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Abstract: Preventing muscle wasting in certain chronic diseases including cancer is an ongoing
challenge. Studies have shown that polyphenols derived from fruits and vegetables shows promise
in reducing muscle loss in cellular and animal models of muscle wasting. We hypothesized that
polyphenols derived from plums (Prunus domestica) could have anabolic and anti-catabolic benefits on
skeletal muscle. The effects of a polyphenol-enriched plum extract (PE60) were evaluated in vitro on
C2C12 and Colon-26 cancer cells. Data were analyzed using a one-way ANOVA and we found that
treatment of myocytes with plum extract increased the cell size by ~3-fold (p < 0.05) and stimulated
myoblast differentiation by ~2-fold (p < 0.05). Plum extract induced total protein synthesis by ~50%
(p < 0.05), reduced serum deprivation-induced total protein degradation by ~30% (p < 0.05), and
increased expression of Insulin-Like Growth Factor-1 (IGF-1) by ~2-fold (p < 0.05). Plum extract also
reduced tumor necrosis factor α (TNFα)-induced nuclear factor κB (NFκB) activation by 80% (p < 0.05)
in A549/NF-κB-luc cells. In addition, plum extract inhibited the growth of Colon-26 cancer cells, and
attenuated cytotoxicity in C2C12 myoblasts induced by soluble factors released from Colon-26 cells.
In conclusion, our data suggests that plum extract may have pluripotent health benefits on muscle,
due to its demonstrated ability to promote myogenesis, stimulate muscle protein synthesis, and
inhibit protein degradation. It also appears to protect muscle cell from tumor-induced cytotoxicity.
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1. Introduction

Skeletal muscle weakness and wasting, which is also referred as cachexia, is a major clinical
problem for advanced cancer patients [1]. In 1932, Warren described cachexia as the most common
cause of death across a variety of cancers in a post mortem study of 500 patients [2]. The term “Cachexia”
is derived from the Greek words “kakos” and “hexis,” meaning “bad condition.” It is a multi-organ
syndrome associated with and characterized by at least 5% body weight loss due to muscle and
adipose tissue wasting [3]. Cancer cachexia is a multifactorial syndrome that is common in advanced
malignancy occurring in 80% of patients, which cannot be reversed by nutritional support and leads
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to significant function deficits [4], and which is responsible for an estimated 20% of cancer-related
deaths [5].

Colorectal cancer (CRC) patients are often presented with cachexia syndrome, which is a major
contributor to colorectal cancer-related morbidity and mortality [4–8]. About 35 to 60% of CRC patients
show some degree of muscle wasting and 28% lose >5% of their body weight in the six months
preceding diagnosis [9]. Blocking muscle wasting can prolong life even in the absence of effects on
tumor growth [10].

Oxidative stress through activating initial steps in protein degradation via the ubiquitin-proteasome
pathway and the activation of caspases contributes to muscular atrophy [11–13]. In addition,
inflammation also leads to muscle atrophy and this is mediated through cytokine (e.g., tumor necrosis
factor α (TNFα), interleukin-6 (IL-6), and interferon γ (IFNγ)) induced activation of the nuclear factor
κB (NF-κB) pathway [14].

Recent studies have shown that polyphenol-rich plant extracts prevent oxidative stress,
reduce inflammation, and help reduce muscle atrophy. We have previously shown that curcumin
treatment attenuated muscle wasting in cancer cachectic mice [15]. Supplementation with red grape
polyphenols mitigated muscular atrophy in transforming growth factor (TGF) mice, a model of chronic
inflammation, by reducing mitochondrial oxidative stress and by inhibiting caspase activation [16].
Grape seed extract supplementation effectively prevented muscle wasting in IL10-knock out mice [17].
Green tea polyphenol, catechins, protected normal and dystrophic muscle cells from oxidative
damage [18]. Epigallocatechin-3-gallate (EGCG) supplementation preserved muscle in sarcopenic
rats [19] and attenuated skeletal muscle atrophy caused by experimentally induced cancer cachexia in
in mice [20]. More recently, ursolic acid—a polyphenol present in apple peels, basil leaves, prunes,
and cranberries [21]—has been shown to increase muscle mass in mice exhibiting fasting-induced
muscle atrophy [22]; it has also increased muscle mass, fast and slow fiber size, grip strength, and
exercise capacity in mice with diet-induced obesity [23]. These observations clearly suggest that intake
of polyphenols can be beneficial in preserving muscle mass.

