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Abstract: Artichoke waste represents a huge amount of discarded material. This study presents
the by-products (bracts, exterior leaves, and stalks) of the “Blanca de Tudela” artichoke variety
as a potential source of phenolic compounds with promising antioxidant properties. Artichoke
residues were subjected to different extraction processes, and the antioxidant capacity and phenolic
composition of the extracts were analyzed by spectrophotometric methods and high performance
liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke
waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of
cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside
were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2’-azinobis
(3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric
Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic
compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant
compounds in 60% methanol extracts, are the components most responsible for the antioxidant
activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to
assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids
on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very
interesting ingredient for food functionalization and for therapeutic purposes.
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1. Introduction

The agri-food industry generates millions of tons of waste each year, which leads to serious
environmental problems and a great loss of very valuable biocompounds [1]. Vegetable waste has a
high content of bioactive compounds, such as antioxidants and fiber. Therefore, its use for developing
functional food, food additives, or nutraceuticals would be very interesting. Furthermore, the growing
demand for high-quality bio-products means that more and more attempts are being made to replace
synthetic additives by natural ones. Therefore, it is very important to obtain these additives from raw
materials and not to destroy foods in the process [2-5].

Artichoke (Cynara scolymus L., family Asteraceae) is a herbaceous perennial plant which originated
in the Mediterranean area, but which is now widely grown all over the world. France, Spain, and Italy
comprise 80% of the total worldwide production and the wide consumption of artichoke makes it an
important produce for these Mediterranean countries. In artichokes, the edible parts of the plant are
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large immature inflorescences, named capitula or heads. During the industrial processing of artichoke,
about 60-85% of harvested vegetal is discarded [6,7]. Artichoke waste mainly consists of the external
parts of the heads, which are commonly known as bracts, as well as the leaves and stems. These
residues are a source of environmental contamination and also a great economic loss as they are a very
rich source of bioactive phenolic compounds, inulin, fiber, and minerals [8,9]. Artichoke has been
used as both a food and medicine thanks to its beneficial effects against hepato-biliar diseases and as a
digestive aid since ancient times [10]. It also delays the oxidation of low-density lipoproteins (LDL)
as it helps prolong the lag phase in the formation of conjugated diene and inhibits the propagation
phase [11]. These health benefits derived from the consumption of this plant are mainly thanks to its
content of polyphenols [12]. Although the composition of artichoke depends on many factors (variety,
climate, harvest time etc.), the main phenolic compounds present in this vegetable and, consequently
in its waste, are hydroxycinnamic acids and flavonoids [13,14]. These compounds, found in abundance
in artichoke waste, represent a very important potential source of nutraceutical and food additives [15].
The existence of phenolic compounds in the human diet correlates with a protective effect against
certain chronic and degenerative diseases related to oxidative stress [16]. Polyphenols are able to
reduce the abnormally increased levels of reactive oxygen species (ROS) which are found in a wide
range of disorders, including inflammatory bowel disease and cancer [17]. The synthesis of molecules
with an antioxidant ability such as phenolic compounds is very complex, so their extraction from
natural sources is one of the main beneficial strategies. Therefore, the value of artichoke waste for the
extraction of this type of compound could be of great interest.

Larrossa et al. [18] and Llorach et al. [19] used water phenolic extracts obtained from artichoke
waste to functionalize tomato juice and commercial chicken soup, respectively. In both cases, they
managed to increase the antioxidant activity of the functionalized food within consumers” acceptance
limits. Pasqualone et al. [20] enriched fresh pasta with an artichoke extract that was rich in phenolic
compounds and observed that the pasta enriched with the extract showed higher phenolic compounds
and antioxidant activity than the control pasta. However, much of the research has focused on the
antioxidant activity of artichoke leaf extracts instead of the global artichoke processing waste, which
may constitute an alternative to the commercial leaf extracts currently available for liver care and
cholesterol metabolism.

