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Abstract: Dietary mycoprotein (marketed as Quorn™) has many health benefits, including
reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein
content and very few consider the fibre content. Fibre consumption is also associated with decreased
energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by
colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations
were conducted, and SCFA production compared with that from extracted mycoprotein fibre,
oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both
fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively.
OF led to a significantly higher proportion of acetate compared to all other substrates tested
(92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%,
p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate
compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)%
although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein
is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of
the potential roles of the fibre content of mycoprotein is required.
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1. Introduction

Mycoprotein, marketed as Quorn™, is an animal meat protein substitute product formed from

the cultivation of the microfungus Fusarium venenatum. Mycoprotein is high in protein (11% wet
weight), low in fat (3% wet weight), and contains 6% dietary fibre by wet weight [1]. Mycoprotein
consumption has been associated with improvements in plasma cholesterol, glucose and insulin,
and energy intake, compared with other protein sources [2-4].

Dietary fibre has also been associated with reduced energy intake [5] and improved glucose
metabolism. Fibre is fermented by colonic microbiota, resulting in the production of short chain fatty
acids (SCFAs), namely, acetate, propionate, and butyrate. These SCFAs activate the free fatty acid
receptors (FFAR) 2 and 3, which are present on a number of different cell types, such as the colonic
L-cells, and have been associated with improved metabolic and immune regulation [6]. When delivered
to the colon, propionate, in particular, has been associated with improved appetite regulation and
weight gain control which occurs, at least in part, through a FFAR2-mediated mechanism involving
the release of the anorectic gut hormones GLP-1 and PYY [7].
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Two-thirds of the dietary fibre content within mycoprotein is 3-glucan consisting of 3(1-3),
and 3(1-6) bonding, with the remaining third in the form of chitin (N-acetyl glucosamine monomers
bound by (3(1-4) linkages) [1]. These bonding linkages occur in a variety of food sources, such as
seaweed (containing laminarin) [8], mushrooms [9], and oats [10], all of which have been shown
to be fermentable and produce SCFA in vitro. The SCFA-producing capability of mycoprotein is
currently unknown. Understanding SCFA production from mycoprotein may help in elucidating the
mechanisms by which mycoprotein delivers health benefits.

2. Materials and Methods

2.1. Substrates

Mycoprotein (whole) in the form of Chicken Style Pieces, and isolated mycoprotein fibre powder
from an in-house purification method (>75% fibre) was provided by Marlow Foods (Stokesley, UK).
Briefly, mycoprotein was digested with 20x (vol/wt) of 0.5 M NaOH and residual carbohydrate
precipitate was washed and freeze-dried to produce a fibre-rich extract. Rhamnose, laminarin
(both from Sigma, Poole, UK), and oligofructose (OF) (Beneo P95) were used for comparison.

2.2. Batch Fermentation

The in vitro fermentations were carried out as previously described [11] in 10 mL fermentation
vessels containing 100 mg of substrate, a medium containing 200 pL reducing solution, and 4.2 mL of
a pre-boiled, pre-reduced fermentation medium consisting of micronutrients, macronutrients, and 0.1%
resazurin. The medium was adjusted to pH 7, the vessels sealed to be airtight, and the contents further
reduced with oxygen-free nitrogen for one minute. A 32% faecal slurry was prepared by adding
pre-boiled, oxygen-free nitrogen cooled sodium phosphate Sorensen’s buffer to homogenised stool and
then blended and strained to remove particulates prior to injection (500 uL) into the vessel. The vessels
were further reduced until they were anaerobic (as indicated by resazurin) using oxygen-free nitrogen,
and incubated in a shaking water bath at 37 °C. After 0 and 24 h of incubation, an 800 pL aliquot of
fermentation fluid was taken for pH measurement (Mettler Toledo pH meter), and 300 uL of 1 M NaOH
added to stabilise the SCFA before extraction and analysis as described in [12]. Data are presented as
means (£SEM) and statistical analysis was performed using ANOVA with post hoc Tukey HSD, as the
data were deemed to be normally distributed based on the Shapiro-Wilk test using SPSS version 22
(IBM, Armonk, NY, USA).

2.3. Participants

Stool samples were obtained from three healthy Caucasian individuals (1 female, 2 males,
aged 24-25 years), who had not taken antibiotics during the previous 6 months. Ethical permission
was granted by the University of Glasgow, College of MVLS, Ethics Committee (ref: 2011023). Faecal
donors provided signed informed consent.

