the
fermentation end-products (SCFA and lactate) and microbiota, respectively. Intestinal tissues (ileum
and proximal colon) were rapidly collected and frozen in liquid nitrogen for RNA analysis. Additional
tissue samples were fixed in 4% paraformaldehyde for immunofluorescence analysis.

2.4. Eating Behavior

2.4.1. Meal Pattern

Between PND74 and PND99, eating behavior was analyzed in physiological cages (Phecomb
cages, Bioseb, Vitrol, France) as previously described [8]. Briefly, the rats were housed individually
and following 24 h of acclimatization to the cage and refilling with fresh food between 9.00 a.m. and
11.00 a.m., data were recorded every 5 s over a 20-h period. Due to the intervention during the diurnal
phase, the analysis was reduced to 8 h whereas the nocturnal phase was 12 h. The exact feeding pattern
was defined with a minimal size of 0.1 g, a minimum duration of 10 s and a minimum inter-meal
interval of 10 min. Events such as large vibrations (contact with the feed tray without eating) were
filtered by the Phecomb system monitoring software (Compulse v1.1.01). The reliability percentage of
the quality signal was calculated by the software and only experiments with a percentage >80% were
used. Meal parameters extracted from Compulse software included number of meals, meal size and
duration, inter-meal intervals and satiety ratio.

2.4.2. Taste Preference

Preference for sweet taste was measured at PND110 using the bottle test experiment [36]. After a
two-day habituation to the presence of two bottles in their own cages, the animals had the choice of
the two bottles, one containing tap water and the other 0.05% saccharin (Sigma-Aldrich, St. Quentin
Fallavier, France). Drink intake was measured daily for three days. The position of the two bottles was
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reversed each day to prevent position preference bias. The sweet preference score was calculated as
the ratio between the volume of saccharin solution consumed and the total drink intake in 24 h, then
multiplied by 100. Preference was defined as a percentage greater than 50.

2.5. Fasting-Refeeding Test, Kinetics of GLP-1 and PPY Release and Response to Glucose

At PND105, a 4 h kinetic of GLP-1 and PYY release in plasma was carried out. Rats were not fed
for 16 h to induce hunger and then fed for 20 min with a calibrated quantity of chow (A03, safe Diet).
Food intake was weighed at the end of the 20 min period. Any crumbs that fell in the cage were
weighed and deducted from the food intake. Blood samples were collected from the tail vein in tubes
containing EDTA (Microvette CB300 EDTA 3K, Sarstedt, Marnay, France) at 0 (15 min before refeeding),
30, 60, 120, and 180 min after the beginning of the meal.

At PND124/126, the rats were not fed for 16 h, and 2 h before being sacrificed they were given an
oral bolus of glucose (2 kg/kg BW) in order to challenge glucose sensing in GLP-1/PYY-producing EECs.

2.6. Plasma Gastrointestinal Peptides

The plasma concentration of total GLP-1 and total PYY was assayed by the ELISA technique using
kits from Millipore (Merck- Millipore, Molsheim, France) and Phoenix Pharmaceutical (Phoenix France
S.A.S, Strasbourg, France), respectively.

2.7. Fermentation End-Products

Ileal and cecal supernatants were centrifuged 8000× g, 20 min, 4 ◦C, diluted (1/10) with 0.5 M oxalic
acid and SCFA (acetate, propionate, butyrate, isobutyrate, valerate and isovalerate) were analyzed
by gas chromatography as previously described [37]. The D-and L-lactates were measured in the
supernatants after heating to 80 ◦C for 20 min with a D/L-lactic acid enzymatic kit following the
manufacturer’s instructions (Biosentec, Toulouse, France).

2.8. Immunochemistry

Tissue sections (4–5 µm) of fixed ileum and proximal colon were double-stained with a goat
polyclonal antibody raised against GLP-1 diluted at 1/200 (Santa Cruz Biotechnology Inc, Santa Cruz,
USA) and a rabbit anti-chromograninA (chrgA, diluted at 1/1000 (ImmunoStar Inc, Hudson, USA),
followed by incubation with anti-goat and anti-rabbit fluorescent secondary antibodies (1/1000). Nuclei
were counterstained with 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI, Sigma-Aldrich,
St. Quentin Fallavier, France). Tissues sections were mounted in Prolong Gold anti-fading medium
(Molecular Probes, Thermo Scientific, Courtaboeuf, France). Three sections per sample were analyzed
with a Nanozoomer (×20) (Hamamatsu Photonics France, Massy, France). The number of fluorescent
cells along the crypt-villus axis unit was counted twice by a blind operator, using the NDP view
software (Hamamatsu, Photonics France, Massy, France). A total of 40 to 60 crypt-villus units per
section were counted.

2.9. Quantitative Real-Time PCR

Total RNA extraction from the ileum and colon was carried out using a QIAamp RNA Blood
Mini kit (Qiagen, Courtaboeuf, France) following the manufacturer’s instructions. Two micrograms of
RNA were reverse-transcribed using M-MLV reverse transcriptase (Promega, Charbonnières-les-Bains,
France). Five microliters of 1/40 dilution of cDNA solution were subjected to RT-qPCR in a Bio-Rad
iCycler iQ system (Biorad, Marnes-la-Coquette, France) using a qPCR SYBR Green Eurobiogreen®Mix
(Eurobio, Les Ulis, France). The quantitative PCR consisted of 40 cycles, 15 s at 95 ◦C, 15 s at
60 ◦C and 15 s at 72 ◦C each. Primers sequences are shown in Table S1 of the Supplementary
Material. For quantification of Neurog3, rat PrimePCRTM SYBR®GreenAssay Neurog3 (Biorad,
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Marnes-la-Coquette, France) was used. Relative mRNA quantification was expressed using the 2−∆∆Cq

method with actin gene as a reference.