In Spain, the most important artichoke variety is called “Blanca de Tudela”. This variety has a high
quality and an important economic impact within the Ebro valley region. However, the industries that
are currently processing this vegetable produce a high level of artichoke waste, with a corresponding
negative environmental impact and economic loss. This variety of artichoke is a plant of early
production and high productivity, with a rounded inflorescence, without spikes in the bracts, and with
a circular hole in the upper part. The aim of this study was to determine the composition of polyphenols
of waste extract from the “Blanca de Tudela” artichoke and evaluate its antioxidant capacity using a
model of the intestinal mucosa (differentiated Caco-2 cells) upon oxidative stress damage induced by
hydrogen peroxide insult, in order to determine its potential application for oxidative stress-related
disorders of the gastrointestinal tract.

2. Materials and Methods

2.1. Raw Material and Extraction Process

The artichokes used in this work were the Cynara cardunculus subspecie scolymus “Blanca de Tudela”
variety, from the spring harvest (year 2017). Artichokes were washed with tap water and manually
cleaned and dried. Subsequently, the non-edible parts, such as external bracts, leaves, and stems
(waste material), were separated from the edible part of the artichoke. Afterwards, artichoke waste
was mixed together, cut up into small pieces, stored frozen at —20 °C, and freeze-dried (freeze-dryer,
Telstar Cryodos, Madrid, Spain).

The extraction of phenolic compounds from artichoke waste was performed using two different
solvents, water and methanol:water (60:40, v/v) (Scharlab, Sentmenat, Spain), with and without
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ultrasound application. Figure 1 shows a diagram of the process applied to artichoke waste samples in
order to obtain the extracts. To extract the phenolic compounds, 4 g of freeze-dried artichoke waste was
mixed with 100 mL of solvent. In the case of the extractions without ultrasound, the sample/solvent
mixture was macerated for 1 h with stirring at room temperature. When ultrasound was applied,
the mixture was treated for 30 min in an ultrasound bath (Ultrasons, Selecta, Barcelona, Spain) prior to
the maceration step. Subsequently, the samples extracted with 60% methanol were filtered and stored
at —20 °C. In the case of the extracts obtained with water as extraction solvent, they were centrifuged for
15 min at 8000 rpm (Sorvall ST 8, Thermo Scientific, Waltham, Massachusetts, USA) and subsequently,
they were filtered and stored at —20 °C. The liquid fraction was freeze-dried and part of the extract
obtained after freeze-drying was stored at —20 °C for a later analysis of its antioxidant capacity and
total phenolic content (TPC). The rest of the extract was purified and fractioned into hydroxycinnamic
acids and flavonoids, following the method described by Lombardo et al. [21]. Briefly, the extract was
reconstituted in MilliQ water and was adjusted to pH 7. Afterwards, a solid phase extraction using
ExtraBond C18 cartridges (Scharlab, Barcelona, Spain) was performed. The hydroxycinnamic acids
were eluted using methanol at 10% (v/v), and flavonoids with 100% methanol. Both fractions were
freeze-dried. Hydroxycinnamic acids (fraction 1) and flavonoids (fraction 2) were reconstituted with
4 mL and 1 mL of methanol:water 50% (v/v), respectively. All the samples were kept at —20 °C until
their later analysis. The extraction yields obtained by the different extraction procedures are shown in

Table S1 (Supplementary Material).
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Figure 1. Diagram of the integral valorization of artichoke waste samples conducted to obtain
antioxidant extracts.
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2.2. Determination of Phenol Compounds of the Extracts by High Performance Liquid Chromatography

Analyses of each fraction were performed with Waters high-pressure liquid chromatography
(Waters) equipped with two 510 pumps, a 717 Plus autosampler, and a Photodiode Array 996 detector
programmed at different wavelengths (from 200 to 600 nm). A reverse phase column was used
(Phenomenex Synergi HydroRP, 150 X 3 mm, particle size of 4 um) at 25 °C. The instrument control
and data processing were carried out with Empower 2.0 software. In Table 1, the chemical formulas,
retention time, and wavelength of each of the phenolic compounds analyzed are shown.

Table 1. Phenolic compounds analyzed: chemical structure, retention time, and detection wavelength.