The common plum (Prunus domestica) is well known to be rich in polyphenols and contains unique
phytonutrients called neochlorogenic and chlorogenic acid which have high antioxidant activities.
Among functional foods, plums are also considered “super foods” since their consumption has been
associated with the decrease in chronic degenerative diseases and circulatory and digestive issues [24].
Dried plums have been shown to reduce symptoms of arthritis in an inflammation model [25].
These effects are attributed to their high polyphenolic composition and related high antioxidant
activity [26]. Plums have several health benefits and studies have found that plums also initiate
anti-cancer mechanisms that may help prevent the growth of cancerous cells and tumors [27–29].

In addition, plums have been extensively studied for their effects on bone health [30,31].
Plums contain caffeic acid (the polyphenol component of neochlorogenic and chlorogenic acids)
and rutin, which have been shown to inhibit the deterioration of bone tissues and prevent diseases such
as osteoporosis in postmenopausal women [32]. Research has also shown that regular consumption of
dried plums helps in the restoration of bone density lost to aging [33].

Formation of bone and much of the skeletal tissues is derived from the proliferation and
differentiation of skeletal stem cells. As dried plum was found to be a potent regulator of bone health,
it is possible that plum and its associated polyphenols may have benefits on other cells of musculoskeletal
system. Thus, in the present study, we sought to investigate the effect of a polyphenol-enriched plum
extract on muscle cell growth and differentiation, and on muscle protein synthesis and degradation
in vitro. In addition, we explored the effect of plum extract on inflammation as well as studied its effect
on colon cancer cells.
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2. Materials and Methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), horse serum, and
Penicillin-Streptomycin solution were purchased from Gibco-Thermo-Fisher Scientific (Grand Island,
NY, USA). L-[2,3,4,5,6-3H] Phenylalanine and L-[Ring-3, 5-3H]-Tyrosine was purchased from
Perkin-Elmer (Waltham, MA, USA), Prune extract-60% enriched polyphenol extract (PE60) was
purchased from PL Thomas (Morristown, NJ, USA). All other chemicals were of reagent grade, and
were purchased from Sigma Chemical Co. (St. Louis, MO, USA).

2.2. Composition of the PE60-Plum Extract

Free gallic acid, 3-cholorogenic acid, rutin, free quercetin, and proanthocyanidins were determined
with an Agilent Technologies (Wilmington, DE, USA) Model 1200 HPLC System equipped with a
Model G1311A quaternary pump, Model G1322A vacuum degasser, Model G1329A autosampler,
Model G1316A thermostatted column compartment, a Model G1315B diode array detector, and a Chem
Station data processor. The separations were performed with a YMC-Pack ODS-AQ analytical column
(4.6 × 250 mm, 5 µm, P/N AQ12S05-2546WT, Waters Corporation, Milford, MA, USA), using mobile
phase A = 1000/100 (v/v) 0.05 M KH2PO4, pH 2.9/acetonitrile, and mobile phase B = 200/800 (v/v) Milli-Q
Plus water/acetonitrile, a column temperature of 40 ◦C, an injection volume of 5 µL, and the analytes
were quantified at signals of 280 nm/590 nm (for gallic acid and the proanthocyanidins), 330 nm/590 nm
(for 3-chlorogenic acid), and 375 nm/590 nm (for rutin and quercetin). The elution program was 0%
mobile phase B from 0 to 5 min, 0 to 60% (linear gradient) mobile phase B from 5 to 35 min, 100% mobile
phase B from 35 to 40 min, and 0% mobile phase B from 40 to 55 min (end). The PE60 extract was prepared
for analysis by stirring (at room temperature for 15 min) 0.250 g in 100 mL of 50/50 (v/v) 0.05 M citric
acid/methanol. The determinations were calibrated with standard solutions of gallic acid, 3-chlorogenic
acid, rutin hydrate, and quercetin dihydrate (all obtained from Sigma-Aldrich, St. Louis, MO, USA),
also prepared in the citric acid/methanol medium. The proanthocyanidin content was estimated by
peak area proportionation vs. the corresponding peak areas (at 280 nm/590 nm) of grapeseed extracts
(from Kikkoman, Polyphenolics, and Seppic) of known (i.e., label claim) proanthocyanidin content,
included in the analysis. The anthocyanin concentration was estimated by a published colorimetric
method [34]. During present investigation, minor isomers of chlorogenic acid (4-chlorogenic acid,
5-chlorogenic acid) were not determined.