2.10. Bacterial 16S rDNA Sequencing of Cecal Contents

DNA was extracted from pellets of ceco-colonic content (max 250 mg) using the QIAamp Fast DNA
Stool Mini kit (Qiagen, Courtaboeuf, France) after enzymatic and mechanical disruptions as described
previously [37] except that homogenization was carried out at 7800 rpm for 3 × 20 s intervals with 20 s
rest between each interval in a Precellys® “evolution” bead-beater (Bertin, Montigny-le-Bretonneux
France). The V4 hyper-variable region of the 16S rDNA gene was amplified from the DNA extracts
during the first PCR step using composite primers (5’-CTTTCCCTACACGACGCTCTTCCGATCTGTGY
CAGCMGCCGCGGTAA-3′ and 5’-GGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACHVGGG
TWTCTAAT-3′) based on the primers adapted from Caporaso et al. (i.e., 515F and 806R) [38]. Amplicons
were purified using a PP201 PCR Purification Kit (Jena Bioscience, Jena, Germany). Paired-end
sequencing was performed on a HiSeq 2500 System (Illumina, San Diego, CA, USA) with v3 reagents,
producing 250 bp reads per end, following the manufacturer’s instructions by the GeT+-PlaGe platform
(INRA, Toulouse, France). The 16S rDNA raw sequences were analyzed with FROGS v2 pipeline
(http://frogs.toulouse.inra.fr/) [39]. After de-multiplexing, quality filtering and chimera removing, the
taxonomic assignments were conducted for OTUs with abundance >0.005% with Blast using Silva
128 database containing sequences with a pintail score at 80 to determine the bacterial compositions.
FROGSSTAT Phyloseq tools were used to normalize raw abundances by rarefaction and to calculate
alpha and beta diversity indices.

2.11. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism 6 software (GraphPad Software
Inc., San Diego, USA) or R (librairies “stats v3.5.1” and “corrplot v0.84”, [40]). Differences between
treatments were searched using one-way ANOVA followed by Tukey’s multiple comparison tests for
most data, with the exception of growth and food consumption data which were subjected to multiple
t-tests with correction for multiple comparison using the Holm-Sidak method. Sweet taste preference
test was analyzed by the one sample t-test to compare to compare data against the 50% (no preference)
value. A p value < 0.05 was considered statistically significant.

3. Results

3.1. Neonatal OS Supplementation Did Not Substantially Affect Rat Growth

Both FOS and αGOS supplementation was associated with a significant transitory reduction
of pup growth in the first days of intervention (PND7 to PND10 and PND6 to PND8 respectively,
Figure S1). When compared with body weights from the CTL group, the differences observed were
only 9.1 to 11.5% and did not significantly affect the cumulative weight gains measured either from
birth until the end of supplementation or for the whole lactation period (Table 2).

Table 2. Bodyweight gain (g) during lactation.

Treatment BW Gain PND0-14 BW Gain PND0-20

CTL 30.4 ± 4.2 1 50.5 ± 6.0
FOS 28.0 ± 3.4 45.7 ± 4.6

GOS/In 29.4 ± 3.3 49.6 ± 5.8
αGOS 27.9 ± 2.7 46.8 ± 5.1

1 Data are means ± SD collected from the total effective of rats (n = 15–16 per group during PND0-14 and n = 8
during PND0-20). BW, bodyweight.

No significant differences in bodyweight were observed between groups after weaning (Figure S2).

http://frogs.toulouse.inra.fr/
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3.2. Neonatal OS Supplementation Exerted a Marked Immediate Impact on Intestinal Environment

3.2.1. OS Supplementation Modified Both Composition and Activity of Neonatal Intestinal Microbiota

Following 16S rDNA sequencing, no significant differences were noticed in raw sequence numbers
between cecocolonic samples collected at PND14/15 (355,245 ± 10,367, 30,306 ± 13,817, 40,275 ± 18,343
and 31,808 ± 10,101 for CTL, FOS, GOS/In and αGOS, respectively) or in percentages of sequences kept
after quality filtering (83.8 ± 4.0, 76.4 ± 18.4, 83.9 ± 4.2, and 81.7 ± 7.1). The cecocolonic contents of
animals supplemented with OS exhibited similar reductions in richness (p < 0.001) compared with
CTL animals (Chao1 values: 66.2 ± 21.0, 72.9 ± 28.1, and 73.9 ± 35.3 for FOS, GOS/In and αGOS,
respectively versus 180.0 ± 35.7 for CTL). The cluster dendrogram generated using weighed UniFrac
metric which illustrates beta or between-sample diversity, highlighted an obvious dissimilarity between
the microbiotas of the OS-supplemented animals and those of animals from the CTL group (Figure 1)
but did not reveal any effect of the nature of the OS.
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Figure 1. Hierarchical clustering based on the Ward’s method of phylogenetically informed distance
matrix computed using the weighted UniFrac metric for cecocolonic contents collected at postnatal day
(PND) 14/15 (n = 6 to 8 per group).

When considering bacterial families occurring at more than 0.01% of the total sample abundances
(Table 3), the OS impact was typified by significant decreases in Lactobacillaceae, Bacteroidales S24-7
group, Prevotellaceae, Streptococcaceae, Peptococcaceae, Coriobacteriaceae, Aerococcaceae, Family
XIII, and Rikenellaceae. In addition, OS supplementation decreased Ruminococcaceae abundance
but this impact only reached statistical significance for FOS and αGOS. These decreases in relative
abundance were differently compensated according to the OS: increases in Bifidobacteriaceae reached
statistical significance following FOS and αGOS supplementations, Enterobacteriaceae increased
following αGOS supplementation and Lachnospiraceae increased following GOS/In supplementation.

