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Abstract: Autophagy plays a role in several physiological and pathological processes as it controls
the turnover rate of cellular components and influences cellular homeostasis. The liver plays a
central role in controlling organisms’ metabolism, regulating glucose storage, plasma proteins and
bile synthesis and the removal of toxic substances. Liver functions are particularly sensitive to
autophagy modulation. In this review we summarize studies investigating how autophagy influences
the hepatic metabolism, focusing on fat accumulation and lipids turnover. We also describe how
autophagy affects bile production and the scavenger function within the complex homeostasis of the
liver. We underline the role of hepatic autophagy in counteracting the metabolic syndrome and the
associated cardiovascular risk. Finally, we highlight recent reports demonstrating how the autophagy
occurring within the liver may affect skeletal muscle homeostasis as well as different extrahepatic
solid tumors, such as melanoma.
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1. Autophagy Machinery

Autophagy is an evolutionarily conserved process. Autophagic bodies formation was observed for
the first time by electronic microscopy in the middle of the twentieth century [1]. Ever since autophagy
deep involvement in physiological and pathological contexts has been emerging, thus prompting
researchers to unravel the molecular platform operating within this mechanism [2].

Autophagy is a quality-control process aimed at eliminating old or damaged cellular components.
It contributes to the turnover of macromolecules such as proteins [3], lipids (lipophagy) [4,5] and
nucleic acids (RNautophagy, DNautophagy) [6]. In addition, selective forms of autophagy of whole
organelles have been characterized, such as the autophagy of mitochondria (mitophagy) [7], ribosomes
(ribophagy) [8] and endoplasmic reticulum (ER-phagy) [9]. Moreover, autophagy is involved in the
defense against pathogens invasion through the selective degradation of foreign material, namely,
xenophagy [10]. Therefore, working autophagic machinery is pivotal within metabolic processes to
properly recycle cellular elements and maintain homeostasis [11].

Three types of autophagy have been identified: macroautophagy, chaperone-mediated autophagy
(CMA) and microautophagy (Figure 1).
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Figure 1. Autophagy machinery. Autophagy is a quality-control process aimed at eliminating old or 
damaged cellular components. (A) Macroautophagy is the most common form of autophagy. It 
requires different sequential steps leading to the formation of autophagosomes. Following the fusion 
between autophagosomes and lysosome, the cargo is degraded and the resulting macromolecules are 
released back into the cytosol to be recycled; (B) chaperone-mediated autophagy (CMA) contributes 
to the cellular homeostasis by recycling amino acids upon proteins degradation and by eliminating 
abnormal or damaged proteins. CMA targets are recognized by this molecular machinery as they 
contain the KFERQ motif; (C) Microautophagy is involved in organelles and cytoplasmic portions 
turnover through direct sequestration inside lysosomes. 

The main difference between the three processes consists of the cargo-recruitment modality. 
While in microautophagy and CMA autophagic, substrates are incorporated directly in lysosomes, 
in macroautophagy, the formation of a double-membrane structure, namely phagophore or isolation 
membrane, mediates substrates incorporation. In higher eukaryotes, autophagic vesicles originate 
from membranous sources, such as the endoplasmic reticulum (ER) or mitochondria, and their 
nucleation point is referred to as the omegasome. Phagofores develop into autophagosomes, which 
eventually fuse with lysosomes [12]. However, it is also evident that the three autophagic 
mechanisms work in an interdependent way. They can be individually activated at the same time 
and they can, at least partially, compensate each other [13,14]. 

Macroautophagy is the best characterized among the three types, so the term “autophagy” is 
often used to indicate “macroautophagy” (Figure 1A). Macroautophagy is generally triggered by 
stress conditions, such as nutrient deprivation, and it mediates degradation of cytoplasmic 
components to provide energy to the cells, thus, it may be considered as a recycling process able to 
generate energy from waste material [12]. The molecular switch responsible for nutrient-dependent 
autophagy modulation is the mammalian Target Of Rapamycin kinase (mTOR), whose enzymatic 
activity promotes cell growth and protein synthesis [15]. mTOR is the main negative regulator of 
autophagy as it directly inactivates Unc-51-Like Kinase 1 (ULK1), thus inhibiting autophagy [16]. 
Once autophagy is triggered, the phosphatidylinositol-3-phosphate kinase (PI3K) class III complex is 
recruited at the omegasome through an ULK1-dependent process to mediate the synthesis of 
phosphatidylinositol-3-phosphate (PtdIns3P) [17]. The core unit of this complex is made by vacuolar 
protein sorting 34 (Vps34) kinase, Vps15 and the coiled-coil, Moesin-like BCL2-interacting protein 

Figure 1. Autophagy machinery. Autophagy is a quality-control process aimed at eliminating old or
damaged cellular components. (A) Macroautophagy is the most common form of autophagy. It requires
different sequential steps leading to the formation of autophagosomes. Following the fusion between
autophagosomes and lysosome, the cargo is degraded and the resulting macromolecules are released
back into the cytosol to be recycled; (B) chaperone-mediated autophagy (CMA) contributes to the
cellular homeostasis by recycling amino acids upon proteins degradation and by eliminating abnormal
or damaged proteins. CMA targets are recognized by this molecular machinery as they contain the
KFERQ motif; (C) Microautophagy is involved in organelles and cytoplasmic portions turnover through
direct sequestration inside lysosomes.