. Retention Detection
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o
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For the chromatographic analyses of the phenolic compounds in artichoke waste, a modified
method of Lombardo et al. [21] was used. Two mobile phases, A (2% acetic acid) and B (acetonitrile
and 2% acetic acid, 50:50, v/v), were used for both analyses. The flow rate was 1 mL/min and the
injection volume was 10 pL. All the HPLC quality solvents were from Scharlab (Barcelona, Spain).
Identification of the compounds was carried out by a double coincidence of the UV-Vis spectrum at the
characteristic wavelength of each compound, and the retention time of its corresponding standard.
All the standards used were from Sigma-Aldrich (Madrid, Spain). Quantification of the antioxidants
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was carried out using calibration curves for each compound analyzed. In all cases, the coefficient of
lineal correlation was R? > 0.99.

2.3. Antioxidant Capacity and Total Phenol Content of the Extracts Obtained from Artichoke Waste

The antioxidant capacity of the different extracts was determined by the ABTS radical scavenging
assay, DPPH radical scavenging assay, and FRAP (Ferric Ion Reducing Antioxidant Power). The ABTS
method [2, 2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] used is based on the method outlined
by Re et al. [22]. The calibration curve was made from a 5 mM solution of Trolox, ranging from 0.05
to 2.4 mM. The absorbance was determined at 734 nm with a UV/Vis spectrometer (Jenway 7315,
Staffordshire, UK).

The DPPH assay (2,2-diphenyl-1-pycrilhydracyl) used is based on the method outlined by
Brand-Williams et al. [23]. For the calibration curve, Trolox was used in different concentrations
ranging from 0.05 mM to 0.95 mM. For the antioxidant capacity determination, 150 uL of each
artichoke waste extract was added to 2.85 mL of the DPPH stock solution and after 30 min in darkness,
the absorbance at 515 nm was measured.

The antioxidant capacity of extracts was also determined by the FRAP assay proposed by Benzie
and Strain [24]. Known concentrations of Trolox, in the range of 0.05-0.95 mM, were used for preparing
the calibration curve. The absorbance of each standard and the extract was measured at 595 nm.

Finally, the total phenolic content (TPC) was analyzed using the Folin-Ciocalteu method outlined
by Singleton et al. [25]. Briefly, solutions of gallic acid with different concentrations ranging from
0.2 mM to 3.2 mM were prepared, in order to obtain the calibration curve. The absorbance was
measured at 765 nm. In all cases, the extracts were analyzed in triplicate.

2.4. Biological Assays

2.4.1. Cell Culture

The human colorectal adenocarcinoma Caco-2 cell line (TC7 clone) was kindly provided by Dr.
Edith Brot-Laroche (Université Pierre et Marie Curie-Paris 6, UMR S 872, Les Cordeliers, France).
Cells were maintained in a humidified atmosphere of 5% CO, at 37 °C. Cells (passages 20-50) were
grown in Dulbecco’s Modified Eagles medium (DMEM) (Gibco Invitrogen, Paisley, UK) supplemented
with 20% fetal bovine serum, 1% non-essential amino acids, 1% penicillin (1000 U/mL), 1% streptomycin
(1000 pg/mL), and 1% amphotericin (250 pg/mL). Cell medium was replaced every three days and cells
were passaged once a week with 0.25% trypsin-1 mM EDTA. Cell confluence (80%)—differentiated
cells—was confirmed by microscopic observance.

2.4.2. Measurement of Cell Proliferation

Cells were seeded on 96-wells plates at a density of 4000 cells per well and they were incubated
under standard culture conditions until differentiation (7 days). Cell confluence (80%) was confirmed
by microscopic observance. For treatment, lyophilized fractions 1 and 2 from extracts obtained with
methanol:water 60% (v/v) and ultrasounds were weighed and dissolved in cell culture medium
(without fetal bovine serum) to the required concentrations: 1000, 500, 250, 125, and 62.5 pg/mL. These
concentrations were chosen in relation to previous studies in our laboratory [2,17]. Cells were incubated
with the extracts for 72 h and changes in cell proliferation were determined by the sulforhodamine B
assay, as described by Jiménez et al. [17]. ICsy was defined as the concentration of extract that reduced
cell viability to 50%.