2.3. Characterization of Anti-Oxidation Capacity of the Plum Extract

The PE60 (Lot PE6009-1601) extract was dissolved in water (10 mg/mL) and then centrifuged at
1500 × g for 10 min to remove any insoluble material. The dissolved material was sterile filtered and
the filtrate was assayed for total polyphenols by the Folin Ciocalteu method [35], for total flavonoids by
the AlCl3 complexation method [36], for anti-oxidant activity by the DPPH assay [37], and for oxygen
scavenging activity by the ABTS assay [38], as described.

2.4. Cell Culture

C2C12 cell line (mouse myoblasts) were obtained from American Type Culture Collection
(Manassas, VA, USA). The undifferentiated cells were grown in complete media consisting of Dulbecco’s
modified Eagle’s medium (DMEM, 4.5 mg/mL glucose) supplemented with heat-inactivated fetal
calf serum (10%), penicillin (100 units/mL), and streptomycin (100 µg/mL) at 37 ◦C in the presence
of 5% CO2. The myoblasts were differentiated into myotubes by culturing them into differentiation
medium, consisting of DMEM supplemented with heat-inactivated horse serum (5%), penicillin
(100 units/mL), and streptomycin (100 µg/mL) for five days.
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2.5. Determination of C2C12 Myoblast Cell Size

Muscles cells were grown in a 96-well plate for 24 h in 100 µL complete media. Cells were
then treated with 0, 50, 100, 150, and 200 µg/mL of extract for 48 h to evaluate a dose-response
effect of plum extract. After incubations, the cells were observed under a microscope and pictures
(100 ×magnification) were taken using a Nikon microscope with calibrated objectives. The size of cells
was determined using Element-BR software (Nikon Instruments Inc, Melville, NY, USA).

2.6. Assaying C2C12 Myoblast Differentiation

Muscle cells were initially cultured in a 96-well plate for 24 h in 100 µL complete media. Cells were
then incubated with 0, 50, 100, and 200 µg/mL plum extract for five days and the medium containing
corresponding concentration of plum extract was changed every 24 h. After treatment, the cells were
washed once with PBS, and then fixed with cold 4% paraformaldehyde for 10 min on ice. The cells
were washed three times with PBS and the monolayer was treated with blocking solution containing
2% albumin. The cells were then incubated with anti-myosin antibody at room temperature for 2 h.
Cell were washed again and then incubated with anti-mouse Alexa-488 antibody (Abcam, Cambridge,
MA) for two hours. Cells were washed again three times with PBS and the nuclei were stained briefly
with Hoechst 33342 dye (1:2000 dilution). Pictures were taken at 200 ×magnification using a Nikon
Fluorescent Microscope (Nikon Instruments Inc, Melville, NY 11747, USA). Myotubes were defined as
myosin positive cells with 2 or more fused nuclei.

2.7. Protein Synthesis in Cultured C2C12 Myotubules

C2C12 cells (375,000) were initially plated on a 12-well tissue culture plate that was initially coated
with 2% gelatin. Cells were differentiated for five days in 5% horse serum (media was changed every
two days) and then starved for 30 min by replacing the media with 1 ml PBS. The cells were then treated
with 0, 50, 100, and 200 µg/mL of plum extract in PBS, spiked with [3H] phenylalanine (1µCi/well),
and incubated for 2 h at 37 ◦C. The reaction was stopped by placing the plates on ice. Wells were
washed two times with DPBS-media containing 2 mM cold phenylalanine. Further, 1 mL of 20% cold
trichloroacetic acid (TCA) solution was added to each well and plates were incubated on ice for 1 h for
protein precipitation. Wells were washed two times with cold TCA and then the precipitated proteins
were dissolved in 0.5 mL of 0.5N NaOH containing 0.2% Triton X-100 overnight in a refrigerator.
An aliquot (5 µL) of the NaOH solubilized material was used for protein determination and the rest of
the dissolved proteins were mixed with scintillation fluid and counted. Data is computed as cpm/mg
of proteins and then % change over control is calculated.

2.8. Protein Degradation in C1C12 Myotubules

C2C12 myoblasts were cultured and differentiated as described above. Cells were then labelled
with [3H] Tyrosine 1 µCi/1 mL in serum free-DMEM (SF-DMEM) for 24 h. The unincorporated [3H]
Tyrosine was removed by washing the cell monolayer three times with SF-DMEM containing 50 µM
cycloheximide (protein synthesis inhibitor) and 2 mM non-labelled Tyrosine. Proteolysis was induced
by serum deprivation for 48 h in the presence or absence of 50, 100, 200 µg/mL of plum extract in
serum-free DMEM containing 50 µM cycloheximide. The extent of protein degradation was assayed
by monitoring release of radioactive tyrosine in the media after 48 h of incubation and was expressed
as protein degradation in comparison to control (normalized to 100%).

