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Abstract: Human immunodeficiency virus (HIV) infection is characterized by an early depletion
of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the
oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth,
few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no
studies on intervention with prebiotics were performed. We studied the effect of a six-week-long
prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the
co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed
salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing
with Illumina methodology. At baseline, the different groups shared the same most abundant genera,
but the HIV status had an impact on the saliva microbiota composition and diversity parameters.
After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters,
as well as a change of beta diversity, without a clear directionality toward a healthy microbiota.
Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota.
On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting
a drag of microorganisms from the upper to the lower gastrointestinal tract.
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1. Introduction

The oral microbiome was established along evolution-specific symbiotic interactions with the host,
such that the microbiota of the oral cavity plays an important role in pathogen colonization resistance
and local immune system modulation, as well as in the entero-salivary nitrate reduction cycle [1]. In
the last few years, due to a decrease in the effectiveness of conventional antimicrobial therapy, new
strategies such as the application of probiotics or prebiotics were investigated to prevent different oral
diseases [2–7]. However, different studies suggested that probiotic strains, widely used to provide
health benefits in the gut, are not as efficient in the care of oral health [3,4]. Recently, oral Streptococcus
strains, isolated from caries-free cavities, were proposed as effective probiotics in caries prevention due
to their inhibitory action of the major oral pathogens and their buffering of acidic pH [5,7]. However,

Nutrients 2019, 11, 1346; doi:10.3390/nu11061346 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-5447-3554
https://orcid.org/0000-0002-7795-5986
https://orcid.org/0000-0002-2867-1119
http://dx.doi.org/10.3390/nu11061346
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/11/6/1346?type=check_update&version=2


Nutrients 2019, 11, 1346 2 of 19

the use of prebiotics in oral health is in its infancy. Recently, Slomka et al. [8,9] evaluated different
potential oral prebiotics and two compounds (beta-methyl-d-galactoside and N-acetyl-d-mannosamine)
were identified as substrates with a stimulatory effect on beneficial oral bacteria growth and the
subsequent suppression of pathogens. In caries management, compounds such as urea or arginine
are considered to be prebiotics since their metabolism by oral bacteria produces alkali that increase
the pH, inhibiting acidogenic and aciduric pathogens. Other studies indicated that dietary nitrate
increases the abundance of Neisseria and Rothia species associated with oral health [10]. Changes in
acid–alkali balance lead to an oral dysbiotic microbiota. High pH is associated with a high abundance
of proteolytic bacteria, promoting gingival or periodontal inflammation. On the other hand, an acidic
environment correlates with a saccharolytic microbiota, resulting in caries. Thus, nutritional strategies
should be individually tailored to obtain higher benefits.

The explosion of the microbiome field shook our understanding of the pathogenesis of HIV, in
which the participation of bacteria in the course of the disease was far from suspected. There is emerging
consensus, however, that disturbances in the gut microbial ecology during HIV infection correlate with
chronic immune defects and inflammation [11]. Some studies assessing dietary supplementation with
different products, including prebiotics [12–14], probiotics [15], bovine colostrum [16], or a combination
of different ingredients [17], collectively suggested that these strategies may exert some systemic
beneficial immunological effects introducing changes in the HIV-associated gut microbiome. Studies
on HIV-associated oral microbiota [18–22] relying on culture-dependent and -independent techniques,
indicated an effect of both HIV infection and antiretroviral treatment on the bacterial community
composition. However, the scope of HIV-associated dysbiosis in the oral cavity, the associations
with systemic predictors of clinical progression, and the interplay between oral and gut microbiome
remain poorly defined. Moreover, no studies were done on the role of prebiotic application aimed at
manipulating the HIV-associated oral microbiome.

In a previous work [14], we studied the effect of a mixture of prebiotics (short-chain
galacto-oligosaccharides, long-chain fructo-oligosaccharides, and glutamine) on the HIV-associated
gut microbiota. During this nutritional intervention, we collected fecal and salivary samples from
HIV-infected patients. Thus, in the present study, we characterized, for the first time, the compositional
changes associated with prebiotic intervention on salivary microbiota in HIV-infected individuals.
Furthermore, we studied the interplay between oral and gut microbiota determining the bacterial
co-occurrences in both habitats.

2. Material and Methods

2.1. Subjects and Sample Collection

We conducted the study with participants belonging to a previously described cohort [14]. Briefly,
we recruited 95 individuals from two University hospitals in Madrid, Spain (University Hospital
Clínico San Carlos and University Hospital Ramón y Cajal) with 35 of them being ineligible (Figure
S1, Supplementary Materials). Exclusion criteria were the concomitant use of medications, the use of
systemic antibiotics, probiotics, or prebiotics during the previous three months, and any acute or chronic
condition other than chronic HIV infection, including gastrointestinal symptoms or co-infections
with hepatitis B or C viruses. The inclusion criteria were serologically documented HIV infection,
age 18 years or older, and, for antiretroviral therapy (ART)-treated patients, at least two years under
ART-mediated HIV RNA suppression. The controls were healthy non-HIV-infected volunteers. From
the 60 individuals included in the cohort, we obtained salivary samples for 53 individuals at baseline
that were grouped in viremic ART-untreated (VU, n = 12), immunological ART responders (IR, n = 18),
immunological ART non-responders (INR, n = 9), and HIV-uninfected individuals as controls (n = 14)
(Table 1). A total of 32 individuals completed the six-week prebiotic intervention. The prebiotics (20 g)
consisted of a mixture of short-chain galacto-oligosaccharides (5 g), long-chain fructo-oligosaccharides
(10 g), and glutamine (5 g), which is an energy source for enterocytes. The prebiotics supplier was
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Nutricia (Nutricia, S.R.L., Dirección Ctra. de Andalucía, Km. 25.6, 28340, Madrid). The study
individuals completed a dietary survey and no differences were detected among the groups in dietary
habits [14]. The safety of the intervention was evaluated in the previous work [14]. Clinical parameters,
such as plasma metabolic profile, T-cell markers, thymic function, endothelial function, bacterial
translocation, inflammation, and thrombosis, were measured in previous work [14].