2.4.3. Measurement of Intracellular Reactive Oxygen Species Levels

Cells were seeded on 96-well plates at a density of 4000 cells per well and were incubated under
standard culture conditions until differentiation (7 days). For treatment, extracts were dissolved on cell
culture medium (without fetal bovine serum) to the required concentrations: 1000, 500, and 250 pg/mL.



Nutrients 2019, 11, 1723 6 of 15

Cells were incubated with the extracts for 1 or 2 h. Then, cells were incubated for 20 min with 20 mM
2’,7’-dichlorofluorescein diacetate (DCFH-DA) at 37 °C protected from light, according to the assay
previously described by Sanchez-de-Diego et al. [26]. For hydrogen peroxide insult, the cell culture
was then replaced and 20 mM H,O, (dissolved on PBS: Phosphate Buffer Solution) was added to each
well except negative control cells, which were incubated with cell culture medium. After 20 minutes
incubation with HyO, protected from light, the fluorescence intensity was measured using a FLUOstar
Omega Microplate Reader (BMG Labtech, Ortenberg, Germany). Excitation and emission wavelength
settings were 485 and 535 nm, respectively. The intensity of fluorescence is considered as a reflection of
the total intracellular ROS levels.

2.5. Statistical Analysis

Data are presented as the mean + SE. Data were subjected to a two-tailed t-test and differences
were considered significant at p < 0.05. Statistical analysis was carried out using IBM SPSS software v
23 (New York, NY, USA).

3. Results and Discussion

3.1. Phenolic Composition of the Extracts Obtained from Artichoke Waste

Table 2 shows the phenolic composition of the extracts obtained from the different extraction
methods applied. The phenolic profile was quite different, both qualitatively and quantitatively,
depending on the extraction method used. The richest extract in phenolic compounds was obtained
using methanol:water (60% v/v) with ultrasound application. Methanol was much more efficient
than water for extracting both hydroxycinnamic acids and flavonoids. Among the hydroxycinnamic
acids, caffeic acid was not detected in any sample and chlorogenic acid (5-O-caffeoylquinic acid)
was the predominant compound in all of them. The absence of caffeic acid in all the extracts agrees
with previous findings by Schiitz et al. [27], who explained the formation of this compound from the
hydrolysis of mono- and di-caffeoylquinic acids during processing. Taking into consideration that the
caffeic acid inhibits the proliferation of fibrosarcoma [28] and of breast cancer cells [29], and that it acts
favorably on the metabolism of glucose, suppressing hepatic gluconeogenesis and hyperglycemia [30],
it would be interesting to perform further studies in order to more precisely determine what conditions
favor this hydrolysis. Caffeoylquinic acids are the most abundant hydroxycinnamic acids in artichoke,
especially chlorogenic acid [31]. During the storage of artichoke heads at temperatures below 4 °C,
there is a biosynthetic increase in phenolic compounds, especially of chlorogenic acid, since the
activity of the enzyme phenylalanine-ammonia lyase is induced. The chlorogenic acid produces a
colorless complex with Fe?*, but the oxidant conditions of the medium induce the formation of a
complex of chlorogenic acid/Fe3" gray-blue, responsible for the artichoke browning [11]. Cynarin
(1,3-O-dicaffeoylquinic acid) was found in a very low concentration in the samples extracted with
60% methanol, and was not detected in the samples extracted with water. This compound is the most
well-known caffeoylquinic acid in artichoke extracts because it acts by stimulating biliary secretion
and cholesterol metabolism [11,32].
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Table 2. Phenolic composition of the extracts obtained from the different extraction methods applied to
the artichoke waste (ug/g dry matter of artichoke waste).