2.9. Determination of Insulin-Like Growth Factor-1 (IGF-1) Expression

Total RNA was extracted from C2C12 myotubules with RNeasy Plus Universal Mini Kit (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions. The concentration and purity of RNA
was determined by measuring the absorbance in a Nano drop spectrophotometer. RT2 First Strand Kit
from Qiagen (Qiagen, Hilden, Germany) was used to synthesize first strand complementary DNA
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(cDNA). The gene expression levels were analyzed by Quantitative real-time RT-PCR conducted on
the Bio-Rad CFX-96 Real-Time PCR System using RT2 SYBR Green Master mix (Bio-Rad Laboratories,
Hercules, CA). The primers (IGF: forward primer GGACCAGAGACCCTTTGCGGGG and reverse
primer, AGCTCAGTAACAGTCCGCCTAGA; GAPDH: forward primer ATCCCATCACCATCTTCCAG
and reverse primer CCATCACGCCACAGTTTCC) were designed. Hot-Start DNA Taq Polymerase
was activated by heating at 95 ◦C for 10 min and real time PCR was conducted for 40 cycles (15 s for
95 ◦C, 1 min for 60 ◦C). All results were obtained from at least three independent biological repeats.
Data were analyzed using the ∆∆CT method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
genes were used as house-keeping genes for expression calculation.

2.10. Determination of NFkB Activation

A549/NFkB-luc cells (Panomics Catalog No. RC0002) at 3 × 105/well were seeded in 1 mL of Initial
Growth Media (Dulbecco’s Modified Eagle’s medium containing 10% FBS and 1% Pen-Strep) in a
12-well plate. The cells were incubated in a humidified incubator at 37 ◦C and 5% CO2 for 24 h to allow
cells to recover and attach. After washing the cells once with serum-free media containing penicillin
(100 units/mL), and streptomycin (100 mg/mL), 1 mL of this media was added to each well. Cells were
pretreated with varying concentrations of plum extracts for 1 h at 37 ◦C and 5% CO2, and then TNFαwas
added to achieve a final concentration of 2 ng/mL to all wells except control untreated cells. The cells
were incubated in a humidified incubator at 37 ◦C and 5% CO2 for 6 h. After treatment, the media
was carefully removed. Cells were washed with PBS once and then lysed by 100 µL of 1× lysis buffer.
Assay for luciferase activity was performed according to assay manufacturer’s (Promega P/N E1500)
recommendations. The average relative luminescence units (RLU) were calculated and corrected for
baseline quenching for each set of triplicate wells, using WinGlow software (PerkinElmer, Waltham,
MA 02451, USA and Microsoft Excel (Microsoft Corporation, Redmond, WA 98073, USA). The data is
reported as the relative percent inhibition of TNFα mediated NFκB activation on A549 cells.

2.11. Effect of Plum Extract on Colon-26 Proliferation and its’ Soluble Factor Induced Cytotoxicity on
C2C12 Myotubules

Colon 26 cells, a mouse colon carcinoma cell line, was obtained from American Type Culture
Collection (Manassas, VA, USA). Effect of plum extract on Colon-26 cell proliferation was assayed
using a Water-Soluble Tetrazolium-1 (WST-1) (Talkara, Shiga, Japan) assay as described previously [39].
To determine the effects of soluble factors released from Colon-26 on C2C12 myotubules, conditioned
media from Colon-26 culture was collected after 24 h. of cultivation. The media was centrifuged at
2500 × g for 20 min to remove cellular material. The clear supernatant (conditioned media) was diluted
1:10 with normal complete media. The C2C12 differentiated myoblasts were then treated with normal
complete medium or with Colon-26 conditioned medium with or without 50 µg/mL plum extract.
A lower dose of plum extract (50 µg/mL) was used to avoid a direct effect of higher dose of plum
extract (100 µg/mL or 200 µg/mL) on protein synthesis and degradation. The cell viability was assayed
using a WST-1 assay. Control cells were subjected to equal amounts of non-conditioned media.

2.12. Data Analysis

The data is expressed as mean ± SD for at least three replicates. All comparisons were made by
one-way ANOVA with Tukey’s -HSD-post-hoc test using SPSS Statistics 20 software. All significant
differences are reported at p < 0.05 and indicated by “*”.
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3. Results

3.1. Characterization of PE60 Plum Extract Composition and Anti-Oxidation Properties

As shown in Table 1, the major components identified in the polyphenol-enriched PE60 plum
extract are proanthocyanidins, along with minor components such as anthocyanidins, 3-chlorogenic
acid, rutin, quercetin (free), and gallic acid (free).