The main difference between the three processes consists of the cargo-recruitment modality.
While in microautophagy and CMA autophagic, substrates are incorporated directly in lysosomes,
in macroautophagy, the formation of a double-membrane structure, namely phagophore or isolation
membrane, mediates substrates incorporation. In higher eukaryotes, autophagic vesicles originate from
membranous sources, such as the endoplasmic reticulum (ER) or mitochondria, and their nucleation
point is referred to as the omegasome. Phagofores develop into autophagosomes, which eventually
fuse with lysosomes [12]. However, it is also evident that the three autophagic mechanisms work in
an interdependent way. They can be individually activated at the same time and they can, at least
partially, compensate each other [13,14].

Macroautophagy is the best characterized among the three types, so the term “autophagy” is
often used to indicate “macroautophagy” (Figure 1A). Macroautophagy is generally triggered by stress
conditions, such as nutrient deprivation, and it mediates degradation of cytoplasmic components to
provide energy to the cells, thus, it may be considered as a recycling process able to generate energy from
waste material [12]. The molecular switch responsible for nutrient-dependent autophagy modulation
is the mammalian Target Of Rapamycin kinase (mTOR), whose enzymatic activity promotes cell
growth and protein synthesis [15]. mTOR is the main negative regulator of autophagy as it directly
inactivates Unc-51-Like Kinase 1 (ULK1), thus inhibiting autophagy [16]. Once autophagy is triggered,
the phosphatidylinositol-3-phosphate kinase (PI3K) class III complex is recruited at the omegasome
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through an ULK1-dependent process to mediate the synthesis of phosphatidylinositol-3-phosphate
(PtdIns3P) [17]. The core unit of this complex is made by vacuolar protein sorting 34 (Vps34) kinase,
Vps15 and the coiled-coil, Moesin-like BCL2-interacting protein (Beclin-1) [18]. PtdIns3P is the signal
recognized by the WD-repeat domain phosphoinositide-Interacting Proteins (WIPI) proteins [19],
which bind both the PtdIns3P and the molecular factors belonging to the microtubule-associated
protein light chain 3 (MAPLC3, shortly LC3) proteins family maturation machinery, thus mediating
LC3 protein placement at the omegasome [20]. LC3 cleavage and lipidation [21] are pivotal for
phagophore expansion, autophagic cargo recruitment by binding autophagic cargo-carriers, such as
p62, and vesicle closure around the cargo to form autophagosomes [22]. These vesicles are transported
along microtubules by the dynein-dynactin motor complex to fuse with lysosomes [23], resulting in the
formation of a single-membrane large vesicle, called autophagolysosome, where hydrolytic enzymes
catalyze cargo degradation [23].

The second type of autophagy, named CMA, is activated to degrade damaged proteins and,
like macroautophagy, to provide energy when low levels of nutrients are available (Figure 1B).
The selective recruitment of the target proteins by the CMA machinery occurs through the exposure of
the pentapeptide motif: KFERQ, which is recognized by the molecular chaperon Heat shock cognate
protein of 70 kDa (Hsc70) [24]. CMA targets are then transferred across the lysosomal membranes,
without the formation of autophagosomes. While a stable channel at the lysosomal membrane has not
been identified yet, it is known that the lysosome-associated membrane protein type 2A (LAMP-2A) [25]
is involved in the process, as a positively charged tail of LAMP-2A binds CMA substrates. To be
translocated inside the lysosome, proteins lose their native structural conformation, but the molecular
mechanism responsible for this unfolding process has not been unraveled yet. Finally, the CMA
substrates are degraded by lysosomal proteases [26].

Microautophagy, similarly to CMA, does not require autophagosomes formation (Figure 1C).
It is active under basal conditions and it may co-occur with macroautophagy. As a difference with
the other two types of autophagy, microautophagy is not triggered by nutrient deprivation. It is
involved in organelles and cytoplasmic portions turnover through direct sequestration inside lysosomes,
where specific enzymes degrade the substrates. The underlying mechanisms are only partially known;
it is emerging that microautophagy may occur through different engulfment modalities of the substrates:
lysosomal protrusion, lysosomal invagination and endosomal invagination, even if there is no clear
separation between the molecular machinery characterizing the different pathways [27,28].

2. Cell Types within the Liver

The liver is essential in keeping the appropriate balance between body anabolism and catabolism
as it performs a broad range of tissue-specific functions including the intermediary metabolism,
detoxification, plasma proteins synthesis and bile acid formation [29]. The liver lobule is formed by
epithelial and non-epithelial cells (Figure 2).