60% Methanol 60% Methanol 100% Water 1,00 Vo Wa.t er
(60’ Extraction +

. (60’ Extraction + .
, /
(60’ Extraction) 30’ Ultrasound) (60" Extraction) 30’ Ultrasound)

Hydroxycinnamic Acids

Caffeic acid nd nd nd nd
Chlorogenic acid 815 + 50 1006 + 113 10+1 8+1
Cynarin 9.8+0.7 12+2 nd nd
Total hycroxycynamic acids 825 1018 10 8
Flavonoids
Luteolin 52+0.3 45+09 24+04 24+03
Luteolin-7-O-glucoside 442 + 14 469 £ 6 27+0.1 29+0.6
Luteolin-7-O-rutinoside 684 + 66 1034 + 20 17 +2 10+2
Apigenin 2.46 +0.01 249 +0.01 33+04 41+06
Apigenin-7-O-glucoside 73+0.1 72+03 nd nd
Apigenin-7-O-rutinoside 209 +£0.6 202+09 55+0.3 46+0.3
Naringenin-7-O-glucoside 2.96 £ 0.02 29+02 22+0.03 2.19 + 0.05
Narirutin nd nd 2.14 +0.02 211 +£0.02
Total flavonoid content 1165 1540 35 28
Total phenolic content 1990 2558 45 36

The most abundant flavonoids in the extracts obtained from artichoke waste using 60% methanol
were luteolin-7-O-rutinoside and luteolin-7-O-glucoside, while very small amounts of the rest of the
flavonoids were found (Table 2). These results coincide with those found by Pandino et al. [9] in extracts
obtained with 70% methanol from leaves and stems of different artichoke varieties. In the extracts
obtained using water as a solvent, the flavonoids that were most extracted were luteolin-7-O-rutinoside
and apigenin-7-O-rutinoside, although the extraction efficiency was much lower than when methanol
was used. Luteolin derivatives are much more abundant in artichoke waste than in the edible part
of this vegetable, where the most important flavonoids would seem to be the apigenin derivatives,
especially apigenin-7-O-glucuronide [9,21,33]. Narirutin (naringenin-7-O-rutinoside) was not detected
in the extracts obtained using 60% methanol as the extraction solvent, although when water was used in
the extraction, apigenin-7-O-glucoside was the flavonoid that was not detected in the extracts. Itis clear
that the solvent type significantly affected phenolic compounds recovery. Differences in the extraction
efficiency are mainly due to the higher range of polarity of 60% methanol as a solvent compared
with 100% water, but other factors, such as weakening of the solute-matrix interactions and swelling
of the plant material, could also be involved [34]. Narirutin and naringenin-7-O-glucoside provide
beneficial effects for health due to their anti-cancerous and antioxidant properties [35]. The therapeutic
properties of artichoke are not due to isolated compounds, but rather to several active compounds that
act synergistically, and many of them are found in important concentrations in artichoke by-products.
Among those compounds with synergistic action are caffeoylquinic acids and flavonoids, such as
luteolin and luteolin 7-O-glucoside [36,37]. Hydroxycinnamic acids predominate in artichoke stems
(68% of TPC) and flavonoids in leaves and external bracts (95 and 84% of TPC, respectively) [31], but it
has been observed that the beneficial properties for health arise from the synergistic effect between
both types of phenolic compounds [36,38] and hence the interest in their joint extraction to achieve an
integral valorization.

The ultrasound application only increased the content of phenolic compounds when 60% methanol
was used as the solvent. In contrast, Punzi et al. [39] found that the application of direct sonication for
60 minutes on samples of artichoke by-products, using water as the solvent, improved the recovery of
phenolic compounds compared with untreated samples. Ultrasounds normally improve the extraction
of bioactive compounds, as the cavitational effect facilitates the release of extractable compounds and
enhances the mass transport by diffusion or by disrupting the plant cell walls [40—-42]. Furthermore, mild
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treatment of ultrasounds does not produce any significant changes in the properties and functionality
of most of the bioactive compounds [43], which makes it ideal for the extraction of antioxidants. In this
study, indirect sonication was applied, in which the ultrasonic energy is transmitted through the water
and into a vessel or sample tube. This is likely to be the main reason why the extraction improved very
little with the ultrasound treatment, since in direct sonication, the energy is transmitted from the probe
directly into the sample with a high intensity.

As far as artichoke phenolics are concerned, much of the research has focused on the antioxidant
activity of artichoke leaf extracts, but in this research work, it has been shown that artichoke processing
waste may constitute an alternative to the commercial leaf extracts currently available for liver care
and cholesterol metabolism.