The PE60 was also characterized by determining total phenolic content (TPC), total flavonoid
content (TFC), anti-oxidant activity (DPPH assay), and oxygen scavenging activity (ABTS). The data in
Table 2 shows that the content of TPC was in the same range as reported by the commercial vendor
(60%). The data indicate that the PE60 contained TPC in range 525–575 mg/g of dry extract. The TFC
was in 480–560 mg/g dry weight range. The anti-oxidation effects as determined by inhibition of DPPH
oxidation and ABTS assay ranged from 3280–3460 and 4000–4500 µM Trolox equivalents/g, respectively.

Table 1. Characterization of composition of polyphenol-enriched plum extract (PE60).

Component Concentration
(g per 100 g) n = 3 Flavonoid Type (USDA) Analytical Method

Anthocyanins 0.391 ± 0.020
(rsd = 5.1%) Anthocyanidin Colorimetric

3-chlorogenic acid 1.76 ± 0.01
(rsd = 0.6%) Hydroxycinnamic acid LC/UV *

Rutin 1.12 ± 0.01
(rsd = 0.6%) Flavanol LC/UV *

Quercetin (free) 0.718 ± 0.005
(rsd = 0.7%) Flavanol LC/UV *

Gallic acid (free) 0.381 ± 0.004
(rsd = 1.1%) Hydroxybenzoic LC/UV *

Proanthocyanidins 60 ± 10
(rsd < 2%) Flavan-3-ol LC/UV *

Contents in PE60 plum extract were determined either using an Agilent Technologies Model 1200 HPLC System
(Wilmington, DE, USA) or a colorimetric method as described in Section 2.2 in the text. Values are mean ± SD of
three experiments. * LC/UV = liquid chromatography/ultraviolet light detection

Table 2. Characterization of anti-oxidation properties of PE60.

Assays Units Mean ± SD

Total Phenolic Content (TPC) mg/g 542.44 ± 24.75
Total Flavonoid Content (TFC) mg/g 520.00 ± 40.10
Anti-oxidant activity (DPPH) µM Trolox Equivalent/g 3375 ± 90

Oxygen Scavenging Activity (ABTS) µM Trolox Equivalent/g 4250 ± 250

The anti-oxidation properties of PE60 plum extract were determined using specific assays (TPC: total phenolic content,
TFC: total flavonoid content, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2’-azino-bis{3-ethylbenzothiazoline-
6-sulfonic acid}) as described in Section 2.3 in the text. Values are mean ± SD of three experiments.

3.2. Effect of PE60 Plum Extract on C2C12 Myoblast Size and Differentiation

Plum extract had no cytotoxic effect on myoblast when used even at a high dose of 250 µg/mL
(data not shown). It is evident from images that plum extract has some effect on cell proliferation;
however, it was interesting to note that the plum extract increased the size of undifferentiated myoblasts
cells in a dose-dependent manner (Figure 1a). The size of myoblast increased ~two-fold (p < 0.05)
after treating cells with 50 µg/mL of plum extract when compared to that of untreated-control cells.
Increase in myoblast size plateaued to a maximum increase of three-fold at 200 µg/mL concentration
(Figure 1b). The effect of plum extract was also assessed on myoblast differentiation. Figure 2a
indicates that the plum extract stimulated differentiation of myoblast in a dose-dependent manner
using expression of myosin heavy chain as a marker for differentiation. The number of myotubes
formed resulting from fusion of differentiated cells was increased by two-fold in cells treated with
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100 µg/mL plum extract (p < 0.05) and by three-fold at 200 µg/mL (p < 0.05) compared to that of control
cells (Figure 2b).
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3.3. Effect of PE60 Plum Extract on Myotubule Protein Synthesis

Plum extract showed almost a linear increase in [3H] phenylalanine incorporation into proteins in
a dose dependent manner in C2C12 myotubules (Figure 3). Doses of 100 µg/mL and 200 µg/mL of
plum extract caused a significant increase in protein synthesis by 30% and 50%, respectively (p < 0.05).