Significant differences between OS were scarce and only occurred between GOS/In and αGOS in
their impact on Lachnospiraceae (Table 3).

Concurring with these compositional changes, the 10-day supplementation greatly affected
fermentation end-product concentrations in both ileal and colonic contents at PND14/15.

In the ileum, lactate concentration was below the detection limit (0.22 mM) in all animals, and the
concentration of acetate—the sole SCFA present at this age in this intestinal segment—was significantly
increased (p < 0.005) through FOS supplementation (6.9 ± 3.6 mM) compared to CTL (0.3 ± 0.4 mM),
GOS/In (1.6 ± 2.0 mM) and αGOS (0.6 ± 0.8 mM).
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Table 3. Relative abundances (%) for families with abundances > 0.01% at PND14/15 according to the
postnatal OS supplementation.

Family CTL FOS GOSIn αGOS

Actinomycetaceae 0.095 ± 0.084 1 0.028 ± 0.032 0.076 ± 0.056 0.068 ± 0.058
Aerococcaceae 0.086 ± 0.029 a,2 0.011 ± 0.011b 0.015 ± 0.012 b 0.020 ± 0.019 b

Alcaligenaceae 0.020 ± 0.041 0.030 ± 0.047 0.378 ± 0.576 0.036 ± 0.053
Bacteroidaceae 2.352 ± 0.991 6.510 ± 10.047 6.837 ± 5.729 3.719 ± 5.492

Bacteroidales.S24.7 group 6.812 ± 2.953 a 0.053 ± 0.080 b 0.098 ± 0.094 b 0.084 ± 0.103 b

Bifidobacteriaceae 0.624 ± 0.45 a 17.188 ± 12.735 b 7.894 ± 7.947 ab 13.577 ± 10.631 b

Campylobacteraceae 0.009 ± 0.024 0.093 ± 0.220 0.066 ± 0.151 0.294 ± 0.546
Clostridiaceae.1 0.273 ± 0.146 2.413 ± 3.231 5.509 ± 8.749 5.044 ± 4.581

Coriobacteriaceae 0.108 ± 0.039 a 0.039 ± 0.034 b 0.036 ± 0.041 b 0.023 ± 0.018 b

Corynebacteriaceae 0.032 ± 0.023 0.007 ± 0.011 0.020 ± 0.030 0.012 ± 0.023
Desulfovibrionaceae 0.098 ± 0.182 0.000 ± 0.000 0.003 ± 0.008 0.006 ± 0.014
Enterobacteriaceae 13.86 ± 5.97 a 23.48 ± 12.23 ab 19.51 ± 6.69 b 33.42 ± 11.99 b

Enterococcaceae 0.435 ± 0.707 0.145 ± 0.203 2.892 ± 6.293 0.542 ± 0.771
Erysipelotrichaceae 0.682 ± 0.387 4.080 ± 3.988 3.774 ± 4.950 2.766 ± 3.002

Family.XIII 0.062 ± 0.030 a 0.004 ± 0.008 b 0.000 ± 0.000 b 0.001 ± 0.003 b

Lachnospiraceae 6.327 ± 2.300 a 9.787 ± 6.180 ab 15.298 ± 9.544 b 4.962 ± 4.587 b

Lactobacillaceae 57.47 ± 8.72 a 28.74 ± 10.84 b 24.47 ± 5.71 b 31.13 ± 11.24 b

Micrococcaceae 0.140 ± 0.064 0.075 ± 0.074 0.071 ± 0.053 0.110 ± 0.105
Pasteurellaceae 0.582 ± 0.581 0.236 ± 0.235 0.456 ± 0.297 0.394 ± 0.446
Peptococcaceae 0.396 ± 0.182 a 0.006 ± 0.015 b 0.015 ± 0.019 b 0.007 ± 0.021 b

Peptostreptococcaceae 0.747 ± 0.485 0.471 ± 0.262 0.543 ± 0.108 0.640 ± 0.379
Porphyromonadaceae 1.242 ± 1.153 5.924 ± 9.747 9.826 ± 15.228 2.055 ± 5.475

Prevotellaceae 2.136 ± 1.540 a 0.014 ± 0.016 b 0.011 ± 0.018 b 0.028 ± 0.060 b

Rikenellaceae 0.034 ± 0.039 a 0.001 ± 0.004 b 0.000 ± 0.000 b 0.001 ± 0.003 b

Ruminococcaceae 3.242 ± 0.743 a 0.135 ± 0.147 b 1.610 ± 2.622 b 0.406 ± 0.665 b

Streptococcaceae 2.118 ± 0.620 a 0.510 ± 0.316 b 0.586 ± 0.156 b 0.643 ± 0.450 b

1 Data are means ± SD (n = 6 to 8 per group). 2 Within a row, values followed by different letters (a,b,ab) differ
significantly (p < 0.05).

In the cecum, the concentration of total end products increased in all OS groups compared to CTL
(Figure 2). This was mainly due to an increase in SCFA concentration, which only reached statistical
significance in the case of FOS and also an increase in lactate concentration in the case of αGOS.

Increases in total SCFA reflected acetate increases which were significant for both FOS and GOS/In
groups, and paralleled significant decreases in pH values (Table 4). In addition, OS supplementation
shifted microbiotal activity, as evidenced by significant changes in the relative proportions of acetate
(93.8 ± 4.6, 93.1 ± 4.1, and 95.4 ± 2.9% for FOS, GOS/In and αGOS, respectively versus 86.3 ± 4.5% for
CTL) and propionate (5.4 ± 4.6, 5.2 ± 3.4, and 3.6 ± 2.9% for FOS, GOS/In and αGOS, respectively
versus 10.7 ± 3.0% for CTL). Concentration and relative proportions of butyrate—which is scarcely
produced in the neonatal stage—were not affected significantly by supplementation.