3. Results

3.1. SCFA Production (Table 1)

All of the tested substrates were fermentable, with whole mycoprotein resulting in the lowest
total SCFA production (24.9 (1.7) mmol/L). The fibre fraction of the mycoprotein resulted in the
second highest total SCFA production at 61.2 (15.7) mmol/L, being surpassed only by laminarin
(64.1 (9.0) mmol/L). The concentrations of acetate, propionate, and butyrate are shown in Table S1.

The highest proportion of acetate was produced with OF fermentation (92.6 (2.8)%, p < 0.01).
By contrast, OF was associated with the lowest proportion of propionate (2.6 (0.3)%), whilst rhamnose
led to the highest proportion of propionate production (45.3 (2.0)%, p < 0.01). Whole mycoprotein and
mycoprotein fibre both resulted in a significantly higher proportion of propionate production compared
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to both OF and laminarin (26.0 (3.5)% and 20.3 (1.3)% vs. 2.6 (0.3)% and 7.0 (2.5)% respectively,
p <0.001 for both). Laminarin fermentation generated the greatest proportion of butyrate (28.0 (10.0)%),
although whole mycoprotein also led to increased butyrate when compared to OF (p < 0.01).

Table 1. Production of short chain fatty acid (SCFA) after 24 h batch fermentation.

Ratio (% of SCFA Produced)

Total SCFA Production

Substrate (mmol/L) Acetate Propionate Butyrate
Control (blank) 11.13 (0.93) bedf 56.91 (6.35) P 20.12 (2.17) bed 22.97 (3.88) b
Oligofructose 50.05 (4.35) 2 92.57 (2.82) acdef 2.57 (0.34) acef 4.86 (2.72) ade
Rhamnose 51.14 (1.90) @ 4477 (3.13) b 45.33 (1.95) abdef 9.90 (2.70) de
Laminarin 64.08 (9.0) 2 65.04 (11.51) P 6.95 (2.48) acef 28.02 (10.04) be
Mycoprotein (whole) 24.87 (1.68) 4 48.31 (6.53) P 25.99 (3.51) bed 25.70 (3.11) be
Mycoprotein fibre 61.15 (15.73) 2 61.36 (4.17) b 20.25 (1.28) bed 18.39 (5.18) 8

Mean (SEM), n = 3. Total SCFA production was calculated as the sum of acetate, propionate, and butyrate.
Ratio calculated as a percentage of the total production. Superscript letters indicate significant difference from
corresponding substrate where *—control, b—oligofructose, ¢_rhamnose, “—laminarin, ¢—mycoprotein (whole),
f _mycoprotein fibre, —not significantly different from any other substrate.

3.2. Ranking of Substrates (Table 2)

Variability between the SCFAs from each stool donor was noted, for example, the amount of SCFA
produced from mycoprotein fibre ranged from 37.5 to 90.9 mmol/L. SCFA production was ranked for
each substrate and OF, laminarin, and mycoprotein fibre all ranked within the top three for acetate
production (though the exact order differed for each stool donor). Rhamnose and mycoprotein fibre
ranked first and second for propionate production in all three donors while laminarin was ranked first
for butyrate production for all three donors and mycoprotein fibre ranked second for two of the three
stool donors.
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Table 2. Ranking of SCFA production in in vitro cultures for each stool donor.

40f7

Acetate Propionate Butyrate

Rank r1 P2 P3 P1 P2 P3 P1 P2 P3

1 OF Laminarin Mycoprotein fibre ~Rhamnose Rhamnose Rhamnose Laminarin Laminarin Laminarin
2 Laminarin OF OF Mycoprotein fibre ~ Mycoprotein fibre  Mycoprotein fibre ~Mycoprotein fibre XI\/}:(SIS otein Mycoprotein fibre

s s L Mycoprotein Mycoprotein N Mycoprotein Mycoprotein
3 Mycoprotein fibre ~ Mycoprotein fibre Laminarin (whole) (whole) Laminarin (whole) Rhamnose (whole)
4 Rhamnose Rhamnose Rhamnose Laminarin Laminarin ?:Iv}},f(fllej)r otein Rhamnose Mycoprotein fibre Rhamnose
5 Mycoprotein Mycoprotein Mycoprotein Control Control Control OF OF Control
(whole) (whole) (whole)