Table 1. Saliva and fecal samples used in the study.

Saliva F1 a Saliva F2 b Feces F1 a Feces F2 b HIV Group c

S-F1-11 F1-11 Control
S-F1-17 F1-17 Control
S-F1-21 F1-21 Control
S-F1-23 S-F2-23 F1-23 F2-23 Control
S-F1-28 S-F2-28 F1-28 F2-28 Control
S-F1-29 S-F2-29 F1-29 F2-29 Control
S-F1-30 F1-30 Control
S-F1-31 F1-31 Control
S-F1-32 F1-32 Control
S-F1-45 S-F2-45 F1-45 F2-45 Control
S-F1-48 F1-48 Control
S-F1-49 S-F2-49 F1-49 F2-49 Control
S-F1-50 S-F2-50 F1-50 F2-50 Control
S-F1-60 S-F2-60 F1-60 F2-60 Control
S-F1-13 S-F2-13 F1-13 F2-13 INR
S-F1-22 S-F2-22 F1-22 F2-22 INR
S-F1-25 S-F2-25 F1-25 F2-25 INR
S-F1-27 S-F2-27 F1-27 F2-27 INR
S-F1-3 F1-3 INR
S-F1-5 S-F2-5 F1-5 F2-5 INR

S-F1-54 F1-54 INR
S-F1-58 F1-58 F2-58 INR
S-F1-9 S-F2-9 F1-9 F2-9 INR
S-F1-1 S-F2-1 F1-1 IR

S-F1-10 F1-10 IR
S-F1-12 F1-12 IR
S-F1-14 S-F2-14 F1-14 F2-14 IR
S-F1-15 F1-15 F2-15 IR
S-F1-16 S-F2-16 F1-16 F2-16 IR
S-F1-18 S-F2-18 F1-18 F2-18 IR
S-F1-19 F1-19 F2-19 IR
S-F1-2 S-F2-2 F1-2 F2-2 IR

S-F1-20 S-F2-20 F1-20 F2-20 IR
S-F1-24 F1-24 IR
S-F1-26 F1-26 IR
S-F1-33 S-F2-33 F1-33 F2-33 IR
S-F1-4 S-F2-4 F1-4 F2-4 IR

S-F1-56 F1-56 IR
S-F1-6 F1-6 IR
S-F1-7 S-F2-7 F1-7 F2-7 IR
S-F1-8 S-F2-8 F1-8 F2-8 IR

S-F1-34 VU
S-F1-35 S-F2-35 F1-35 F2-35 VU
S-F1-36 S-F2-36 F1-36 F2-36 VU
S-F1-37 F1-37 VU
S-F1-38 F1-38 F2-38 VU
S-F1-39 S-F2-39 F1-39 F2-39 VU
S-F1-40 S-F2-40 F1-40 F2-40 VU
S-F1-44 S-F2-44 F1-44 F2-44 VU
S-F1-46 S-F2-46 F1-46 F2-46 VU
S-F1-47 S-F2-47 F1-47 F2-47 VU
S-F1-51 S-F2-51 F1-51 F2-51 VU
S-F1-53 S-F2-53 F1-53 F2-53 VU

a: baseline level, b: after prebiotics, c: INR, immunological antiretroviral therapy (ART) non-responder; IR,
immunological ART responder; VU, viremic untreated.

Unstimulated salivary samples (approximately 2 mL) were collected in sterile tubes at midday
(after 5 h of personal oral hygiene) during the visit of the patients to the HIV unit in the hospitals at
baseline and after six weeks. The salivary samples were kept at −80 ◦C until use. Collection of fecal
samples was described in Reference [14].
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All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Public Health Department and the Center for Public Health
Research (DGSP-CSISP), Valencia, Spain and by the Ethics Committees of both recruiting institutions
(University Hospital Clínico San Carlos, ceic.hcsc@salud.madrid.org and University Hospital Ramón y
Cajal, ceic.hrc@salud.madrid.org) (approval number 11/284).

2.2. Bacterial DNA Extraction and Sequencing

Total DNA was extracted in the robotic workstation MagNA Pure LC Instrument (Roche) using the
MagNA Pure LC DNA isolation kit III (Bacteria, Fungi) (Roche). Previously, salivary samples (300 µL
of saliva) were centrifuged at maximum speed at 4 ◦C for 5 min to pellet the cells. Bacterial pellets were
resuspended in lysis buffer (MagNA Pure LC DNA isolation kit III) and treated for one hour at 37 ◦C
with an enzymatic cocktail (lysozyme 25 mg/mL, lysostaphin 1.25 mg/mL, mutanolysin 625 U/mL).
Then, the samples were treated for 15 min at 65 ◦C with proteinase K according to the instructions
of MagNA Pure LC DNA isolation kit III. Total DNA was quantified with a Qubit Fluorometer
(ThermoFisher) and its integrity was verified by standard agarose gel electrophoresis.

We amplified the V3–V4 region of the 16S rRNA gene from total DNA obtained from salivary and
fecal samples. The amplicon libraries were constructed following Illumina instructions. The libraries
were quantified with a Qubit Fluorometer (ThermoFisher) and sequenced using the Kit v3 (2× 230 cycles)
in a MiSeq platform (Illumina) at FISABIO-Salud Pública. All the sequences were deposited in the
European Bioinformatics Institute (EBI) database under the number PRJEB25569.

2.3. Analysis of 16S rRNA Gene Amplicons

A quality assessment of the raw reads was performed using the prinseq-lite program [23]
applying the following parameters: min_length: 50, trim_qual_right: 30, trim_qual_type: mean,
and trim_qual_window: 20. R1 and R2 reads from Illumina sequencing were joined using the FLASH
program applying default parameters [24]. The 16S rDNA sequences were processed using the QIIME
pipeline (v2-2017.12). Operational taxonomic units (OTUs) were obtained at 97% sequence similarity
by clustering with the USEARCH software in the QIIME pipeline. Taxonomic information of the 16S
rDNA sequences was obtained using the Ribosomal Database Project (RDP) naïve Bayesian classifier
algorithm with the GreenGenes database (version gg_13_5) in the QIIME pipeline. The annotation was
accepted when the bootstrap confidence estimation value was over 0.8, and the assignation was stopped
at the last well-identified phylogenetic level. To obtain weighted and unweighted UniFrac distance
matrices, we firstly generated a phylogenetic tree and then applied the core-metrics-phylogenetic
method using the QIIME pipeline.