Table 4. Concentration (mM) of major short chain fatty acids (SCFA) in cecocolonic contents at PND
14/15.

Treatment Acetate Propionate Butyrate pH

CTL 3.17 ± 1.05 1,a,2 0.39 ± 0.16 0.07 ± 0.04 6.9 ±0.3 a

GOS/In 5.82 ± 1.32 b 0.33 ± 0.21 0.10 ± 0.09 6.3 ±0.2 b

αGOS 5.69 ± 1.77 ab 0.28 ± 0.27 0.05 ± 0.00 6.1 ±0.2 b

FOS 8.00 ± 2.94 b 0.47 ± 0.37 0.06 ± 0.04 6.2 ±0.2 b

1 Data are means ± SD (n = 7 to 8 per group). 2 Within columns, values followed by different letters (a,b,ab) differ
significantly at p < 0.05.
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In the ileum, a profound effect on the enteroendocrine lineage was induced by neonatal OS 
supplementation, as revealed by a significant decrease in Neurog3 expression in the OS groups 
compared to CTL, whereas, an early expressed marker in the commitment secretory lineage (Atoh1) 
was not affected significantly (Figure 3). The related expression of genes specifically implied in the 

Figure 2. Cecocolonic concentrations of fermentation end-products. Individual, mean and SD values are
plotted (n = 7 to 8 per group). Different letters indicated significant difference (p < 0.05) between groups.

3.2.2. OS Supplementation Modified both Differentiation and Activity of the Neonatal EEC

In the ileum, a profound effect on the enteroendocrine lineage was induced by neonatal OS
supplementation, as revealed by a significant decrease in Neurog3 expression in the OS groups
compared to CTL, whereas, an early expressed marker in the commitment secretory lineage (Atoh1)
was not affected significantly (Figure 3). The related expression of genes specifically implied in the
differentiation of EECs (Pax4 and Pax6) decreased significantly in OS supplemented groups compared
to CTL, whereas expression of Foxa1 did not vary between the groups. Similar to Pax4 and Pax6,
Neurod1 expression decreased in OS groups compared with CTL, but this did not reach statistical
significance for FOS. Regarding the expression of gene coding for peptides produced by mature L-cells,
Pyy increased significantly in OS groups compared to CTL. At the same time, despite a 2-fold increase
in Gcg expression in the OS groups compared to CTL, this effect was not statistically significant due to
the widely varying expression between samples.

In the proximal colon, the impact of OS supplementation was much more moderate and their
only significant effect was a decrease in the expression of Pax4 (Figure S3).

Along with this profound remodeling in the expression of markers of L-cell differentiation,
the number of GLP-1/ChgrA positive cells, i.e., mature EECs, was higher in the ileum of pups from OS
groups compared to CTL but only reached statistical significance for villi (Figure 4A–C).
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Figure 3. Relative expression of genes implied in the endocrine lineage and in L-cells differentiation
in the ileum. Different letters indicate significant difference between groups (p < 0.05). Data are
fold-change expressed in % of CTL group. Individual values, median with interquartile range are
plotted (n = 7 to 8 per group).
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Individual, mean and SD values are plotted (n = 6 to 7 per group). (C) Representative images of 
immunofluorescence in ileal sections from a control solution (CTL) (top) and αGOS groups (down), 
arrows indicate positive fluorescence in cells: blue (DAPI, nuclei staining), red (GLP-1 cells), green 
(ChrgA cells) and merge (GLP-1/ChrgrA cells). Bars indicate 100 μm.  

In agreement with this rise in the number of mature enteroendocrine cell (EEC), plasma 
concentrations of GLP-1 (Figure 5A) and PYY (Figure 5B) were significantly increased by all the 
neonatal OS supplementations, as compared with CTL. 

Figure 4. Effect of oligosaccharides (OS) supplementation on the density of GLP-1 cells in ileum:
(A) in villi (B) in crypts. Different letters indicate significant differences among groups (p < 0.05);
Individual, mean and SD values are plotted (n = 6 to 7 per group). (C) Representative images of
immunofluorescence in ileal sections from a control solution (CTL) (top) and αGOS groups (down),
arrows indicate positive fluorescence in cells: blue (DAPI, nuclei staining), red (GLP-1 cells), green
(ChrgA cells) and merge (GLP-1/ChrgrA cells). Bars indicate 100 µm.

In agreement with this rise in the number of mature enteroendocrine cell (EEC), plasma
concentrations of GLP-1 (Figure 5A) and PYY (Figure 5B) were significantly increased by all the
neonatal OS supplementations, as compared with CTL.
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Prevotellaceae. For these factors, the sole negative correlation was that between Neurod1 and 
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densities and Pyy expression, but not Gcg expression, were negatively correlated with the same 
families including Prevotellaceae. 

Figure 5. Plasma concentration of (A) Total GLP-1; (B) Total PYY at PND 14/15. Different letters indicate
significant differences among groups (p < 0.05). Individual, mean and SD values are plotted (n = 7 to 8
per group).