6 Control Control Control OF OF OF Control Control OF

P1 = stool donor 1, P2 = stool donor 2, P3 = stool donor 3. Rank number 1 = top, Rank number 6 = bottom. OF—oligofructose.
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4. Discussion

Mycoprotein (commercially known as Quorn™) is marketed as a sustainable high-quality
alternative protein source to animal protein due to its high protein content (11% wet weight). Its protein
content has been associated with many beneficial health effects such as reduced energy intake,
and improved plasma insulin and cholesterol [2—4,13,14]. However, these health benefits may also
result from the fibre content of mycoprotein.

Mycoprotein is composed of 6% fibre, comprised of chitin and 3-glucan. 3-Glucan is fermentable,
leading to the production of SCFA, and has been shown to reduce plasma cholesterol [15]. Chitin
is not commonly consumed in Western diets, and studies on the effect of chitins on the human
gastrointestinal tract and on the gut-mediated effects on innate and adaptive immunity are lacking.
However, chitosan, the soluble fraction of chitin, has been shown to reduce energy intake and total
cholesterol in overweight individuals consuming 3 g/day and hypercholesterolemic individuals
consuming 1.2 g/day [16,17]. A 75 g serving of mycoprotein contains 1.5 g of chitin and 4 g of
-glucan, indicating that both chitin and 3-glucan may have an effect.

Here, we have demonstrated that whole mycoprotein pieces and the isolated fibre fraction are
both fermentable in vitro, and lead to the production of SCFAs. Whole mycoprotein fermentation
led to the production of 24.9 (1.7) mmol/L, which was the lowest of all of the substrates tested.
By contrast, mycoprotein fibre led to the production of 61.2 (15.7) mmol/L which was significantly
higher than that of the control 11.1 (0.9) mmol/L, and did not significantly differ from any of the
other fermentable substrates tested. Within this study the total amount of SCFA produced was slightly
different than previously noted; for example, Gietl et al. observed that rhamnose led to the production
of 60.7 mmol/L total SCFA compared with 51.1 mmol/L in this study [18].

Whole mycoprotein contains 6% dietary fibre, and the mycoprotein fibre was 75% dietary fibre,
indicating that whole mycoprotein led to 5 times more SCFA than mycoprotein fibre (per gram).
No predigestion step was performed on any of the substrates tested prior to in vitro fermentation,
and it is unlikely that the whole mycoprotein would be completely indigestible within the small
intestine, indicating that products other than fibre may have undergone fermentation, resulting in the
production of SCFA.

When the proportions of acetate, propionate, and butyrate were considered, whole mycoprotein
led to significantly higher proportions of propionate compared with inulin and laminarin,
but significantly lower than rhamnose, and with significantly higher levels of butyrate compared to
rhamnose and oligofructose. Mycoprotein fibre led to significantly higher proportions of propionate
compared with inulin and laminarin, but lower than rhamnose. Whole mycoprotein led to the second
highest proportion of propionate (26.0 (3.5)%), second only to rhamnose (45.3 (2.0)%), which is
considered propiogenic in vitro [18]. Mycoprotein also ranked second for butyrate production,
second only to laminarin. This preference for propionate and butyrate production is likely due to the
-glucan content, which has been previously shown to result in higher in vitro propionate and butyrate
production [10]. This preference is also of potential importance, as both are able to stimulate the release
of PYY and GLP-1 by activating the FFAR2 and FFAR3 receptors found within colonic enteroendocrine
cells [6]. Targeted delivery of ~2.5 g/day of propionate in the form of an inulin propionate ester
(10 g/day) to overweight individuals and 5% (w/w) butyrate to mice both inhibit weight gain
and reduce energy intake [7,19]. Whether this selective increased production of propionate from
mycoprotein and mycoprotein fibre explains some of the health benefits of mycoprotein consumption
remains to be elucidated.

5. Conclusions

We have shown that mycoprotein, and the purified dietary fibre fraction of mycoprotein are
fermentable and produce SCFA. Mycoprotein and mycoprotein fibre appeared to promote propionate
and butyrate production at the expense of acetate. The role of mycoprotein fibre in the observed health
benefits from mycoprotein warrants further investigation.
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Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/11/4/800/s1,
Table S1: Production of SCFA after 24 h batch fermentation.
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