Hepatocytes. Hepatocytes and cholangiocytes are the most abundant epithelial cells in the liver,
representing almost 85% of the total organ. They originate and differentiate from the embryonic liver
stem cells, namely, hepatoblasts [30]. Hepatocytes are multifaced and polynucleated cells; they fulfill
many physiological functions, such as the metabolism of glucose, lipids and amino acids, bile secretion,
bilirubin and drugs detoxification and serum protein synthesis. As epithelial cells, hepatocytes are
polarized cells with a basal or vascular domain adjacent to sinusoidal endothelial cells in order to allow
efficient substance exchanges with the bloodstream. Moreover, each hepatocyte has a lateral or biliary
domain in contact with another hepatocyte to form the origin of the biliary system: the biliary canaliculi
(BC). The vascular pole allows efficient substance exchange with the bloodstream as it contains small
pinocytosis vesicles and numerous microvilli, which increase the membrane surface in contact with
the plasma. Hepatocyte cytoplasm contains specific components. Lysosomes, peroxisomes and Golgi
vesicles usually localize close to the biliary pole, as they perform secretory functions. Mitochondria
are numerous with well-developed ridges and they undergo modifications in number and in shape
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following the cellular functional needs. Large cytoplasm portions are dedicated to glycogen (a glucose
polymer) and fats deposit, and the percentage depends on individual diets and on the digestion
phase [31,32].Nutrients 2019, 11, x FOR PEER REVIEW  4 of 19 
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branches of the portal vein (PV), hepatic artery (HA) and several bile ducts (BD) cut on different 
planes (transverse or sagittal). OM 20x. 
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destruction of normal cell-matrix interactions and release of inflammatory cytokines can re-activate 
their proliferation. Cholangiocytes have copious microvilli and one primary cilium, working as a 
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Figure 2. The representative area of normal hepatic tissue. Immunohistochemistry for CK-7, a specific
cytokeratin of the biliary epithelium, that is stained in brown (BD). In blue the hepatocytes are evident
(H), the white spaces are the sinusoids (S). In the center, a portal space is evident with the typical
branches of the portal vein (PV), hepatic artery (HA) and several bile ducts (BD) cut on different planes
(transverse or sagittal). OM 20x.

Cholangiocytes. Cholangiocytes are the cells lining the biliary ducts, therefore, they are also
known as biliary cells. They are mitotically inactive cells, but numerous factors, such as damage,
destruction of normal cell-matrix interactions and release of inflammatory cytokines can re-activate
their proliferation. Cholangiocytes have copious microvilli and one primary cilium, working as a
sensor between the bile flow and the cells. These cells form the intrahepatic and extrahepatic bile
ducts (IHBD and EHBD) to link the liver with the duodenum and to drain bile juice. Cholangiocytes
dimensions depend on their localization. “Small” cholangiocytes form biliary ductules walls while
“large” cholangiocytes form structure ducts. These cells also exert a key role in modulating bile
composition [33,34].

As mentioned above, hepatocytes and cholangiocytes form about 85% of the liver volume while
the remaining 15% is occupied by non-parenchymal cells, which are localized in the sinusoidal
compartment. In fact, the walls of hepatic sinusoids are formed by four different cell types: Kupffer
cells (KC), hepatic stellate cells (HSC, also known as fat-storing cells or Ito cells), pit cells and
sinusoidal endothelial cells (SEC). It has been demonstrated that under pathophysiological conditions,
many hepatocyte activities are regulated by substances released from neighboring non-epithelial
cells [35].

Kupffer cells. Kupffer cells belong to the monocytic/macrophage system as they possess
phagocytic power to digest bacteria and viruses and to present antigens. Their development starts in
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the bone marrow and it is completed once they are located in the lumen of the liver sinusoids. Kupffer
cells are the first cells exposed to material absorbed from the gastrointestinal tract [36].

HSC. HSC is located at the level of the perisinusoidal space, namely, the space of Disse, in close
contact with hepatocytes and endothelial cells lining the hepatic sinusoid. In a healthy liver, HSC cells
are quiescent cells, presenting cytoplasmic lipid droplets containing vitamin A in the form of retinyl
palmitate. Upon hepatic damage, these cells start proliferating. Consequently, the amount of vitamin A
progressively decreases while the synthesis and deposition of the extracellular matrix begins, leading
to fibrosis and cirrhosis [37].

Pit cells. Pit cells are natural killer lymphocytes, containing specific granules. They depend on
and localize close to Kupffer cells as they both exert defensive functions. More in detail, pit cells
perform anti-tumor surveillance through the exocytosis of perforin/granzyme-containing granuli,
induce apoptosis in target cells via death receptors and release cytokines to increase other immune
cells activity [38].

SEC. SEC are epithelial cells with a flattened shape, an oval nucleus and poor cytoplasm. They may
be considered a functional unit between the hepatocytes and the blood. Indeed, they take part in
several liver functions and pathologies. These cells present fenestration complexes, which allow contact
between the blood and hepatocytes microvilli in the space of Disse [39].