Nutrients 2019, 11, 1967 12 of 26

Significant positive associations between plasma concentrations of GLP-1 and PYY and the
ileal expression of their respective genes were evidenced (Figure 6A). Conversely, these plasma
concentrations as well as the density of GLP-1 secreting cells, were inversely correlated with expressions
of Neurog3, Neurod1, Pax4, and Pax6. With respect to associations between microbiota and EEC
descriptors (Figure 6B), only some of the differentiating factors (Pax4, Neurod1, Pax6 and Neurog3)
exhibited significant positive correlations with the abundance of some bacterial families corresponding
to those the abundance of which was significantly reduced by OS, except for Prevotellaceae. For these
factors, the sole negative correlation was that between Neurod1 and abundance of Clostridiaceae.1.
Conversely, the PYY and GLP-1 plasmatic concentrations, EEC densities and Pyy expression, but not
Gcg expression, were negatively correlated with the same families including Prevotellaceae.Nutrients 2019, 11, 1967 13 of 27 
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microbiota in terms of both its composition and its fermentative activity, with repercussions not only 
in the cecocolon but also, as exemplified with FOS, in the ileum. An increased density of ileal L-EECs 
and their secreted anorectic hormones, GLP-1 and PYY, were observed and unexpectedly the 
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inhibited at the same time. Whether this strong impact of early OS supplementation on satiety 
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Figure 6. Correlograms within EEC descriptors (A) or between these descriptors and the relative
abundances of main bacterial families (B). Positive correlations are displayed in blue and negative
correlations in red. The intensity of the color and the size of the circles are proportional to the correlation
coefficients. Asterisks indicate the level of significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001). On the
right of the correlogram, the color legend shows the correspondence between correlation coefficients
and colors.
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Overall, these results indicate that OS supplementation profoundly modulates neonatal microbiota
in terms of both its composition and its fermentative activity, with repercussions not only in the
cecocolon but also, as exemplified with FOS, in the ileum. An increased density of ileal L-EECs and
their secreted anorectic hormones, GLP-1 and PYY, were observed and unexpectedly the expression of
transcription factors beyond the stage of secretory cell engagement (Atoh1) was inhibited at the same
time. Whether this strong impact of early OS supplementation on satiety peptide-related EECs could
last into later life and affect eating behavior was investigated further.

3.3. Neonatal OS Supplementation Had No Significant Long-Term Consequences

3.3.1. Neonatal OS Supplementation Did Not Significantly Program Enteropeptide Production or
Eating Behavior in Adulthood

To investigate the long-term effect of neonatal supplementation of OS on nutrient sensing in EECs,
once pups reached adulthood, we studied the release of GLP-1 and PYY in response to both a 20-min
test meal (PND 74/76) and an oral bolus of glucose (PND 124/126) after 16 h of fasting.

No significant differences were observed between groups in the amount of food consumed during
the 20-min test meal (Figure 7A). In response to this meal, the plasma concentration of GLP-1 increased
immediately after refeeding and returned to pre-prandial level 120 and 180 min later (Figure 7B).
The total amount of GLP-1 secreted during this period, quantified by AUC, did not differ significantly
between the groups (Figure 7C). PYY secretion did not show any postprandial peak or significant
differences between the groups (data not shown).
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analysis of feeding pattern using physiological cages from PND75 to PND100 and assessed the 
preference for sugar taste between PND109 and PND111. 

The analysis of food consumption during development, expressed per Kg of body weight to 
allow for strict comparison, only revealed a single significant difference which occurred at PND32 
between animals from the FOS and CTL groups (Figure 8), an observation which indicates that 

Figure 7. Fasting-refeeding test. (A) Food intake measured during refeeding (20 min-meal); (B) Plasma
concentration of total GLP-1 measured during the 3h-kinetic follow-up (means ± SD); (C) Total amount
of GLP-1 secreted during the 0-180min period expressed as AUC. Individuals, means and SD are
plotted. (n = 7 to 8 per groups).

Similarly, at PND 124/126, plasma concentrations of GLP-1 (CTL: 34.4 ± 13.5; GOS/In: 38.6 ± 28.6;
αGOS: 28.9 ± 10.0 and FOS: 37.9 ± 20.6 pM) and PYY (CTL: 84.7 ± 4.0; GOS/In: 88.7 ± 7.8; αGOS:
91.4 ± 7.3 and FOS: 91.5 ± 5.8 pM) measured 2h after an oral bolus of glucose did not show any
significant difference between groups.
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To investigate the long-term effect of a neonatal supplementation of OS on subsequent eating
behavior, we followed up the food consumption from weaning to adulthood, performed a refined
analysis of feeding pattern using physiological cages from PND75 to PND100 and assessed the
preference for sugar taste between PND109 and PND111.

The analysis of food consumption during development, expressed per Kg of body weight to
allow for strict comparison, only revealed a single significant difference which occurred at PND32
between animals from the FOS and CTL groups (Figure 8), an observation which indicates that
neonatal supplementation with OS did not greatly influence the subsequent food intake in our
experimental conditions.
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Figure 8. Daily consumption of food in the post-weaning stage, expressed as kilograms of bodyweight.
The asterisk indicates a significant difference between FOS and CTL groups (p < 0.05). Data are means
± SD (n = 7 to 8 by group and day).

This absence of effect on daily food consumption was confirmed by a detailed analysis of food
consumption: we observed no significant difference in meal patterns among the groups (food intake,
food intake per meal, number and duration of meals, latency to eat the first nocturnal meal, satiety
ratio and ingestion rate), whatever the period of measurement (total 20 h period of measurement,
diurnal period (8 h) or nocturnal period (12 h) (Figure 9 and Figure S4).