2.4. Quantitative PCR

To quantify the bacterial load in salivary samples, we performed real-time PCR using LightCycler
480 instrument (Roche) and SYBR Premix ExTaq (Tli RNaseH Plus) (Takara Bio Europe). Amplification
reactions were performed in 20 µL final volume with 1 µL of total DNA purified from salivary samples as
a template and using the universal bacterial primers 16S-U515F and 16S-U789R. All the reactions were
made in duplicate. The bacterial load was calculated by comparison with the crossing point (cp) values
obtained from a standard curve. The standard curve was prepared using serial dilutions of DNA extracted
from a bacterial suspension that contained 10 million cells. The bacteria were quantified and sorted by flow
cytometry as described previously [25]. The results were expressed as number of cells per mL of saliva.

2.5. Statistical Analysis

The alpha diversity was determined at the OTU level using the vegan library (function reny and
diversity) from the R package version 3.2.0 [26] that gives, as default, observed OTUs, Shannon diversity
index, Simpson index of diversity (1-D), Chao1 richness estimator, and an Abundance-based Coverage
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Estimator (ACE). To analyze beta diversity, we applied principal coordinate analysis (PCoA) based on
weighted and unweighted UniFrac distances. Box plots, sample clustering, canonical correspondence
analysis (CCA), and heatmaps were generated with in-house R scripts. To statistically assess the
effect of the environmental factors on the bacterial composition, a multivariate analysis of variance
based on dissimilarity test (ADONIS) was applied using the vegan library from the R package (adonis
function). To evaluate differences between groups in continuous variables, we used the Kruskal–Wallis
test. The pairwise comparisons of continuous variables were analyzed using the Wilcoxon rank-sum
test. The alpha values for both tests were set to 0.05.

To correlate species abundances to the clinical features for HIV-infected individuals, we performed
a generalized linear model (GLM) by setting the clinical variables as the response variable and the
species matrix as the predictors using the cv. glmnet function in the “glmnet” R package. The results
were validated using the Spearman correlation index.

The linear discriminant analysis (LDA) effect size (LEfSe) algorithm was applied to identify
biomarkers of the microbiota composition from the different groups [27]. Default parameters were
used for significance (p-value <0.05) and linear discriminant analysis threshold (>2.0).

To control for the false discovery rate, we corrected the statistical tests adjusting all p-values using
the Benjamini–Hochberg correction (library “stats”, function “p.adjust”) (q-value).

To determine if the sample size of the groups before and after prebiotics offered sufficient statistical
power to detect differences through a bilateral Student’s t-test with a significance of 5%, we applied the
function “pwr.t2n.test” (two-sample t-tests with unequal sample sizes) from the pwr R package. We
verified that the estimated average sample size needed to achieve 90% and 85% power was similar to
the real sample size that we had for the groups before and after prebiotic intervention, respectively
(Tables S2–S5, Supplementary Materials).

2.6. Co-Occurrence of Bacterial Taxa in Salivary and Gut Microbiota

We performed a cluster analysis at 100% similarity to search for identical 16S rRNA sequences in
paired samples of saliva (S)/feces (F). For each OTU, we counted how many read-pairs (S–F) from the
same individual were contained in that OTU. In order to quantify to what extent the co-occurrence
events were biologically driven or, on the contrary, simply random, we estimated for each OTU the
following log-likelihood ratio, log2(Prob(S,F)/(Prob(F) × Prob(S)), which was based on the Bayes
formula. Thus, the OTUs presenting such a log-likelihood ratio above zero would represent a biological
phenomenon. However, to be conservative, we considered the OTUs with a log-likelihood ratio
(log2(Prob(S,F)/Prob(F) × Prob(S))) higher than 0.5 as biological events.

3. Results

3.1. General Features of the Patients and Samples

A total of 32 participants completed the six-week-long prebiotic intervention: 7 controls, 6 INR,
10 IR, and 9 VU (Figure S1, Supplementary Materials). Thus, we analyzed 85 salivary samples
corresponding to 53 salivary samples at baseline (F1 samples) and 32 salivary samples collected after
the prebiotic intervention (F2 samples). We also analyzed the stools from 52 subjects at baseline and
from 35 individuals after prebiotics (Table 1).

We determined at baseline the differences between the four groups (IR, INR, VU, and HIV−) in
plasma metabolic profile, T-cell markers, thymic function, endothelial function, bacterial translocation,
inflammation, and thrombosis (Table 2). We found significant differences between healthy controls and
HIV-infected groups (INR, IR, VU) in T-cell markers (T helper CD4+ cells/µL and CD8+ cells/µL) and
thymic function measured as signal joint/beta T-cell receptor excision circles (sj/β-TREC) ratio (Table 2).
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Table 2. Clinical variables at baseline and after prebiotic intervention in studied subjects.

Control INR IR VU

Baseline Prebiotics Baseline Prebiotics Baseline Prebiotics Baseline Prebiotics p.value
Baseline a

Adj.fdr
p.value
Baseline a

p.value
Prebiotics b

Adj.fdr
p.value
Prebiotics b

Metabolic profile in plama

Glucose (mg/dL) 91
(88–94)

90(83–98) 93(89–96) 94(88–108) 93(89–97) 90(86–99) 85(82–87) 92(85–94) 0.0615 0.1285 0.6181 0.6476

Creatinine (mg/dL) 0.97
(0.82–1)

0.91
(0.84–0.99)

1(0.95–1) 1.1
(0.96–1.2)

1(0.96–1.1) 0.97
(0.93–1.1)

1(0.94–1.2) 0.96(0.89–1) 0.3194 0.4081 0.1024 0.1733

Total cholesterol (mg/dL) 207
(160–220)

149
(136–192)

148
(145–198)

155
(135–185)

185
(153–208)

190
(156–220)

158
(147–184)

164
(160–177)