HPC. Another cell type worth mentioning is hepatic stem/progenitors cells (HPC), also known
as oval cells, which localize at the canals of Hering, at the beginning of the biliary system [40].
These cells are responsible for the regenerative capability of the liver tissue after partial hepatectomy or
chemical injury. In detail, these cells express several stem markers, such as CD44 and CD133, but also
alpha-fetoprotein (AFP), albumin, cytokeratin (CK-7) and CK-19, indicating a partial commitment to
hepatocytes and cholangiocytes [41].

The following part of this review focuses on the role autophagic processes play in regulating and
preserving liver homeostasis, summarizing the latest reports about autophagy relevance in hepatic
epithelial cell types. Within the liver, the process of macroautophagy appears to be the most important
to maintain hepatic homeostasis to inhibit spontaneous tumorigenesis [42].

3. Autophagy Involvement in Lipid Droplets Turnover

As previously mentioned, hepatocytes are key controllers of the glucose and lipid metabolism.
Hepatocytes can store glucose as glycogen, which serves as a reserve pool, ready for quick mobilization
to meet sudden needs. Furthermore, hepatocytes can store neutral lipids, i.e., cellular triglycerides
(TAGs) and cholesterol esters, as energy reserve source. Hepatic TAGs homeostasis is maintained
through a fine balance between lipid import/synthesis and lipid secretion/lipolysis. Dysregulation of
these processes leads to excess TAGs content in the liver and, consequently, to fatty liver disease [43].

Neutral lipids are mainly contained within lipid droplets (LDs), specialized organelles provided
with a phospholipid monolayer, likely derived from the ER [44]. In the presence of nutritional request
and to support increased cell growth, LDs can be readily catabolized, thus supporting energetic purposes.
Autophagy was shown to play a key role in LDs metabolism in hepatocytes (Figure 3). In detail,
autophagy target LDs breakdown in lysosomes in a process termed lipophagy. In the presence of
high-fat diet and obesity, LDs accumulation occurs leading to hepatic steatosis. Autophagy/lipophagy
counteracts such lipid accumulation [45], while the inhibition of autophagy/lipophagy promotes
hepatocellular steatosis (Figure 3A).

While many details underlying the regulation of autophagic LDs turnover in the liver remain
unknown, the small GTPase Ras-related protein in the brain (Rab-7) has been recently identified as a
central regulator of hepatocellular lipophagy. Indeed, Rab-7 primes LDs for autophagic degradation,
thus, promoting interaction between autophagosomal LDs and lysosomes [46]. LDs are surrounded by
perilipins (PLINs), proteins encoded by 5 different genes, PLIN1 to PLIN5 [47,48]; PLIN2 is ubiquitously
expressed, and its expression levels correlate with TAGs accumulation and LDs density. Interestingly,
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Plin2−/−mice show a strong reduction in TAGs content, related to hepatic TAGs degradation through
autophagy [49].
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Figure 3. The autophagy involvement in lipid droplets turnover. Autophagy plays a key role in lipid
droplets (LDs) metabolism in hepatocytes. (A) Autophagy breaks LDs inside lysosomes in a process
termed lipophagy. Lipophagy can prevent lipid accumulation in hepatocytes, while the inhibition of
lipophagy promotes LDs accumulation, resulting in hepatocellular steatosis. (B) Lipolysis is a process
mediated by three lipases: ATGL, HSL and MGL. ATGL controls the crosstalk between lipolysis and
autophagy as it regulates TAG turnover. ATGL promotes lipophagy to facilitate LD catabolism leading
to the generation of Free Fatty Acids (FFAs), which are broken down by the β-oxidation process.

An additional crosstalk protein mediating lipolysis and autophagy is the adipose triglyceride
lipase (ATGL), a crucial hepatic lipase regulating TAGs turnover (Figure 3B). ATGL is an enzyme
known to hydrolyze TAGs, thus, producing Free Fatty Acids (FFAs). Mobilization of stored FFAs is
mediated by the activity of three different TAGs hydrolases: ATGL, the hormone-sensitive lipase (HSL)
and monoglyceride lipase (MGL). The complex action of ATGL, HSL and MGL controls the complete
TAGs hydrolysis [50]. ATGL starts the process of triglyceride (TAG) metabolism by hydrolyzing TAG
into diacylglycerol (DAG) and FFA. Subsequently, HSL breaks down DAG into monoacylglycerol
(MAG) and FFA. Finally, MAG is further broken down into FFA and glycerol by MGL [51]. Remarkably,
ATGL can induce autophagy via sirtuin1 (SIRT1), a NAD-dependent deacetylase, able to deacetylate
autophagy-related gene proteins. SIRT1 can both deacetylate ATG5, ATG7, and ATG8 and activate
the transcription factors Forkhead box O (FoxO) FoxO1 and FoxO3 [52,53], ultimately promoting
autophagy induction. It is noteworthy that hepatic SIRT1 deletion significantly increases reactive
oxygen species (ROS) levels in the liver, leading to severe hepatic oxidative stress and eventually fatty
liver diseases [54]. ATGL activity also promotes peroxisome proliferator-activated receptor-α (PPAR-α)
and PPAR-γ coactivator 1-α (PGC-1α) signaling. PPAR-α is a highly expressed transcription factor in
the liver and it regulates enzymes crucial for fatty acid oxidation since it increases the cellular capability
to mobilize and catabolize fatty acids [55]. PPAR-α-mediated autophagic pathway induction has been
demonstrated [56] and PPAR-α activation is able to counteract the normal autophagy suppression
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occurring in the fed state [57]. Other studies also showed that SIRT1 mediates the effects of ATGL on
PPAR-α/PGC-1α signaling, thus, regulating both autophagy and oxidative metabolism in the liver [58].
Finally, autophagy is required for ATGL to promote LDs degradation and the subsequent oxidation
of fatty acids, as ATGL and LC3 interaction mediates the recruitment of ATGL to LDs, building a
synergistic link between lipolysis and lipophagy [59].