3.2. Antioxidant Capacity and Total Phenol Content of the Extracts Obtained from Artichoke Waste

The antioxidant capacity of the different extracts obtained from artichoke waste was evaluated
by the ABTS, DPPH, and FRAP methods. It is important to properly assay the antioxidant capacity
of food-derived extracts because it is due to a combination of the activities of several antioxidant
compounds. Figure 2 shows the results of antioxidant capacity obtained for all the extracts by means of
these methods. For all the methods assayed, the antioxidant capacity of the extracts obtained using 60%
methanol as the extraction solvent was much higher than those extracts obtained with water. On the
other hand, the antioxidant capacity of the extracts obtained from ultrasound-assisted extraction was
very similar to the antioxidant capacity of the samples obtained by single solvent extraction. These
results coincide with the results on the content of phenolic compounds in the different artichoke waste
extracts (Table 2). In fact, the results of total phenolics calculated as the sum of the concentration of
all the identified compounds in the chromatographic analyses are highly and significantly correlated
with the values of antioxidant capacity found with the three different assays of antioxidant capacity
(Pearson correlation R of 0.972, 0.974, and 0.985 for ABTS, DPPH, and FRAP assays, respectively). These
results seem to indicate that chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside,
the most abundant compounds in 60% methanol extracts, are the components most responsible for the
antioxidant activity of the artichoke waste extracts. Additionally, Fritsche et al. [44] found that luteolin,
luteolin derivatives, and chlorogenic acid showed the strongest antioxidant effect among the different
components of artichoke leaf extracts. Caffeoylquinic acids exhibit important antioxidant activity,
as has been demonstrated by different authors [31,32,45,46]. Likewise, the copper chelating properties
of luteolin and its derivatives suggest that they have a very important role in the antioxidant effects of
artichoke [11]. Consequently, the antioxidant activity of artichoke extracts must be due, in part, to their
content in flavonoids, which act as hydrogen donors and are metal ion chelators [47].

The antioxidant capacity of the total extract was much greater than the sum of the antioxidant
capacities of fractions 1 (hydroxyxinnamic acids) and 2 (flavonoids) in all cases. This seems to indicate
that there exists an important synergistic and/or additive action between the antioxidant compounds
and other compounds present in the extract [48,49]. The antioxidant activity of fractions 1 and 2 was
very similar when using ABTS and DPPH assays; however, when using the FRAP assay, the flavonoid
fraction (fraction 2) had higher values of antioxidant capacity than the fraction rich in hydroxycinnamic
acids (fraction 1). Moreover, with this method, the extracts of fraction 2 obtained by 60% methanol
ultrasound-assisted extraction showed a greater antioxidant capacity than those obtained with the same
solvent, but without ultrasound treatment. This result coincides with the greater content of luteolin
derivatives found by means of HPLC-DAD analyses in the extracts obtained using 60% methanol and
ultrasound-assisted extractions (Table 2). Moreover, among the antioxidant capacity methods used in
this work, the FRAP assay is the only method with a high and significant (p < 0.05) correlation with the
content of luteolin-7-O-rutinoside (Pearson R of 0.962), the most abundant flavonoid in our artichoke
waste extracts.
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Figure 2. Antioxidant capacity of the extracts measured by 2, 2’-azinobis (3-ethylbenzothiazoline-6-
sulphonic acid) (ABTS) (a), 2,2-diphenyl-1-pycrilhydracyl (DPPH) (b), and Ferric Ion Reducing
Antioxidant Power (FRAP) (c) assays.