0.0924 0.1771 0.2299 0.3161

HDL-cholesterol (mg/dL) 54(49–75) 55(52–76) 50(44–57) 49(43–61) 53(47–58) 56(48–60) 48(41–53) 49(40–53) 0.3141 0.4081 0.3028 0.3918
LDL-cholesterol (mg/dL) 116

(82–134)
89
(74–126)

78
(71–116)

81
(69–99)

105
(93–119)

115
(89–132)

88
(86–100)

94
(86–103)

0.1423 0.2517 0.3867 0.4477

Triglycerides (mg/dL) 80
(66–161)

67(54–76) 102(87–147) 97(75–120) 102(81–127) 104(75–152) 107(63–158) 110
(103–135)

0.9266 0.9687 0.9188 0.9188

T cell markers

CD4+T-cell counts (cells/µl) 716
(601–862)

742
(629–880)

271
(204–321)

289
(227–319)

561
(426–667)

534
(432–668)

521
(385–738)

549
(458–645)

0.0001 0.0007 0.0031 0.0115

%HLADR+
CD38+

1(0.7–1.1) 1.2
(0.89–1.4)

3.4(3–4) 3.3(2.6–3.8) 2.3(1.8–2.6) 1.9(1.5–2) 3.8(3.6–7.8) 3.4(2.8–3.6) 0.0000 0.0000 0.0000 0.0001

%CD25+ 2.6(2–4) 2.6(2.1–3.2) 6.1(5.5–8.3) 6.6(6–7.5) 4.7(4.2–6.6) 4.5(4.2–6.4) 8.2(5.4–10) 6.2(4.6–7.3) 0.0028 0.0108 0.0013 0.0058
%CD57+ 3.2

(2.2–5.9)
5.1(2.4–5.9) 11(3.7–12) 8.3(4.3–11) 5.7(4–8.6) 6.8(3.3–10) 13(5.7–22) 9.3(8.7–22) 0.0211 0.0485 0.0498 0.1095

CD8+ T-cell counts (cells/µl) 403
(306–552)

429
(308–541)

404
(377–695)

434
(226–566)

606
(480–730)

532
(436–670)

1004
(794–1114)

1075
(829–1271)

0.0079 0.0228 0.0140 0.0439

%HLADR
+CD38+

2(1.2–2.1) 1.5(0.6–1.6) 4.8(4.4–6.3) 4.9(3.7–8) 3.3(2.6–8.3) 4.8(3.8–5.7) 13(10–17) 10(8.1–11) 0.0000 0.0000 0.0001 0.0004

%CD25+ 0.33
(0.095–0.41)

0.19
(0.13–0.23)

0.73
(0.57–1.6)

0.84
(0.47–1.2)

0.47
(0.32–0.74)

0.46
(0.26–0.6)

0.95
(0.93–1.1)

0.77
(0.72–0.85)

0.0022 0.0102 0.0184 0.0507

%CD57+ 24(16–46) 18(18–57) 27(18–34) 29(19–34) 26(18–42) 31(21–47) 42(39–55) 46(36–56) 0.2309 0.3540 0.3801 0.4477
CD4/CD8 ratio 1.5

(1.2–1.7)
1.7
(1.3–2)

0.65
(0.36–0.89)

0.88
(0.36–2.2)

1(0.91–1.2) 1.2(1.1–1.3) 0.54
(0.45–0.74)

0.56
(0.51–0.62)

0.0001 0.0006 0.0011 0.0058

Thymic function

sj/β-TREC c ratio 9(8.2–9.5) 8.8(7.1–8.9) 7.8(7.6–8.4) 8.2
(7.9–8.8)

8.2(7.7–9.2) 9.1(8.3–9.6) 8.7(8.3–9) 8.4
(7.4–8.8)

0.0195 0.0485 0.5480 0.6029

Endotelial function

ADMA d

(µM/L)
1.1
(1.1–1.1)

1(0.9–1.1) 0.97
(0.86–1.2)

1.2(1–1.3) 0.97
(0.96–1.1)

0.99(0.95–1) 0.96
(0.92–1.1)

1.1(1–1.2) 0.2506 0.3602 0.2074 0.3042

Bacterial translocation

BPI e

(ng/mL)
35(12–35) 8.3(2.6–9.1) 13(4.1–49) 3(2.3–5.7) 28(1.3–114) 6(1.8–8.6) 17(5.3–60) 9.8(5.3–17) 0.9768 0.9768 0.0000 0.0002

SCD14 f

(ng/mL)
1424
(1254–1484)

1272
(1162–1362)

1636
(1454–1999)

1894
(1641–2402)

1663
(1483–1732)

1610
(1251–1750)

1552
(1360–1613)

1507
(1295–1721)

0.1587 0.2607 0.0463 0.1095
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Table 2. Cont.

Control INR IR VU

Baseline Prebiotics Baseline Prebiotics Baseline Prebiotics Baseline Prebiotics p.value
Baseline a

Adj.fdr
p.value

Baseline a

p.value
Prebiotics b

Adj.fdr
p.value

Prebiotics b

Inflammation

IL6 g (pg/mL) 2(2–4.1) 2(2–2) 2(2–2.2) 7.3(5.3–8.1) 2(2–2) 2(2–2.7) 2(2–2) 2(2–4.3) 0.3811 0.4614 0.0665 0.1329
Hs-CRP h

(mg/L)
0.095
(0.055–0.3)

0.07
(0.035–0.22)

0.11
(0.06–0.15)

0.57
(0.28–1.3)

0.18
(0.09–0.29)

0.19
(0.062–0.34)

0.09
(0.053–0.18)

0.15
(0.07–0.26)

0.6838 0.7489 0.0835 0.1530

Thrombosis

Dimers-D
(ng/mL)

180
(120–274)

240
(209–304)

202
(113–306)

261
(237–290)

215
(176–293)

202
(184–232)

280
(202–322)

238
(216–397)

0.4032 0.4637 0.1428 0.2244

a, Analysis was performed using Kruskal–Wallis test to compare median values across all groups at baseline. b, Analysis was performed using Kruskal–Wallis test to compare median
values among control at baseline and HIV-infected patients after prebiotics. The p-value represents probability at α = 0.05. The p-values were adjusted by the Benjamini–Hochberg method.
c, signal joint/beta T-cell receptor excision circles ratio; d, asymetric dymethilarginine; e, bactericidal permeability increasing protein; f, soluble CD14; g, interleukin-6; h, high-sensitivity
C-reactive protein. INR, immunological ART non-responders; IR, immunological ART responders; VU, viremic untreated.
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We also determined the clinical variables after prebiotics (Table 2). We observed a decrease in
both bacterial translocation markers and in T-cell activation markers for the four groups.