4. The Autophagy at the Crossroad between Oxidative Stress, Lipids Accumulation and Cell
Death in a Hypercaloric Diet

A hypercaloric diet with high fat or carbohydrate intake increases the lipid content within
hepatic cells (Figure 4). Under such a condition, polyunsaturated fatty acid induces stronger hepatic
fat accumulation than saturated fatty acids [60]. Chronic FFAs and glucose overload stimulate
ROS production. Remarkably increased ROS production from an oxidative metabolism, including
superoxide anion (O2−) and hydroxyl radical (OH−) production, as well as the reduction of antioxidant
enzymes, resulting in neutral lipid production and aggregation. These events lead to LDs formation
within hepatocytes depending on the up-regulation of PLIN2 [61,62]. Furthermore, ROS-induced PLIN2
upregulation might also contribute to the LD accumulation by counteracting autophagy promotion,
therefore reducing LDs breakdown [63]. Moreover, hepatic expression of ATG7 is decreased in obese
ob/ob mice liver [64,65]. Consequently, the autophagy induction in the liver represents a buffer system
to moderate LDs accumulation and ROS production, thus mitigating oxidative stress.
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Figure 4. Autophagy at the crossroad between oxidative stress, lipids accumulation and cell death in
a hypercaloric diet. Lipid droplets consist of a hydrophobic core of neutral lipids, surrounded by a
phospholipid monolayer characterized by perilipins (PLINs) proteins. The core of LDs is composed of
triglycerides and cholesterol esters. The figure shows the positive and negative correlation between
reactive oxygen species (ROS), autophagy and diet with LDs formation or breakdown.

5. Liver, Diet Habits and Autophagy

Alcohol abuse influences autophagic flux. An alcohol-containing diet alters hepatic autophagy,
reducing the lysosome number within hepatocytes [66,67]. In chronic ethanol abuse, liver injury
is associated with steatosis and progress toward fibrosis and cirrhosis, resulting in alcoholic liver
disease. Although such chronic ethanol administration is associated with increased macroautophagy,
this is selective for damaged mitochondria and for part of LDs, leading to a long-lived protein
accumulation within hepatocytes [68]. Furthermore, ethanol-induced liver damage is exacerbated
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by dietary fructose [69], likely by increasing steatosis and oxidative stress. As an example, related
to diet habit, methionine is an essential amino acid whose optimal level strictly depends on diet
components. Methionine reduction leads to the relevant metabolic changes during protein restriction.
In detail, methionine dietary restriction leads to a decrease in mitochondrial ROS production and
oxidative stress, thus, affecting autophagy [70]. Different pharmacological treatments or lifestyles
may stimulate autophagy (e.g., rapamycin, polyphenols, exercise, fasting), preventing LDs increase
and fatty liver [71,72]. Herbal medicine may represent a source of interesting dietary supplements to
treat lipid metabolic disorders. For instance, glycycoumarin, a major coumarin compound isolated
from licorice, can re-activate impaired autophagy, thus protecting against non-alcoholic fatty liver
disease (NAFLD) [73]. On the other hand, it must also be considered that mobilization and degradation
of intracellular LDs via lipophagy can lead to ferroptosis in hepatocytes [74]. Ferroptosis is a form
of non-apoptotic cell death, where excess free iron leads to oxidative damage and ROS production,
inducing lipid peroxidation and subsequent cell death [74,75]. This highlights a possible antioxidant
role for LDs in cell death, underlying the complex contribution of autophagy to hepatocytes metabolism
and LDs accumulation.

A number of diet-supplied molecules have been shown to directly affect autophagy with beneficial
actions in the liver. An incomplete list includes,

- the purple sweet potato color, showing proautophagy action [76] and beneficial effects on
metabolic syndrome [77];

- caffeic acid, found in many vegetables, an autophagy inducer which ameliorates hepatic
steatosis [78];

- resveratrol, a non-flavonoid polyphenol found in grapes and red wine, showing proautophagy
action and reducing lipid metabolism disorder [79];

- curcumin, a polyphenolic compound present in Curcuma longa, an antioxidant, apoptosis-inhibitor
and autophagy-inducer with a protective effect on hepatocellular carcinoma [80] and under
evaluation in clinical trials on NAFLD [81]. The role diet plays in autophagy control is currently
investigated and a large debate is ongoing on the actual role that diets and healthy foods may
have on the health [82].