3.4. Effect of PE60 Plum Extract on Myotubules Protein Degradation

We also examined if plum extract could reduce myotubule protein degradation induced by serum
starvation. Figure 4 revealed that plum extract did inhibit protein degradation in a dose-dependent
manner. Doses of 100 µg/mL and 200 µg/mL significantly inhibited protein degradation by 20% and
30%, respectively (p < 0.05).
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Figure 3. The effect of plum extract on myotubule protein synthesis. Protein synthesis was measure by
the incorporation of labeled phenylalanine into total myotubule proteins in response to various levels
of plum extract. Data were computed as cpm/mg of proteins followed by calculation of % change over
control. The data were expressed as mean ± SD for at least three experiments. All comparisons were
made to control (untreated cells) using one-way ANOVA; significant differences are reported at * p < 0.05.
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Figure 4. The effect of plum extract on myotubule protein degradation. Proteolysis was induced by 
48 h-serum starvation in the presence or absence of plum extract, and monitored by release of 
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Figure 4. The effect of plum extract on myotubule protein degradation. Proteolysis was induced
by 48 h-serum starvation in the presence or absence of plum extract, and monitored by release of
radioactive tyrosine from pre-labelled cells. Data were computed as cpm/mg of proteins and then %
change over control was calculated. The data were expressed as mean± SD for at least three experiments.
All comparisons were made to control (untreated cells) using one-way ANOVA; significant differences
are reported at * p < 0.05.

3.5. Effect of PE60 Plum Extract on IGF-1 Expression in Myotubules

Expression of IGF-1 mRNA in C2C12 myotubules upon treatment with plum extract is shown in
Figure 5. Compared to that of untreated cells, low concentration of plum extract (50 µg/mL) has no
significant effect on IGF-1 mRNA expression; however, it significantly stimulated IGF-1 expression
when cells were treated at a higher dose (100 or 200 µg/mL) plum extract.
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Figure 5. The effect of plum extract of IGF-1 gene expression. Total RNA was extracted from C2C12
myotubules treated with various concentrations of plum extract and compared to untreated control.
All results were obtained from at least three independent biological repeats. Data were analyzed
using the ∆∆CT method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were used as
house-keeping genes for expression calculation. All comparisons were made to control (untreated cells)
using one-way ANOVA; significant differences are reported at * p < 0.05.
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3.6. Anti-Inflammatory Effect of PE60 plum Extract in Vitro

We evaluated the anti-inflammatory activity of plum extract by assessing its effect on
TNF-α-induced NFkB activation where the activity was measured in terms of luciferase activity
of NFkB reporter system assay. Plum extract inhibited NFkB activation in a dose dependent manner
(Figure 6). A dose response assay indicated that ~40% inhibition (p < 0.05) of TNF-α-mediated NFkB
activation was achieved at 25 µg/mL plum extract, and >80% inhibition (p < 0.05) of TNF-α-mediated
NFkB activation was achieved at 50 µg/mL plum extract.
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Figure 6. Effects of plum extract on NFkB activation. The effect of plum extract on TNFα-mediated 
NFkB activation was measured in the A549/NFκB-luc reporter stable cell line. Activity was 
measured in terms of luciferase activity. The data are reported as the relative percent inhibition of 
TNFα-mediated NFkB activation. The data are expressed as mean ± SD for at least three 
experiments. All comparisons were made to control (untreated cells) using one-way ANOVA; 
significant differences are reported at * p < 0.05. 
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Figure 6. Effects of plum extract on NFkB activation. The effect of plum extract on TNFα-mediated
NFkB activation was measured in the A549/NFκB-luc reporter stable cell line. Activity was measured in
terms of luciferase activity. The data are reported as the relative percent inhibition of TNFα-mediated
NFkB activation. The data are expressed as mean ± SD for at least three experiments. All comparisons
were made to control (untreated cells) using one-way ANOVA; significant differences are reported at
* p < 0.05.

3.7. Effect of PE60 Plum Extract on Colon-26 Mouse Adenocarcinoma Cell Line

When Colon-26 cells were treated with plum extract, the cells viability was reduced in a
dose-dependent manner reaching ~80% reduction (p < 0.05) at 150 µg/mL. Upon further increasing
the concentration of plum extract, the cell viability was further reduced 90% (p < 0.05) at 200 µg/mL
(Figure 7).