3.2. Salivary Microbiota Analysis in HIV-Infected Individuals

To characterize the salivary microbiota composition at baseline, we sequenced 53 samples obtaining
1,878,045 high-quality 16S rRNA sequences with an average of 42,682 sequences per sample.

The taxonomic analysis (Figure 1) revealed that the most abundant bacteria were similar in
all the groups: Corynebacterium (C. durum) and Rothia (R. mucilaginosa and R. dentocariosa) from
the Actinobacteria phylum, Porphyromonas (P. endodontalis) and Prevotella (P. pallens, P. nigrescens, P.
nanceiensis, P. melaninogenica, and P. tannerae) from the Bacteroidetes, Bulleidia (B. moorei), Streptococcus
(S. anginosus and S. agalactiae), and Veillonella (V. parvula and V. dispar) from the Firmicutes, and Neisseria
(N. subflava) and Haemophilus (H. parainfluenzae) from the Proteobacteria.

Nutrients 2019, 11, x FOR PEER REVIEW 10 of 22 

 

We also determined the clinical variables after prebiotics (Table 2). We observed a decrease in 
both bacterial translocation markers and in T-cell activation markers for the four groups. 

3.2. Salivary Microbiota Analysis in HIV-Infected Individuals 

To characterize the salivary microbiota composition at baseline, we sequenced 53 samples 
obtaining 1,878,045 high-quality 16S rRNA sequences with an average of 42,682 sequences per 
sample. 

The taxonomic analysis (Figure 1) revealed that the most abundant bacteria were similar in all 
the groups: Corynebacterium (C. durum) and Rothia (R. mucilaginosa and R. dentocariosa) from the 
Actinobacteria phylum, Porphyromonas (P. endodontalis) and Prevotella (P. pallens, P. nigrescens, P. 
nanceiensis, P. melaninogenica, and P. tannerae) from the Bacteroidetes, Bulleidia (B. moorei), 
Streptococcus (S. anginosus and S. agalactiae), and Veillonella (V. parvula and V. dispar) from the 
Firmicutes, and Neisseria (N. subflava) and Haemophilus (H. parainfluenzae) from the Proteobacteria. 

 

Figure 1. Oral microbiota composition in HIV-infected groups and controls. Species distribution of 
the salivary microbiota in each group. INR, immunological antiretroviral therapy (ART) non-
responders; IR, immunological ART responders; VU, viremic untreated. 

We applied the ADONIS test to evaluate whether the HIV status is a factor that influences the 
microbiota structure. This test validated (p-value = 0.04) the compositional differences observed at 
the OTU level in the CCA analysis (Figure 2). This ordination technique showed that the first axis, 
explaining 56.01% of variability, separated the IR and control groups from the rest, while the 
second axis, explaining 26.96% of variability, split the VU group from the other three groups. To 
identify the OTUs that explained the differences between the four groups, we used LEfSe analysis. 
We found that the VU group presented as biomarkers Streptococcus agalactiae and V. parvula, while 
IR had different species of Streptococcus. OTUs belonging to Actinobacteria were characteristic for 
INR and control groups (Figure S2a, Supplementary Materials). We also applied LefSe analysis 
between HIV+ and HIV− groups (Figure S2b, Supplementary Materials). We found that the HIV-
associated salivary microbiota presented a significantly higher abundance of potential pathogens as 
S. agalactiae (p-value = 0.0091), Corynebacterium durum (p-value = 0.013), and OTUs assigned to 
species of Prevotella (p-value = 0.046), Leptotrichia (p-value = 0.048), Tannerella (p-value = 0.004), and 
Catonella (p-value = 0.028). 

Figure 1. Oral microbiota composition in HIV-infected groups and controls. Species distribution of the
salivary microbiota in each group. INR, immunological antiretroviral therapy (ART) non-responders;
IR, immunological ART responders; VU, viremic untreated.

We applied the ADONIS test to evaluate whether the HIV status is a factor that influences the
microbiota structure. This test validated (p-value = 0.04) the compositional differences observed at
the OTU level in the CCA analysis (Figure 2). This ordination technique showed that the first axis,
explaining 56.01% of variability, separated the IR and control groups from the rest, while the second axis,
explaining 26.96% of variability, split the VU group from the other three groups. To identify the OTUs
that explained the differences between the four groups, we used LEfSe analysis. We found that the VU
group presented as biomarkers Streptococcus agalactiae and V. parvula, while IR had different species
of Streptococcus. OTUs belonging to Actinobacteria were characteristic for INR and control groups
(Figure S2a, Supplementary Materials). We also applied LefSe analysis between HIV+ and HIV−
groups (Figure S2b, Supplementary Materials). We found that the HIV-associated salivary microbiota
presented a significantly higher abundance of potential pathogens as S. agalactiae (p-value = 0.0091),
Corynebacterium durum (p-value = 0.013), and OTUs assigned to species of Prevotella (p-value = 0.046),
Leptotrichia (p-value = 0.048), Tannerella (p-value = 0.004), and Catonella (p-value = 0.028).
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When we analyzed the diversity (Simpson’s index of diversity and Shannon index) and richness
(Chao1 and ACE estimator) of the salivary microbiota in each group at the OTU level, we observed
that the VU group presented the highest value for these two parameters, followed by the IR group
(Figure 3a). Moreover, both groups were significantly more diverse than the control group. Additionally,
the bacterial load in salivary samples from HIV-infected patients was higher than in HIV− samples
(Figure 3b). The impaired immunological system of VU individuals could explain the higher number
of bacterial cells per mL of saliva and the higher diversity parameters.Nutrients 2019, 11, x FOR PEER REVIEW 11 of 22 
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3.3. Effect of Prebiotics on Salivary Microbiota

After nutritional intervention, the IR and VU groups presented higher diversity parameters
(Simpson’s index of diversity, Shannon index, and Chao1 richness estimator) than INR and control
individuals (Figure 4), as it occurred at baseline. To assess the effect of prebiotics on alpha diversity,
we compared F1 and F2 samples in each group. Interestingly, we observed a drastic decrease in both
diversity and richness parameters after prebiotic intervention with a similar fold change for the four
groups (Figure 4).