6. The Role of Autophagy on Biliary Epithelium Differentiation and Homeostasis

As previously described, cholangiocytes are the epithelial lining cells within the biliary system,
which are differentiated from HPC cells through mechanisms still not completely understood [83].
Adult stem cells usually present high autophagic activity under physiological conditions, as constitutive
autophagy plays an important role in the maintenance of cellular homeostasis; on the contrary, in mature
cells, autophagy occurrence is usually linked to stressful conditions [84]. It is recently emerging that
autophagy controls the maintenance and functions of progenitory cells in the liver as well. Therefore,
blocking autophagy in those cell types, particularly in HPC, decreases their differentiation competence
and function, promoting the upregulation of cell cycle factors p53 and p21 and sensitizing cells to
etoposide-induced senescence [85]. Furthermore, the knockdown of Atg5 and Beclin-1 decreases
the autophagic activity within HPC and negatively controls their stemness [86]. Moreover, it was
demonstrated that autophagy negatively correlates with biliary differentiation. In detail, HPC
differentiation is controlled by positive feedback between the transcription factor STAT3 and Notch
signaling pathway, thus targetting the Sox9 promoter, a known regulator of biliary development [87,88].
Autophagy decreases in the early stages of the hepatic progenitors’ differentiation, maintaining a low
level in the late stages. Indeed, in cholangiocytes, autophagy induction via rapamycin (an mTOR
inhibitor) or nutrient deprivation attenuates biliary differentiation as it results in the downregulation
of factors belonging to Notch signaling (Figure 5) [89].
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Figure 5. The role of autophagy on biliary epithelium differentiation and homeostasis. Autophagy
is involved in the maintenance and functions of progenitory cells in the liver (HPC). It negatively
correlates with biliary tree formation, it decreases in the early stages of HPC development while it
increases in the late stages. HPC differentiation to cholangiocyte is controlled by the Notch signaling
pathway. In cholangiocytes, the under nutrient-rich condition or absence of rapamycin, mTOR blocks
autophagy resulting in an increased Notch-STAT3 cascade signaling pathway and promoting cellular
differentiation. On the contrary, autophagy induction via rapamycin (an mTOR inhibitor) or nutrient
deprivation attenuates the Notch signaling pathway resulting in a reduced biliary differentiation.

Autophagy in cholangiocytes is also triggered by ER stress, a cellular condition caused by
the accumulation of unfolded proteins. ER stress results in the unfolded protein response (UPR),
i.e., the activation of three receptors named PRKR-like endoplasmic reticulum kinase (PERK), activating
transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (hIRE1p). Downstream these three
receptor activations signal cascades initiate at aiming to cope with the stress source. It is well established
that some UPR mediators can directly participate in autophagy by connecting these two cellular
mechanisms [90–92].

An in vitro study showed that some bile acids such as glycochenodeoxycholic acid (GCDC),
together with starvation and oxidative stress, can induce deregulated autophagy and the abnormal
expression of mitochondrial proteins in cholangiocytes. As a consequence, cellular senescence is
induced in the biliary tree, impairing its functions in bile secretion and reabsorption. On the contrary,
pretreatment with other types of bile acids, such as ursodeoxycholic acid (UDCA) and Tauro-UDCA,
a chemical chaperone that increases the ER adaptive capacity, significantly decreases ER stress,
autophagy and cellular senescence induced by GCDC [91]. Accordingly, UDCA is currently used as a
standard treatment in primary biliary cirrhosis (PBC) since it acts as an anti-cholestatic, anti-fibrotic
and anti-proliferative agent [93]. Another piece of evidence of the relevance of autophagy in the biliary
tree is represented by the G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), a cAMP-linked
bile acid receptor involved in polycystic liver disease (PLD). TGR5 may be considered one of the
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main inducers of cAMP-regulated autophagy, contributing to hepatic cystogenesis [94]. Remarkably
both molecular and pharmacological inhibition of autophagy prevents such a hepatic disease [93].
More studies are needed to clarify the emerging leading role of autophagy on the biliary epithelium
in maintaining the balance between cell death and proliferation in these essential cells in the liver,
especially considering that 10–40% of mice with Atg5 deletion develop hepatic benign tumors [83].

7. The Role of Autophagy in Endothelial Cells Maintainance

Sinusoidal endothelial liver cells (SEC) play important physiological roles in mediating liver
filtration and scavenger functions. The maintenance of the SEC phenotype, associated with their
fenestrae, is critical to maintaining liver homeostasis [43]. Pivotal studies revealed that autophagy is
implicated in maintaining the endothelial cell’s metabolism and preventing cardiovascular diseases.
Autophagy dysfunction in endothelial cells can contribute to the pathogenesis of atherosclerosis by
influencing nitric oxide (NO) production [53]. Indeed, it was demonstrated that intact autophagic flux
keeps regular endothelial nitric oxide synthase (eNOS) activity. eNOS regulates NO production that, in
turn, affects autophagy induction as high levels of NO correlate with the inhibition of autophagosomes
biogenesis [95–97].