The values of antioxidant capacity obtained with ABTS and FRAP assays were found within
the same range, both for the total extract, as well as for the fractions rich in hydroxycinnamic acids
and flavonoids. On the other hand, the antioxidant capacity obtained by means of the DPPH assay
was lower in all cases. DPPH and ABTS methods are normally considered electron transfer-based
assays, but hydrogen atom transfer also takes place in both methods, although in the DPPH assay, this
mechanism is more marginal [50]. The FRAP assay shows a different mechanism of action since there
are no free radicals implicated in the reaction, but rather it is based on the ability of the antioxidants
to reduce ferric iron (Fe3*) to ferrous iron (Fe?*). The redox potential of the ferric tripyridyltriazine
complex (0.70 V), which is involved in the FRAP reaction, is comparable to that of the ABTS®*
radical (0.68 V), and consequently, similar compounds will react in both ABTS and FRAP assays [51].
Furthermore, although the DPPH assay is a simple and rapid method for antioxidant screening,
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interpretation is complex, as it shows some drawbacks. On the one hand, there are compounds with
spectra that overlap DPPH at 515 nm [50,52], and on the other hand, the steric accessibility is also a
major limiting element in the reaction [51,53]. This is because the radical site is protected inside a
reaction cage formed by the two phenyl rings orthogonal to each other, and the picryl ring angled at
about 30° with its two nitro groups oriented above and below the radical site [54]. The low values of
the antioxidant capacity observed when using the DPPH assay could be due to both factors. In fact,
Xie and Schaich [54] did not recommend the DPPH assay to evaluate the potential antioxidant activity
of plant extracts where compounds with different structures are present.

Folin-Ciocalteu reagent has been used for a long time to measure the total content of phenolic
compounds in different samples, in spite of the fact that some non-phenolic compounds can also
reduce this reactive, thus overestimating the TPC of the sample [55]. Figure 3 shows the results of TPC
expressed as mM gallic acid equivalents per g of dry matter. The results obtained are well-correlated to
those obtained in the antioxidant capacity assays (Figure 2). The Pearson correlation R values between
the TPC obtained by Folin—-Ciocalteu reagent and antioxidant capacity by ABTS, DPPH, and FRAP are
very high (0.98, 0.962, and 0.97, respectively) and statistically significant in all cases (p < 0.01). This high
correlation is not surprising, since the basic mechanism of all these methods is an oxidation/reduction
reaction. Therefore, different authors recommend the use of TPC by the Folin—Ciocalteu assay to
measure the antioxidant capacity of extracts as this is a simple method, which is reproducible, robust,
and has a lot of comparable data in the literature [51,55].
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Figure 3. Total phenolic content (TPC) of the extracts determined by the Folin—Ciocalteu method.

3.3. Antioxidant Capacity on a Model Intestinal Barrier

Considering that the highest antioxidant capacity and polyphenol content were found for the
extracts obtained with methanol:water 60% v/v and ultrasounds, both fraction 1 and 2 were selected
for the analysis of their antioxidant capacity on a model of the intestinal barrier. However, due to the
insolubility of fraction 2 on cell culture medium, we were unable to evaluate its antioxidant capacity
toward hydrogen peroxide insult on Caco-2 cells. Given the promising results obtained with FRAP,
DPPH, and ABTS assays, fraction 2 could be a strong candidate for in vivo tests with animal models
and further research will be carried out in this regard. Consequently, we analyzed the potential effect
of fraction 1 on the protection of the intestinal barrier upon exogenous oxidative stress.