Nutrients 2019, 11, x FOR PEER REVIEW 12 of 18 

 

Plum Extract (μg/ml)

0 50 100 150 200

C
el

l V
ia

bi
lit

y 
(%

)

0

20

40

60

80

100

120

*
*

 
Figure 7. Effect of plum extract on Colon-26 adenocarcinoma cells. Data were calculated as % 
inhibition of cell growth in response to various concentrations of plum extract. The data are 
expressed as mean ± SD for at least three replicates. All comparisons were made to control 
(untreated cells) using one-way ANOVA; the significant differences are reported at * p < 0.05. 
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Figure 7. Effect of plum extract on Colon-26 adenocarcinoma cells. Data were calculated as % inhibition
of cell growth in response to various concentrations of plum extract. The data are expressed as
mean ± SD for at least three replicates. All comparisons were made to control (untreated cells) using
one-way ANOVA; the significant differences are reported at * p < 0.05.
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3.8. Effect of PE60 Plum Extract on C2C12 Cell Viability in Response to Colon-26 Cells Cytotoxicity-Inducing Factors

Mouse derived Colon-26 adenomacarcinoma cells are known to induce muscle wasting in
rodents [40]. The effect of these circulating soluble factors released by Colon-26 was examined on
growth of C2C12 myotubules in vitro in presence or absence of plum extract. Figure 8a,b shows that in
the absence of plum extract, soluble factors released in media derived from Colon-26 cells caused a
significant reduction of C2C12 cell viability by ~25% (p < 0.05). However, in the presence of plum
extract, the negative effects of Colon-26-derived media on C2C12 viability was prevented and the cell
viability was maintained to a similar level that was seen in the untreated cells.
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Figure 8. The effect of plum extract on C2C12 viability in response to Colon-26-induced cytotoxicity.
(a) Differentiated C2C12 myotubes were treated with normal medium (i & ii) or Colon-26-conditioned
medium (iii & iv) in the absence (i & iii) or presence (ii & iv) of plum extract (50 µg/mL). (b) The viability
of C2C12 myotubules were determined using WST-1 assay. The data is expressed as mean ± SD for
at least three experiments. All comparisons were made to control (untreated cells) using one-way
ANOVA; significant differences are reported at * p < 0.05.
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4. Discussion

In our study, we sought to investigate if plums had benefits on skeletal muscle. Specifically,
we selected to use a plum extract that was enriched in polyphenols (~60% polyphenols) because the
health benefits of plum have been partly attributed to its high polyphenol content [41–43]. Our data
indicates that about 95% of total phenolic content in the plum extract used was present in the form of
flavonoids. This data is not surprising as fruits are often reported to have phenolic compounds which
are high in flavonoids with a range of 90–100% [44]. The anti-oxidant activity in the plum extract was
found to be in range of 3–4 mM of Trolox equivalent/g, which is higher than that of turmeric (0.27–0.35
mM Trolox eq/g) and mulberry (1–2 mM Tolox eq/g), but lower than green tea (13–17 mM Trolox eq/g)
and pomegranate (20–25 mM Trolox eq/g) [45–49].

Dried plum has previously been reported to have health benefits on bone. In rat models of
osteoporosis, dried plum intake resulted in prevention and reversal of bone loss [50,51]. A three-month
clinical intervention study showed that dried plum intake improved biomarkers of bone formation
in postmenopausal women, whereas longer-term intake of dried plum resulted in mitigating loss of
bone mineral density [31]. The present study was designed to analyze the effects of plum extract
on muscle metabolism in C2C12 myotubules. In our initial experiments, the effect of plum extract
was tested on myoblast viability. The data show that this plum extract has no toxicity on the muscle
cells, even at very high doses. These results are consistent with prior literature on plum effects on
non-diseased cells [52]. The maintenance of muscle mass is dependent on synthesis of new proteins
and breakdown of old or damaged proteins. If these processes are balanced, the muscle mass is
maintained; however, with aging and under certain catabolic condition including cancer, renal failure
or trauma, muscle protein degradation exceeds the synthesis of new proteins, and results in muscle
atrophy [53]. One interesting observation was that that plum extract increased the size of growing
myoblast under un-differentiated conditions, suggestive of inducing increase in cytoplasmic volumes
by stimulating protein synthesis. We also measured effect of plum extract on protein synthesis and
degradation in differentiated myotubules. Our data clearly demonstrated that plum extract not only
increased protein synthesis but also inhibited myotubules protein degradation in response to serum
starvation, demonstrating both an anabolic and anti-catabolic effect.