As far as liver cells are concerned, although autophagy has been implicated in the regulation of
hepatocytes and cholangiocytes, its role in the regulation of SEC functions remains largely unknown.
It was recently demonstrated by a pharmacological and a genetic approach that autophagy plays
an important role in controlling the SEC phenotype. In fact, autophagy impairment within SECs
during the liver injury results in increased oxidative stress, which exacerbates liver fibrosis [98]. At the
same time, excessive autophagy activation may lead to caveolin-1 degradation, thus worsening the
SEC defenestration and ultimately promoting fibrosis [99]. Therefore, dysregulated or uncoordinated
autophagy is linked to endothelial cell injury and liver fibrosis (Figure 6) [100].
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Figure 6. The role of autophagy in endothelial cells maintenance. Autophagy plays an important role in
the regulation of the Sinusoidal endothelial liver cells (SEC) phenotype. In fact, under basal conditions,
autophagy maintains SEC homeostasis. During liver injury, autophagy impairment increases oxidative
stress and leads to liver fibrosis. On the other hand, a high autophagy rate induces caveolin-1
degradation, thus leading to SEC defenestration and liver fibrosis.

8. The Role of Liver Autophagy in Preserving Systemic Homeostasis Counteracting Cancer
Growth

Liver functions are tightly related to the control of whole-body energetics. A change of autophagy
in the liver leads to altered glucose- and amino acid-blood levels and may impact skeletal muscle
catabolic pathways upon starvation [101], contributing to metabolic disorders associated to obesity
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and fatty liver. Visceral obesity increases the amount of free fatty acids in the body. In the liver,
in turn, higher fatty acids levels increase the production of glucose, triglycerides and very low-density
lipoproteins. Obesity, dyslipidemia and insulin resistance are often associated with a metabolic
syndrome and a marked increase in cardiovascular risk. When insulin resistance occurs, target organs,
including the liver, do not properly respond to insulin and the glucose uptake from the bloodstream
is less effective. As an adaptive response, higher blood glucose levels lead to higher insulin levels.
Insulin has a lipolytic effect, thus, high insulin levels prime further increases in fatty acid levels. It has
been observed that autophagy regulates the function of pancreatic β cells and other insulin targets,
including the liver, thus counteracting dyslipidemia [102].

Dyslipidemia has been strongly linked to colon, renal, gallbladder, pancreatic, endometrial and
postmenopausal breast cancers, as well as to oesophageal adenocarcinoma and leukemia [103,104].
Obesity has been associated with increased mortality in several cancer types; however, interestingly
enough, in metastatic melanoma, obesity has been associated with improved progression-free and
overall survival, and this correlation is mainly observed in male patients treated with targeted- or
immune-therapy [105]. Conversely, in uveal melanoma, insulin resistance, metabolic syndrome and
dyslipidemia seem to promote the growth of uveal melanocytic tumors, contributing to its aggressive
clinical course [106]. As recently pointed out, obesity is considered a major preventable cancer risk
factor for many cancer types. For instance, obesity has shown a positive correlation with melanoma
risk in men and different correlations in pre- vs post-menopausal women; furthermore, adipocytes and
obesity have been reported to induce growth and aggressive behavior of melanoma, indicating that
adipose tissue as a key player in melanoma progression [107]. On the contrary, a weakly increased
body mass index may represent a protective factor inducing improved outcome in patients under
cancer treatment, a phenomenon known as “obesity paradox” [108].

According to what was reported above, obesity and fat metabolism play a key role in the way cells
and the whole organism counteract cancer growth and progression; fat metabolism is finely controlled
in each cell-type, but the liver is the most important organ in regulating the whole body cholesterol
metabolism, mainly via autophagy. Indeed, autophagy, by maintaining the proper cellular organelle
function, is directly involved in cholesterol accumulation [109]. The cholesterol metabolism appears to
play a key role in cancer setup, nevertheless with controversial evidence. Recently the expression of
genes controlling cholesterol synthesis has been inversely related to survival in sarcoma, acute myeloid
leukemia and melanoma [110] and some evidence indicates that melanoma cells are cells particularly
sensitive to the inhibition of intracellular cholesterol transport [111].

A recent report indicates a novel metabolic pathway linking cholesterol to histamine metabolism,
showing the dendrogenin A metabolite with strong antitumor and autophagy-inducing actions [112].