To evaluate the changes in the overall community structure in each group, we used the within-group
weighted Unifrac distances. We found that prebiotic intervention modified the microbiota structure
in all the groups, increasing the heterogeneity (Figure 5a). Then, we hypothesized that prebiotics
could ameliorate the HIV-associated dysbiosis observed in salivary microbiota. To address this point,
we considered the HIV− group at baseline as a healthy reference (F1.Control) and we calculated the
weighted UniFrac distances between F1.Control and F1 or F2 for each group. We found that the
weighted UniFrac distance between the F1.Control and F1.VU groups was slightly higher than that
between F1.Control and F2.VU, which suggested a trend of the microbiota composition toward the
microbiota of the healthy reference (Figure 5b and Figure S3, Supplementary Materials). In the IR
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group, we did not observe a clear approximation to the healthy reference after prebiotics. However,
we observed an increase of the distance to the F1.Control for the F2.INR group (Figure 5b and Figure
S3, Supplementary Materials).

Then, we used LEfSe analysis to identify the OTUs that presented significant differences between
F1 and F2 in the four groups. Interestingly, we only found a change of microbiota composition in the
VU group (Figure 6). Thus, the viremic ART-naïve individuals, after prebiotics, showed a microbiota
enriched in the Actinobacteria Rothia mucilaginosa, a commensal bacterium of the oral cavity associated
with dental and periodontal health. In addition, although the genus Mogibacterium was increased
in F2, we found after prebiotics a depletion of other potential pathogens such as Corynebacterium,
Fusobacterium, or Prevotella melaninogenica.
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Figure 4. Alpha diversity before and after prebiotic intervention. Shannon diversity index, Simpson’s
index of diversity, and Chao1 richness estimator in the four groups. To calculate differences between
groups, we used the Wilcoxon rank-sum test (p-value = 0.05). F1, at baseline; F2, after prebiotics.
INR, immunological ART non-responders; IR, immunological ART responders; VU, viremic untreated;
cont, controls.
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3.4. Association between Salivary Microbiota and Clinical Markers before and after Prebiotic Intervention

GLM analysis showed significant correlations between specific bacterial members of salivary
microbiota and markers of bacterial translocation, adaptive immunity, and plasma metabolites (Table 3).
At baseline, Streptococcus anginosus correlated with CD4+ T cells, Veillonella parvula with CD4+ CD25+

T cells, and Prevotella pallens, P. copri, and P. nigrencens with markers of adaptive immunity such as
CD4+ CD25+ T cells, CD4+ CD57+ T cells, and CD4+ HLADR+ (Human Leukocyte Antigen –DR
isotype) CD38+ T cells, respectively. Also, another major species Haemophilus parainfluenzae presented
a significant positive correlation with the concentration of creatinine in plasma. Additionally, we
found significant correlations between minor species and other clinical variables. After prebiotic
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intervention, we observed that different species of Lactobacillus and Streptococcus correlated negatively
with inflammatory marker interleukin-6 (IL-6) and bacterial translocation (soluble CD14, sCD14). Also,
Ruminococcus gnavus correlated negatively with T-cell activation markers.

Table 3. Correlations between saliva microbiota and clinical parameters at baseline and after
treatment. Analysis was performed using Kruskal–Wallis test to compare median values across
all groups. The p-value is the probability at α = 0.05. The p-values were adjusted by the
Benjamini–Hochberg method.

Correlations Before Prebiotic Intervention

Clinical Variable Taxa Spearman
Correlation Index

p.value Adj.fdr_p.value

Plasma Metabolite

Creatinine Faecalibacterium prausnitzii 0.5893 0.0004 0.0344
Creatinine Haemophilus parainfluenzae 0.5670 0.0007 0.0376
Creatinine Actinobacillus porcinus 0.4944 0.0040 0.0710
HDL-cholesterol Prevotella tannerae −0.4664 0.0071 0.1025
HDL-cholesterol Lactobacillus coleohominis −0.4136 0.0186 0.1346
HDL-cholesterol Pyramidobacter piscolens −0.3985 0.0239 0.1356
HDL-cholesterol Lactobacillus reuteri −0.3955 0.0250 0.1356
HDL-cholesterol Pasteurella multocida −0.3851 0.0295 0.1356

T cell markers

CD4+T cell Streptococcus
anginosus

−0.3965 0.0247 0.1356

CD4+T cell Pyramidobacter piscolens −0.3682 0.0381 0.1356
CD4+ CD25+T cell Veillonella parvula 0.4170 0.0176 0.1346
CD4+ CD25+T cell Prevotella pallens −0.3736 0.0352 0.1356
CD4+ CD57+T cell Prevotella copri 0.3864 0.0289 0.1356
CD4+ CD57+T cell Pasteurella multocida 0.3587 0.0438 0.1356
CD4+ HLADR+ CD38+T cell Prevotella nigrescens 0.3592 0.0442 0.1356

Thymic function

sj/β-TREC ratio a Actinomyces hyovaginalis 0.5852 0.0004 0.0344
sj/β-TREC ratio Streptococcus sobrinus −0.5077 0.0030 0.0680
sj/β-TREC ratio Streptococcus agalactiae 0.4780 0.0062 0.0975
sj/β-TREC ratio Pyramidobacter piscolens −0.3710 0.0366 0.1356