The activity of the plum extract appears to be at least partly mediated through IGF-1 stimulation.
Several studies have shown that IGFs stimulated both proliferation and differentiation of myoblasts,
and also play a role in regenerating damaged skeletal muscle [54–58]. In line with our results, prior
studies have also demonstrated that plums can increase IGF-1 levels in both humans [58] and animal
models [51,59]. One of the manifestations of muscle loss is associated with decreased production of
IGF-1 [60]. The signaling pathway IGF-1/PI3K/Akt (Insulin like growth factor -1/phosphatidyl inositol
3-kinase/protein kinase) is considered the main mediator of normal muscle development and one of the
most studied signaling molecular systems involved in muscle metabolism [61]. Akt activation leads to
activation of mTOR (mammalian target of rapamycin), which is responsible for promoting protein
synthesis. The Akt-mTOR signaling pathway and its downstream components (p70s6k and 4E-BPI) are
attenuated with muscle wasting [62]. Further studies need to be performed to confirm the if plum extract
is indeed regulating Akt activity. The identification of compound or compounds in plum responsible
for stimulating IGF-1 levels in myoblast was beyond the scope of the present study. As discussed
earlier, ursolic acid has been shown to increase muscle mass in mice exhibiting fasting-induced muscle
atrophy [22] or diet-induced obesity [23]. Interestingly, ursolic acid has also been shown to induce
IGF-1 levels in the skeletal muscle of these mice with an increased Akt phosphorylation [22,23].
During present investigation, we were not able to detetect ursolic acid in PE60 extracts due to technical
limitation for detecting all polyphenols; however, other studies have reported presence of ursolic
acid in plums [21]. Therefore, it is possible that ursolic to some extent may have contributed in IGF-1
mediated muscle growth in our studies.

Studies have demonstrated the anti-inflammatory effect of dried-plum or plum juice in
several cellular system including lipopolysaccharide-induced macrophages [63,64], splenocytes from
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ovariectomized mice [65], colorectal cells in azoxymethane-treated rats [66], heart tissues in obese
rats [67] and joints of TNF-over expressing mice [25]. The antioxidation activities of plum appeared to
be mediated through the inhibition of NFκB activation [25,66,67]. Based on these reported studies, we
decided to test the effect of plum extract on NFκB activation, since oxidative stress and inflammatory
responses through activation of NFκB play an important part in muscle atrophy. Activation of NFkB
plays a central role in muscle atrophy in several catabolic situations including cancer cachexia [68,69].
We found that even a small dose of plum extract was able to almost completely inhibit (>80% inhibition)
TNF-α-induced NFκB activity in vitro. It is likely that the proanthocyanidins, which comprise over
70% of the polyphenols, may be involved in suppressing the inflammatory cytokine (TNF)-induced
activation of NFκB, although this has not been systematically tested with the individual components
of the extract.

Cancer cachexia-related morbidity and mortality are often accompanied by whole body and muscle
loss [4,7,8] and it is suggested that blocking muscle wasting can prolong life despite tumor growth [10].
The effect of plum extract on colon cancer cell viability, as well as its ability to protect muscle cells
from colon-cancer cell induced cytotoxicity, were, therefore, also investigated. We used Colon-26
adenocarcinoma cells, which is a widely used preclinical model because it induces clinical cachexia,
including its development as well as the resultant physiological and metabolic impairment [40,69,70].
Treating the Colon-26 colon cancer cells with plum extract caused a significant decrease in the Colon-26
cell’s viability, indicating potential anti-tumor activity.

It is known that muscle wasting in cancer patients is mediated through factors released from
tumor in circulation [71–74]. Studies have shown that elevated circulating levels of IL-6 mediated
skeletal muscle cell death in severely cachectic mice with colon cancer [75]. Our studies found that
plum extract can protect C2C12 myotubules from cytotoxicity induced by soluble factors released by
the Colon-26 cells. The exact pathways leading to reduced cell viability in response to tumor induced
soluble factors are not known, but it is possible that both atrophy and apoptosis may be attenuated by
the plum extract. It is also possible that compound(s) in plum extract may directly affect colon cells
to inhibit secretion of inflammatory cytokines. Future studies need to be conducted to elucidate the
molecular mechanism involved in the anti-cytotoxic activity of the plum extract.

Our current studies have several limitations. The study was performed using an in vitro system
that may not represent the complexities of an in vivo system. Furthermore, polyphenols in the plum
extract can undergo biotransformation in vivo, which could either enhance or diminish the anabolic of
plum extract on muscle as well as its anti-inflammatory benefit. However, previous human studies
with dried plum still demonstrated its ability to activate IGF-1 as well as its anti-inflammatory benefits,
indicating that biotransformation may not result in loss of these effects observed in our study.

5. Conclusions

In conclusion, the polyphenol-enriched plum extract has both anti-catabolic and anabolic effects
on muscle cells, as well as myogenic potential. In addition, this plum extract exhibited anti-cytotoxic
properties in response to soluble factors released from cancer cells. Thus, plum extract may be a
useful intervention to be considered for cancer cachexia or other chronic disease-induced cachexia
involving inflammation. These results need to be confirmed in an animal model of cachexia, followed
by clinical translation.
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