In the sweet taste preference test, there was no significant difference between groups in terms of
the consumption of saccharin solution expressed as a percentage of daily beverage intake, regardless
of the day of testing (Figure 10). Strikingly, the preference for sweet taste for the GOS/In group
did not reach statistical significance on the first day of the test, in contrast to the FOS and αGOS
groups. However, this preference did not persist on day 2, contrary to what was observed for the CTL
group. This suggests that neonatal supplementation with OS slightly reduced the persistence of sweet
preference in adulthood.
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Figure 9. Feeding patterns illustrated by (A) Meal number; (B) Food intake per meal; (C) Food intake during the considered period analyzed in physiological cages at
PND 75–100 (n = 5–7 per group). BW, bodyweight. Individuals, means and SD are plotted (n = 5 to 7 per groups).
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Figure 10. Preference for sweet taste. Data are means ± SD (n = 7 to 8). Asterisks represent significant
preference as compared with no preference (i.e., 50%, dotted line): *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.3.2. Neonatal OS Supplementation Did Not Significantly Program Adult Intestinal Microbiota

At adult age (PND 124/126), no significant differences were observed between treatments with
respect to the raw number of sequences obtained, percentages of sequences kept after quality filtering,
or alpha-diversity indexes (data not shown). Similarly, β-diversity analysis (Figure S5), principal
component analysis on OTU abundances (Data not shown) and comparisons of the cumulated relative
abundances at family level (Figure 11) failed to show any significant difference between cecal samples
with respect to neonatal supplementation. Finally, neither ileal nor cecal concentrations of SCFA
showed significant differences between the groups (Table S2).Nutrients 2019, 11, 1967 19 of 27 
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Overall, these data did not reveal that neonatal OS supplementation had any programming effect
on adult microbiota.
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4. Discussion

Considering that the regulation of feeding behavior could be programmed from the beginning
of life and controlled by intestinal microbiota, we hypothesized that modifications to the neonatal
microbiota could program adult feeding behavior. We therefore checked the ability of prebiotic-induced
intestinal microbiota modulations to affect the maturation and functioning of L-EECs in suckled male
rats, then assessed whether this resulted in delayed alterations in eating behavior and the secretion of
GI peptides in adulthood. The observed effects are specifically attributable to OS since we adjusted
the compositions of the administered solutions by taking into account the digestible sugar contents
of commercial OS sources. In this study, we show that neonatal supplementation with 3 different
OS strongly impacts cecocolonic microbiota, GLP-1 cell density in the ileum, and the production of
satiety-related peptides during the neonatal period, but does not induce any significant enduring effect
in adulthood on either eating behavior or gut peptide secretion.

The validity of this statement is obviously limited to our operating conditions which represent
both strengths and limitations for our study.

Limitations include the fact that we only studied males in order to avoid the already described
fluctuations in food intake throughout the estrous cycles [41], and did not characterize every components
of eating behaviour such as motivation. However, we believe that the numerous components
investigated allow for consideration of both its homeostatic and hedonic elements. We did not
investigate immediate impact of OS supplementations on feeding behavior to avoid the recognized
stress induced in pups by separation from the mother which would have been required to quantify
milk intake either by gravimetric [42] or deuterated water turnover methods [43]. We did consider
moreover whether neonatal prebiotic supplementation having an impact on the pups’ eating behavior
was beyond the scope of the programming of adult eating behavior. Nevertheless, we reported a
transitory reduction in BW gain in FOS and GOS/In groups between PND6 and PND10 which suggests
that the reducing impact of OS on food intake may also operate in the neonatal period.

Inversely, our study has three major advantages: the combination of hormonal, behavioral
and microbiological analyzes; the minimizing of the influence of lactating mother influence by
supplementing pups from the same litters with the different OS, and finally the use of OS doses
comparable to those actually consumed by toddlers.

4.1. Neonatal OS Supplementation Affected Intestinal Microbiota Despite Its Immaturity

Corroborating our previous findings based on a non-exhaustive analysis of the microbiota [24],
and in concurrence with several in vivo and in vitro studies investigating the impact in adulthood of
OS (including those of the αGOS [44]) on intestinal microbiota, in humans and animals (e.g., [45,46])
and in human infants (see [32] for review), all the oligosaccharides used here dramatically affected
neonatal microbiota in rat pups. This confirms that the prebiotic properties previously demonstrated in
adult rodents (e.g., [30,45,46]), also operate in neonatal pups despite the immaturity of the microbiota
at this stage of development [37].

In addition to these changes in composition and the reduction in microbiota richness, our neonatal
OS supplementations also modified the activity of the microbiota by stimulating the production of
acetate and lactate at the expense of that of propionate. This decrease in propionate concentration
stands out from what is observed in adult rats, for which GOS and FOS are frequently reported as
being particularly stimulating for propionate and/or butyrate production (e.g., [34,47]) and could be
related to the known progressive maturation of the microbiotal capacity to synthesis the different
SCFAs in neonates [37,48]. The production of butyrate is therefore barely detectable before the day 16
of life in rats [37]. In any case, the neonatal OS supplementation we performed resulted in microbiota
that differed greatly from that of unsupplemented animals, an observation which was a prerequisite
for investigating the ability of neonatal microbiota modulation to program adult eating behavior or
gut peptide response.
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4.2. OS Supplementation May Stimulate Ileal EECs to Produce GLP-1/PYY While Acting in Feedback on
Endocrine Precursors

Our results showed that neonatal OS supplementation had immediate effects on mature ileal
GLP-1-cells by increasing the density in villi and the mRNA expression of Gcg and PYY leading to
enhanced plasma concentrations in these two anorectic peptides. These new observations in neonatal
rats are consistent with those reported in adult rats for FOS and GOS/In [33,34,49–51] and are, to our
knowledge, reported here for the first time for αGOS. In one of these previous studies, this increased
production of GLP-1 was related to a higher differentiation of Neurog3-expressing EEC progenitors into
L-cells in the colon [50]. Here, we demonstrate a drastic down-regulation of endocrine lineage-devoted
genes during OS supplementation, mainly in the ileum. This unexpected result is difficult to reconcile
as an effect of OS on early endocrine precursors leading to the production of more L-cell subtypes.