Bacterial translocation

BPI b Streptobacillus moniliformis 0.3550 0.0462 0.1356

Correlations After Prebiotic Intervention

Clinical Variable Taxa Spearman
Correlation Index

p.value Adj.fdr p.value

Plasma Metabolite

Creatinine Campylobacter rectus 0.3741 0.0349 0.0689
Glucose Actinomyces

hyovaginalis
−0.4022 0.0225 0.0689

Glucose Collinsella aerofaciens 0.3575 0.0446 0.0689
HDL-cholesterol Lactobacillus coleohominis −0.3839 0.0301 0.0689
HDL-cholesterol Prevotella melaninogenica 0.3761 0.0339 0.0689
LDL-cholesterol Pasteurella multocida −0.3893 0.0276 0.0689
Triglycerides Pasteurella multocida −0.4501 0.0098 0.0689
Triglycerides Lactobacillus coleohominis 0.4211 0.0164 0.0689
Triglycerides Lactobacillus reuteri 0.3714 0.0364 0.0689

T cell markers

CD4+T cell Ruminococcus gnavus 0.5321 0.0017 0.0283
CD4+ HLADR+ CD38+T cell Bifidobacterium adolescentis 0.3928 0.0262 0.0689
CD4+ HLADR+ CD38+T cell Ruminococcus gnavus −0.3618 0.0419 0.0689
CD4+ HLADR+ CD38+T cell Capnocytophaga ochracea 0.3590 0.0436 0.0689
CD4+ CD25+T cell Ruminococcus gnavus −0.5393 0.0014 0.0283
CD4+ CD25+T cell Actinobacillus porcinus 0.3916 0.0267 0.0689
CD4+ CD25+T cell Prevotella_intermedia 0.3901 0.0273 0.0689
CD4+ CD25+T cell Selenomonas_noxia −0.3821 0.0309 0.0689
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Table 3. Cont.

CD4+ CD57+T cell Neisseria_subflava −0.4621 0.0078 0.0689
CD4+ CD57+T cell Atopobium_rimae 0.4522 0.0094 0.0689
CD4+ CD57+T cell Haemophilus_parainfluenzae −0.4359 0.0133 0.0689
CD4+ CD57+T cell Veillonella dispar 0.4245 0.0162 0.0689
CD4+ CD57+T cell Pasteurella multocida −0.4036 0.0220 0.0689
CD4+ CD57+T cell Prevotella intermedia 0.3979 0.0241 0.0689
CD4+ CD57+T cell Bifidobacterium adolescentis 0.3612 0.0423 0.0689
CD8+T cell Capnocytophaga ochracea 0.3983 0.0240 0.0689
CD8+ CD25+T cell Pseudomonas veronii −0.4773 0.0057 0.0672
CD8+ CD25+T cell Bulleidia moorei −0.3796 0.0321 0.0689
CD8+ CD25+T cell Bifidobacterium longum −0.3699 0.0372 0.0689
CD8+ CD57+T cell Pasteurella multocida −0.5469 0.0012 0.0283
CD8+ CD57+T cell Pasteurella multocida −0.5469 0.0012 0.0283
CD8+ CD57+T cell Flexispira rappini −0.3800 0.0319 0.0689
CD8+ CD57+T cell Flexispira rappini −0.3800 0.0319 0.0689
CD8+ CD57+T cell Neisseria subflava −0.3598 0.0431 0.0689
CD8+ CD57+T cell Streptobacillus moniliformis −0.3577 0.0444 0.0689
CD4/CD8 ratio Ruminococcus gnavus 0.4574 0.0085 0.0689

Endotelial function

ADMA c Faecalibacterium prausnitzii 0.4219 0.0162 0.0689
ADMA Prevotella tannerae 0.3859 0.0292 0.0689
ADMA Lactobacillus coleohominis 0.3617 0.0420 0.0689

Bacterial translocation

BPI Lactobacillus helveticus 0.3642 0.0405 0.0689
SCD14 d Lactobacillus vaginalis −0.4307 0.0139 0.0689
sCD14 Streptococcus sobrinus −0.3978 0.0242 0.0689
sCD14 Lactobacillus salivarius −0.3584 0.0440 0.0689

a, signal joint/beta T-cell receptor excision circles ratio; b, bactericidal permeability increasing protein; c, asymetric
dymethilarginine; d, soluble CD14.

3.5. Comparison between Salivary and Gut Microbiota: Bacterial Co-Occurrence

Firstly, we compared salivary and fecal bacterial populations by applying a PCoA analysis, in
which, as expected, the two microbiotas presented highly different structures (Figure S4, Supplementary
Materials). On the basis of the connection between the oral cavity and the gut, we explored the bacterial
co-occurrence in both environments. To this aim, we searched for 100% identical 16S rRNA sequences
in salivary and feces samples in each group (control, INR, IR, VU) at baseline and after prebiotic
intervention, which yielded 330,120 and 272,622 total OTUs, respectively. We selected those OTUs
that presented at least one pair of saliva and feces sequences from the same individual, representing
the co-occurrence events. As we observe in Table S1 (Supplementary Materials), the co-occurrence
events took place in the four groups, but they were not very frequent. This result is congruent with the
different microbiota structure that is present in each habitat.

We observed a decrease in the frequency of co-occurrences after prebiotics in the HIV-infected
patients (Table S1, Supplementary Materials). At baseline, the bacterial composition analysis showed
that the more frequent co-occurrences were detected for the major bacterial genera and species of
the salivary microbiota such as Haemophilus parainfluenzae, Streptococcus, and Veillonella (V. dispar, V.
parvula) (Figure 7). Surprising, we also found co-occurrences of colonic bacteria such as Faecalibacterium
prausnitzii, Dialister, and Bifidobacterium. The clustering analysis (Figure S5, Supplementary Materials)
showed that IR and VU grouped together before and after prebiotic intervention, while the control
presented a differential profile. Moreover, we identified specific bacterial taxa that only occurred
in each of the groups. After prebiotics, we observed an increase of co-occurrences of Lactobacillus,
Streptococcus, and Ruminococcus genera.
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4. Discussion

In the last few years, high-throughput sequencing allowed deep and holistic studies of complex
environments such as the human body. The oral cavity is no exception, with more than 700 species
detected in the mouth microbiome [1,28]. Furthermore, other studies revealed the oral microbiota as a
clear determinant of systemic inflammation and cardiovascular risk [28–30].