The antioxidant capacity of fraction 1 (hydroxyxinnamic acids) was evaluated on Caco-2 cells.
This cell line spontaneously acquires the phenotypic features of non-cancerous enterocytes after
reaching confluence. Monolayer Caco-2 cells form tight junctions and present the cylindrical polarized
morphology of enterocytes, expressing functional microvilli on the apical side [56-58]. Therefore,
differentiated Caco-2 cells have been established as an acceptable in vitro intestinal barrier model.
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Firstly, the IC5( value of fraction 1 was calculated on Caco-2 cells in order to select a non-cytotoxic
range of concentration. We obtained an ICsy value of 1023+159 ug/mL after long-term incubation (72 h).
Therefore, we tested the antioxidant capacity of three concentrations below the obtained ICsj value
(1000, 500, and 250 pg/mL) on the cells after 1 and 2 h of incubation, since such values did not display
cytotoxic effects for short periods (data not shown). As can be observed in Figure 4a, we found a time-
and concentration-dependent antioxidant effect of fraction 1. Although no significant changes in ROS
levels were observed after 1 h for either of the evaluated concentrations, 2 h incubation with 1000 and
500 pg/mL of fraction 1 resulted in a significant decrease in intracellular peroxide production (p < 0.05).
This data encouraged us to determine the capacity of fraction 1 to reverse hydrogen peroxide insult on
differentiated Caco-2 cells (Figure 4b). Similarly, time and concentration turned out to be key factors
for the antioxidant activity of fraction 1. After 2 h incubation, all tested concentrations (1000, 500, and
250 pug/mL) were able to significantly decrease HyO,-induced ROS production (p < 0.05), whereas such
behavior was not observed after 1 h incubation. Furthermore, the highest concentration of fraction
1 tested (1000 pg/mL) displayed a greater decrease in ROS levels when compared to the lowest one
(250 pg/mL), which suggests the key role of extract concentration on its antioxidant capacity.
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Figure 4. Analysis of the antioxidant capacity of fraction 1 on differentiated Caco-2 cells.
(a) Measurement of reactive oxygen species levels after 1 and 2 h incubation with fraction 1 (1000, 500,
and 250 pg/mL). (b) Measurement of reactive oxygen species levels after 1 and 2 h incubation with
fraction 1 (1000, 500, and 250 pug/mL) and further hydrogen peroxide insult (20 min incubation with
20 mM HyO3). *p < 0.05 versus HyO; -treated cells.

The antioxidant capacity of plant extracts is strongly correlated with their clinical application for
the management of oxidative stress-related gastrointestinal disorders. Kolacek et al. [59] found that the
intake of commercially available pine bark extract Pycnogenol® reduced oxidative stress biomarkers
on pediatric patients of Crohn’s disease. Similarly, research performed on animal models of ulcerative
colitis has revealed that the protective effect of plant extracts might be mediated by their antioxidant
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potential [60,61]. Our results with regard to the time- and concentration-dependent antioxidant
capacity of the hydroxycinnamic acids fraction of artichoke waste extracts suggest that they might have
a potential application in the management of oxidative stress-related gastrointestinal malignancies.

Hydrogen peroxide insult is a widespread method used to mimic the pro-oxidative environment
that characterizes degenerative diseases such as cancer or neurodegenerative disorders on 2D cell
cultures. In this line, plant-derived extracts have been investigated for their capacity to overcome the
aberrant increase in ROS levels derived from H,O, exogenous addition. Ashwagandha, a traditional
Indian herb, leaf extracts protected human neuroblastoma IMR32 cells from 2 h hydrogen peroxide
insult after 24 h incubation with plant extracts at a concentration of 0.4 ug/mL [62]. Incubation of HaCaT
skin cells with extracts of Calendula officinalis flowers prevented H,O,-induced damage, which might be
interesting for the prevention of skin-related disorders, including melanoma [63]. Anthocyanins from
the elderberry Sambucus nigra displayed a significant protective effect against various oxidative stresses
on bovine aortic endothelial cells, and therefore might have a role in the prevention of cardiovascular
disease [64]. Since, herein, we have demonstrated the capacity of artichoke waste extracts to overcome
hydrogen peroxide insult, the therapeutic applications of these extracts might be wider and further
assays are needed to evaluate their potential.

4. Conclusions

Chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside were the antioxidants
present in a greater concentration in the mixture of by-products (external bracts, leaves, and stems)
from the “Blanca de Tudela” artichoke variety. Low amounts of cynarin, luteolin, apigenin-7-O-
glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The extraction
of hydroxycinnamic acids and flavonoids was much higher when 60% methanol was used as the
extraction solvent in comparison to when water was used. In all cases, there was a good correlation
between the concentration of total phenolics and the antioxidant capacity obtained by ABTS, DPPH, and
FRAP. Of the three methods, FRAP is the only one that shows a good correlation with the concentration
of the most abundant flavonoids in these extracts (luteolin derivatives), which would indicate that it is
the best method for these kinds of samples. Our results also indicated that hydroxycinnamic acids
from artichoke waste extracts might have a promising future in the management of oxidative stress on
the gastrointestinal tract.
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