Neurog3 marks the endocrine progenitors and is essential for generating new EECs [52].
Post-neurog3 differentiation and maturation of EECs is controlled by dynamics in transcriptional
factors such Neurod1, Pax4 and Pax6 and many others (Arx, Pdx1, Foxa1 and Foxa2). The hierarchy of
these events is still poorly understood [53] and the extrinsic factors that may interplay remain largely
unknown. For this study, the well-known effect of OS prebiotics in stimulating L-cells cannot simply
be explained by the impact on endocrine precursors, as suggested in the above-mentioned study [50].
Since we know that Neurog3 expression is restricted to immature proliferative cells, the decreased
Neurog3 expression we observed in the ileum may instead reflect a feedback regulation to limit new
EEC generation in response to OS supplementation. A similar observation (decreased duodenal
Neurog3 and increased EEC density) was reported in a model of maternal deprivation [26]. These data
and our own suggest that the postnatal environment affects the differentiation of EEC precursors but
not the proliferation of progenitors, leading to increased EEC density. High levels of circulating GLP-1
have been previously attributed to the increased number of ileal L-cells in Gcgr-deleted mice, and this
effect involved up-regulation of post-neurog3 transcription factors, affecting the proliferation of L-cells
precursors [54]. Here, the expression of these factors, i.e., Neurod1, Pax4 and Pax6, was reduced in
OS-supplemented groups with high circulating levels of GLP-1, suggesting a different mechanism
in the increased density of L-cells. In this respect, it should be noted that although EECs are still
classified according to their major/unique hormone product (as for example GLP-1 for L-cells), it is now
acknowledged that EECs are multihormonal [53,55]. In particular, more recent data has demonstrated
that mature differentiated EECs display hormonal plasticity, allowing them to change their hormonal
products in response to extrinsic factors, such as bone morphogenic proteins (BMP) during their
migration along the crypt-villus axis [56,57]. Thus, the increased L-cell density observed here may be
the result of the direct effect of OS on this plasticity to produce more GLP-1, independently of early
markers of EEC proliferation and differentiation. Interestingly, in this study, the production of CCK—a
key early-satiety peptide—was not affected by the OS supplementation at PND14/15 (data not shown)
reinforcing the specificity of the effect of OS on EECs in producing GLP-1 and PYY in a segment of gut
where CCK is not predominantly produced. How OS can modulate both the identity of EEC subtypes
and/or the expression of GI peptides by acting on extrinsic factors (such as villus-produced BMP) needs
further investigation.

4.3. What are the Putative Mediators of the Massive Effect of Neonatal OS Supplementation on Ileal L-Cells?

Identification of the small intestine rather than the colon as a privileged site for the action of OS
on transcriptional activity has been previously reported in studies involving adult animals [58,59].
Conventionalization of germ-free mice led to similar observations (e.g., [60]). However, a nutritional
modulation by OS supplementation may have a different impact on ileal epithelium compared to
the absence or presence of microbiota. For example, in the Arora’s study [60], conventionalization of
germ-free mice led to the down-regulation of GLP-1 secreting vesicle process in L-cells, whereas we
observed an increase in GLP-1 and PYY production. These contrasting results may stem from either
inter-individual variability, or more likely the great differences in age between the animals studied.
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Nevertheless, our data raise the question of how OS modulation of microbiota could act on ileal L-cells.
The well-known capacity of SCFA (mainly butyrate but also propionate or even, non-consensually,
acetate) to stimulate PYY and/or GLP-1 production [61–63] seems inconsistent with our observation of
an OS-impact mainly localized in the ileum, within the context of no propionate/butyrate synthesis.

Others potential mechanisms include acidification of the luminal milieu or changes in the
pathogen-associated molecular patterns (PAMPs). Zhou et al. [61] showed that changes in pH from
7.5 to 6.5 induce per se an increase in Gcg expression by STC-1 cells in vitro. Apart from this, it is
known that EECs have receptors for PAMPs (i.e., Toll-like receptors) (see [18] for review). This is of
particular interest since it has been demonstrated that some bacterial strains elicit GLP-1 secretion
through signaling agents of the Toll-like receptor system, as illustrated by the fact that a MyD88
blockade triggers GLP-1 secretion induced by bacteria [64].

4.4. OS impact on Eating Behavior, Usually Observed Simultaneously with Their Consumption, Does Not Seem
to Be Programmable

Despite a certain disparity in the literature, possibly related to the heterogeneity in dosage or
methodology, several studies have reported the beneficial effect of OS prebiotics—mainly fructans but
also αGOS, on the eating habits of healthy adults [65,66] or overweight adults [67,68], such as feelings
of reduced hunger, increased satiety or reduced energy consumption. Note that the existing literature
does not establish whether this is also true in infants, who are frequently given prebiotic supplements.
In concurrence with human data, decreased food/energy intake has been evidenced in adult rodents
supplemented with fructans [49,51] or βGOS [34]. In both models, these effects have been related to
SCFA production by colonic bacteria during OS supplementation. For each of the 3 main SCFAs, i.e.,
acetate, propionate and butyrate, it has been demonstrated that they reduce energy intake, particularly
in rodent models of diet-induced obesity [69–71], although conflicting results are reported [72], probably
dependent on the mode (orogastric [71,72], intraperitoneal [70], intracerebroventricular [70], colonic
delivery via fermentable fibers [69,71], etc.) and duration (acute [69,70] vs. chronic [69,72]) of SCFA or
SCFA precursors administration. In humans, this hypothesis has been substantiated for both acetate
and propionate by numerous studies focusing on appetite-related parameters (see [73] for review) as
well as observations of reduced hedonic response to high-energy foods regulated in striatum [74] or
reduced energy intake following the administration of propionate precursors in overweight adults [75].
How these SCFA regulate appetite directly at hypothalamic level [70] or via a vagal-dependent
mechanism [71,72], whether or not implicating an enhanced intestinal satiety peptide (GLP-1 and PYY)
secretion following SCFA interaction with FFAR receptors on L-cells is still a matter of experimental
research in animal models and clinical trials in humans [18].