Currently, HIV infection is considered as a chronic inflammatory disease that alters the interplay
between the gut microbiota and immune system. HIV-associated gut dysbiosis was studied in depth,
and different nutritional approaches with prebiotics, probiotics, and synbiotics showed changes in
immunity parameters and microbiota composition. However, few works addressed the dysbiosis of
the oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics
were performed.

According to previous works [18–22], differences in the relative abundance of several bacterial taxa
between HIV-infected subjects and healthy controls were observed, but the overall salivary microbiota
structure was similar in all groups. However, the ordination analysis showed that the HIV infection
had a considerable impact on the salivary microbiota. Unlike Li et al. [18], we detected an increase of
diversity parameters for salivary microbiota in HIV-infected patients, mainly in viremic ART-naïve
subjects (VU group) as we previously described in HIV-associated fecal microbiota [14]. A similar
effect of HIV infection on bacterial community diversity was also described in the HIV-associated
genital microbiota of women with vaginosis [31]. Furthermore, Presti et al. [22] described a correlation
between viral suppression and decrease of diversity in HIV-associated salivary microbiota. Thus, the
impairment of the immune system produced by HIV infection allowed the growth and colonization of
opportunistic bacteria and pathogens in the oral cavity, suggesting that the composition of the oral
bacterial community could reflect the HIV status. Although, we observed correlations between the
microbiota and biomarkers of immunity, bacterial translocation, and thymic function, we could not
establish a causal influence between the oral microbiome and the immune system.
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In the last few years, the modulation of the microbiome by probiotics and prebiotics appeared as
a promising tool to drive a dysbiotic microbiota toward a healthy status. In oral health, probiotics
interventions were applied in the prevention of different diseases such as dental caries, gingivitis,
and periodontitis [1,2,10]. However, few studies focused on the application of prebiotics. A recent
work screened potential nutritional compounds for the stimulation of commensal bacteria growth
with beneficial effects on oral health [8,9]. Even though different surveys applied prebiotics, probiotics,
or synbiotics to modify the dysbiotic gut microbiome in HIV patients [12–17], no such studies were
performed for oral HIV-associated microbiota. In the present work, we evaluated the modulatory effect
of six weeks of prebiotic intervention on the salivary microbiota in the cohort previously described
by Serrano-Villar et al. [14]. We are aware that the low number of enrolled patients hinders the
interpretation of the effects of prebiotics on the salivary microbiota and demands caution in conclusions.
In spite of this, our survey is the first study on the prebiotic modulation of the salivary microbiota in
HIV-infected patients with diverse immunopathogenesis.

The decrease in alpha diversity of the saliva bacterial community after dietary intervention
suggested a growth stimulation of specific bacteria that could inhibit pathogenic species. Although the
prebiotics changed the beta diversity of salivary bacterial communities, no clear restoration of a healthy
microbiota was detected. Our findings suggested that the response to prebiotics might depend on the
HIV status. In fact, in the viremic ART-naïve group, we observed an approximation to the healthy
condition, but contradictory responses were observed in ART-treated individuals. Furthermore,
in accordance with what we previously described in the gut microbiota [14], the modulation of
prebiotics was more apparent in the viremic ART naïve group (VU) with an enrichment in commensal
bacteria and a depletion in potential pathogens. To validate our results and to extend the understanding
of the mechanisms of action of prebiotics on the oral microbiota and their relationship with the gut
microbiome, more studies will be needed with larger number of patients.

Due to the anatomical and physiological link between saliva and the gastrointestinal tract, we
tackled the potential bacterial exchange between the salivary and gut microbiome. Several studies
identified oral bacteria in the fecal microbiota in different diseases such as Crohn’s disease, liver
cirrhosis, or colorectal carcinoma [32–36], suggesting a role of the oral microbiota in the inflammatory
process. Recently, Atarashi et al. [37] showed that the oral genus, Klebsiella, colonized the gut inducing
intestinal inflammation. However, the knowledge of the underlying basis for the bacterial exchange
between both habitats is scarce [38,39]. In this work, we assessed the bacterial co-occurrences between
salivary and fecal HIV-associated microbiota. The major salivary taxa would flow through the intestinal
tract and would survive in the colon, albeit at a low abundance. Furthermore, in accordance with
Franzosa et al. [39], we also detected co-occurrences of gut commensal bacteria such as Dialister and
Faecalibacterium in healthy and HIV-infected individuals, suggesting a potential bidirectional flux for
some bacteria. Interestingly, the bacterial exchange profile of HIV-infected subjects clustered separately
from those of healthy individuals, which may suggest that the HIV infection modifies the bacterial
exchange between the oral and gut microbiome. A better understanding of the interplay between the
oral and gut microbiome may encourage the design of new nutritional strategies to modulate dysbiotic
microbiota in inflammatory diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/6/1346/s1,
Figure S1: Study profile; Figure S2: Linear discriminative analysis (LDA) effect size (LEfSe) at OTU level between
(a) four groups: control, IR, INR, VU; (b) HIV− and HIV-infected groups at baseline. LDA scores for the significant
taxa in HIV-infected group are represented on the positive scale (green) and LDA-negative scores represent
enriched taxa in control group (red); Figure S3: (a) Principal coordinate analysis (PCoA) based on weighted
Unifrac distances between F1.Control, F1.VU, and F2.VU groups. (b) Principal coordinate analysis (PCoA) based
on weighted Unifrac distances between F1.Control, F1.IR, and F2.IR groups. (c) Principal coordinate analysis
(PCoA) based on weighted Unifrac distances between F1.Control, F1.INR, and F2.INR groups; Figure S4: Principal
coordinate analysis (PCoA) based on weighted Unifrac distances between saliva and feces microbiota; Figure
S5: Heatmap based on the percentage of taxa that co-occurred (a) at baseline, (b) after prebiotics. We only
considered the taxa that presented a percentage, in all the groups, higher than 5%. INR, immunological ART
non-responders; IR, immunological ART responders; VU, viremic untreated; Table S1: Statistics of co-occurrence
events at baseline and after prebiotic intervention; Table S2: Sample size determination (n1) for groups before
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