Dyslipidemia also causes fat infiltration and aberrant muscle-derived cell differentiation negatively
affecting skeletal muscle homeostasis [113]. Obesity, insulin resistance and dyslipidemia are considered
risk factors for developing non-alcoholic fatty liver disease, a chronic condition characterized by liver fat
accumulation and inflammation. Importantly, NAFLD is associated with a cardiometabolic syndrome
and the majority of NAFLD patients die because of cardiovascular diseases [114]. Moreover, progressive
increases in the intrahepatic triglyceride content correlate with the progressive impairment of insulin
action in the liver, skeletal muscle and adipose tissue in nondiabetic obese subjects [115], confirming
that the alteration in liver fat storage can systemically affect numerous organs, including muscles.

Notably, liver enzymes participating in both glycolysis and lipolysis can be degraded by autophagy,
further influencing the energy balance [116]. Moreover, genetic studies on autophagic proteins
clarify the role of autophagy in promoting lipophagy, the selective autophagic LDs degradation [64].
Defects in lipophagy promote hepatic diseases and participate in the onset and progression of systemic
disorders, including atherosclerosis, obesity, metabolic syndrome and organ dysfunction in aging [117].
All these studies demonstrate that a fine liver autophagy regulation underlines metabolism and
whole-body homeostasis.
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On the other way around, dietary (high-fat diet) or genetic (ob/ob mouse) models of obesity
show reduced liver autophagy that alters insulin signaling in these models [64,65]. Importantly,
the restoration of insulin signaling can be achieved by correcting the autophagic defect [65]. Similar
to obesity, a decrease in liver macroautophagy has been found with age [118], reducing liver ability
to mobilize intracellular lipids and contributing to the systemic alteration of the lipid metabolism,
a hallmark of the metabolic syndrome. Controlling liver macroautophagy may represent an attractive
antiaging therapy that is able to prevent or delay the onset of the metabolic syndrome. Coherently,
several pharmacological approaches that efficiently increase the life span in vertebrates, such as
rapamycin, resveratrol, or spermidine [119], trigger macroautophagy.

Recent data also demonstrate that high ferritin expression can enhance cell growth and improve
resistance to oxidative stress in metastatic melanoma cells [120]. Ferritin is stored in many cell types,
including hepatocytes and, in the presence of liver damage from any cause, the ferritin level increases
in the blood [121]. Remarkably, it has been demonstrated that autophagy leads to ferritin degradation
and this also results in the free iron release, leading to oxidative damage and ROS-dependent cell
death [122]. This particular kind of autophagy called “ferritinophagy” may both control the ferritin
level and induce ferroptosis through the degradation of ferritin and the release of iron [123]. Both these
events (i.e., the reduction of ferritin level and the increase of ferroptosis) play an important role in
inhibiting different cancer types, such as melanoma, hepatocellular carcinoma, pancreatic carcinoma,
prostate cancer and breast cancer [124], further highlighting the crucial role of autophagy in systemic
homeostasis. Moreover, elevated serum ferritin levels have been registered in Amyotrophic Lateral
Sclerosis patients [125] and are correlated with reduced survival [126].

The control autophagy exerted on the cytochrome p450-dependent drug metabolism is an
additional way through which the liver metabolism and liver-localized autophagy may affect the
systemic response to cancer treatment as well as a drug’s toxicity. Different cytochrome p-450 inhibitors
are known to block autophagic flux in hepatocytes and to affect the drug’s toxicity in hepatocytes [127],
and autophagy has been found to be related to p450-dependent chemoresistance, at least in some
cases [128]. As recently reviewed, autophagy may directly affect the drug metabolism and drug-toxicity,
thus controlling the response to therapy and disease progression [129].

9. Conclusions

In conclusion, autophagic processes occurring within the liver are key actors regulating the
organ metabolism under physiological conditions by mediating the TAG metabolism in hepatocytes,
regulating liver development and controlling HPC stemness, cholangiocyte differentiation and SEC
functions. Impaired liver autophagy thus contributes to changes in the hepatic oxidative stress and
induction of liver steatosis and fibrosis in a cell-autonomous manner.

While it is difficult to discriminate the precise role that the liver plays in systemic diseases,
as several organs may contribute to the disease progression, several studies demonstrate the impact of
liver autophagy on body metabolism and its consequences on other districts. Indeed, liver autophagy
directly impacts glucose- and amino acids-blood levels, thereby regulating the whole-body metabolism
and systemically affecting numerous tissues, including adipose tissue, skeletal and cardiac muscles.
Obesity is considered one of the major cancer risk factors for many cancer types, generally promoting
cancer progression and correlating with increased mortality, linking an alteration in liver autophagy to
tumorigenesis. Moreover, liver autophagy is altered in aging.

Importantly, by correcting the autophagic defect in the liver, insulin signaling can be rescued.
Therefore, the manipulation of liver autophagy represents an attractive therapy that is able to prevent or
delay the metabolic syndrome and counteract aging, or even cancer progression. Coherently, numerous
pharmacological treatments and lifestyle approaches aimed to ameliorate obesity or to exert anti-tumor
activity may stimulate autophagy or may be affected by autophagy. Understanding the fine impact of
liver autophagy on other organs by determining soluble factors and modulated signals, is needed to
develop more effective pharmacological approaches.
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