Since the perinatal environment [6,9,24,26] appears to have a long-lasting impact on each of the
microbiota-EEC-brain axis actors, we had assumed that early modulation of the microbiota associated
with changes in EECs could program eating behavior, a hypothesis which has remained unexplored
until now. However, this hypothesis could not be corroborated in this study as adult feeding behavior
did not seem to be significantly affected by early supplementation with OS, which nonetheless
increased total SCFA, along with increased release of GLP-1 and PYY and L-cell density at the end of
supplementation. This lack of eating behavior programming indicates that none of the presupposed
events (i.e., programming of EEC or vagal sensitivity and/or microbiota programming) occurred under
the test conditions. In fact, no difference in the expression of c-Fos was observed in the nucleus of
the solitary tract in the rat’s brainstem 2 h after administering a bolus of glucose in adult rats (data
not shown). It therefore seems that depending on the nature and intensity of the perinatal stressor
(maternal protein restriction [9], maternal deprivation [26] or postnatal modulation of microbiota by
OS) the long-lasting impact is not systematic. For the microbiota, the lack of programming could be
related to an inadequacy in the timing for applying the modulation, as discussed below.



Nutrients 2019, 11, 1967 20 of 26

4.5. Is Programming of the Microbiota Subject to Particular Timing?

In this study, we did not observe any programming effect of neonatal OS supplementation on adult
microbiota. This result is in line with what we had previously observed for FOS [24] but contradicts
the small-scale programming found after neonatal supplementation with GOS/In in this same study.
This discrepancy may result from the difference in methods used to analyze the composition of the
microbiota, even if it is counterintuitive, since the 16S rDNA sequencing used here is more exhaustive
than the qPCR used previously. As this impact was minor, it may also not have been possible to
reproduce under our new experimental conditions, i.e., a new batch of animals, a different room at our
animal facility, or even a slight difference in the composition of the semi-purified diets we used, since
all these parameters are known to affect the microbiota of laboratory animals (see [76] for review).

The disappearance of this nonetheless drastic effect in our animals at the end of supplementation
raises the question of what is the most favorable period for sustainable modulation of the composition
of the microbiota. In our experimental protocol, prebiotic supplementation was applied for a
short postnatal period and ended before the onset of solid food consumption, whereas studies
reporting programming effects for early supplementation with OS on the subsequent composition
of the microbiota were based on longer-term supplementation, ranging from the prenatal period
(i.e., supplementation of gestating mothers) to complete weaning and even beyond [77,78]. Whether
the supplementation we applied was either not early enough, not late enough or not for a long enough
time is difficult to establish on the sole basis of this comparison. However, in a study by Fugiwara
et al. [77], a difference in adult microbiota composition was observed only in mice offspring that
were supplemented with FOS beyond weaning. Whether this was also true in the Le Bourgot et al.
study [78] cannot be evaluated since all piglets were supplemented with FOS for a few weeks after
weaning. From this, it can be assumed that to be lastingly effective, prebiotics must be able to exert
their microbiotal effect after full weaning, thereby controlling the impact of new bacterial sources
and changes in dynamics of bacterial populations that result from the switch from maternal milk to
solid food. Such a switch has been associated with dramatic changes in microbiota composition and
activity both in humans [79] and rats [37]. This hypothesis would explain why the early-life events
that are known to affect neonatal microbiota composition (i.e., birth mode, infant feeding etc.) are
not associated with significant variations in adult microbiota composition [80], but strict comparisons
between the time windows for supplementation are required for this to be validated.

4.6. All OS Studied Performed Similarly Despite Differences in Their Chemical Characteristics

In our study, the 3 OS studied led to comparable results in terms of both microbiotal impact
and physiological repercussions. With regard to microbiotal changes, the observed modifications,
in particular the acidification of the contents, the less diversified production of SCFA and the reduced
richness of microbiota suggest that OS delays bacterial diversification. This is similar to what is
supposed to happen in breast-fed babies compared with babies fed with unsupplemented formula [81].
The similarity is quite surprising in that the chemical nature of the constituent monomers and the
pattern of glycoside linkages in different OS products are expected to influence the ability of individual
bacteria to grow on them (see [31,82] for reviews). However, our results are consistent with Harris et
al.’s findings [83] that the orientation of glycoside linkage is not a main driver of the SCFA production
profile. When this chemical difference could act, it would primarily modulate the proportion of
butyrate, an SCFA weakly produced in our immature animals. In addition, they also agree with the
similarities of microbiotal impacts reported between βGOS and FOS on the one hand [30], and between
αGOS and βGOS on the other [44].

Thus, our study confirms the prebiotic character of αGOS and, in addition, extends the well-known
activity of FOS and GOS/In as secretagogues of satiety enteropeptides to this new prebiotic, a finding
which is in accordance with the satietogenic effect described in humans [67].
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5. Conclusions

In conclusion, our study depicts that the ability of the OS to modulate EECs as previously
described in adults also operates in the neonatal period, despite the immaturity of the microbiota at
this time. This observation therefore calls into question the nature of the mediators actually involved,
as supposed so far. In addition, our in-depth study of the impacts of the OS on the genes regulating the
differentiation of EEC precursors queries the current understanding of the ontogenesis of these cells.

Finally, our results do not demonstrate any programming impact of OS either on EECs and
food consumption or on the constitution of the adult microbiota. If this holds true for humans, it is
reassuring since this study concerns types and dosages of OS mimicking some of those commonly
prescribed in formula for toddlers.
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