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Abstract: The dynamics of the tripartite relationship between the host, gut bacteria and diet in the gut
is relatively unknown. An imbalance between harmful and protective gut bacteria, termed dysbiosis,
has been linked to many diseases and has most often been attributed to high-fat dietary intake.
However, we recently clarified that the type of fat, not calories, were important in the development of
murine colitis. To further understand the host-microbe dynamic in response to dietary lipids, we fed
mice isocaloric high-fat diets containing either milk fat, corn oil or olive oil and performed 16S rRNA
gene sequencing of the colon microbiome and mass spectrometry-based relative quantification of
the colonic metaproteome. The corn oil diet, rich in omega-6 polyunsaturated fatty acids, increased
the potential for pathobiont survival and invasion in an inflamed, oxidized and damaged gut while
saturated fatty acids promoted compensatory inflammatory responses involved in tissue healing.
We conclude that various lipids uniquely alter the host-microbe interaction in the gut. While high-fat
consumption has a distinct impact on the gut microbiota, the type of fatty acids alters the relative
microbial abundances and predicted functions. These results support that the type of fat are key to
understanding the biological effects of high-fat diets on gut health.

Keywords: Host-microbe interactions; gut microbiome; dietary lipids; polyunsaturated fatty acids;
monounsaturated fatty acids; saturated fatty acids; proteome; 16S rRNA gene amplicon sequencing;
short-chain fatty acid metabolism

1. Introduction

The mammalian gut has co-evolved with thousands of bacterial species and together they form
a complex dynamic relationship of which the physiological consequences are largely undiscovered.
The gut microbial ecosystem has the potential to influence the overall health status of the mammalian
host by forming an interface between the gut mucosal surface and the luminal food ingested into the
body. Molecular crosstalk between the microbiome and the host epithelium influences intestinal barrier
function, in part through the release of microbial metabolites like short-chain fatty acids (SCFA) [1].
Increased intestinal permeability caused by a disruption of the microbiome, termed dysbiosis, has been
implicated in diseases including inflammatory bowel disease (IBD), obesity and diabetes [2]. High-fat
diets have been shown to induce dysbiosis, primarily characterized by the escalation of Firmicutes
accompanied by a decrease of Bacteroidetes [3,4]. Changes in microbes induced through diet modulate
major gene networks including signal transduction, inflammation, histamine, cell migration and
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adhesion [5]. Therefore, identifying specific nutrients that prevent dysbiosis may be important in
preventing associated diseases.

Lipids are essential for normal development and survival in mammals. Subtle differences in the
chemistry of fatty acids effect mammalian physiology and inflammation. Oleic acid, a monounsaturated
fatty acid (MUFA), is the main component of olive oil, a major ingredient in the Mediterranean diet.
In general, MUFA consumption is associated with health benefits including lower prevalence of
digestive system cancers [6], decreased type 2 diabetes [7] and IBD [8]. Indeed, we have shown that
olive oil diets are effective at protecting against murine colitis [9]. In contrast, while North American
dietary guidelines recommend consuming omega-6 polyunsaturated fatty acids (n-6 PUFA), common
in vegetable seed oils, excessive consumption of n-6 PUFA is a risk factor for IBD in humans [10].
In support of these findings, we have shown n-6 PUFA exacerbates murine colitis [9,11,12]. Conflicting
data exists for dietary intake of saturated fatty acids (SFA), which have no double bonds and are found
in dairy as well as coconut oil. SFA have been criticized as adversely affecting health over the past few
decades, yet chronic inflammatory diseases are increasing while the global consumption of SFA have
been in line with recommended low intakes [13]. Recently, a European prospective cohort study found
that milk consumption is associated with decreased risk for IBD patients [14]. In contrast, SFA fed to
mice resulted in increased spontaneous colitis in IL-10-/- mice via conjugation of hepatic bile acids
which promoted growth of Bilophila wadsworthia [15]. Yet, components of animal fat, such as butyric
acid, suppress inflammation [16], protect against DSS-colitis [17] and stimulate colonic repair [18].
In line with this, we have shown that milk fat promotes beneficial responses during colitis [9]. While
there is evidence that different dietary fatty acids have differential effects on host health, their effects
on the gut bacterial ecosystem and their functional interaction with the host are not well explored.

To understand the tripartite relationship between lipid diet, gut bacteria and the host, we fed
mice a 40% (by energy) isocaloric and isonitrogenous diet composed of either corn oil, olive oil or milk
fat for 5 weeks post-weaning. The gut tissues were collected for 16S rRNA gene amplicon sequencing
and metaproteomic analysis. We show the corn oil diet, rich in n-6 PUFA, produces a microbiome
predicted to have enhanced virulence and pathogenicity potential. This was associated with a colonic
proteome increased in proteins involved in inflammation, oxidative stress and barrier dysfunction.
While the milk fat diet, rich in SFA, resulted in a host-microbe relationship indicative of inflammation,
there was also a compensatory protective response evident by the increased host sirtuin signaling
pathway and microbial production of SCFA. In marked contrast to both corn oil and milk fat, the olive
oil diet, rich in MUFA resulted in a microbiome most similar to a low-fat diet. These results support
that not all high-fat diets promote similar host and microbial responses and that consideration of the
type of fat in high-fat diets is essential when investigating gut health. These results have the potential
to guide evidence-based nutrition recommendations for IBD patients who can suffer from nutrient
deficiencies from overly restrictive dietary regimes including low-fat diets.

2. Materials and Methods

2.1. Dietary Interventions and Tissue Collection

Three-week-old male and female C57BL/6 mice (total n=32, n=8 each diet; 4 each sex) were fed
irradiated isocaloric, isonitrogenous diets for 5 weeks. High-fat diets contained 40% energy from
olive oil, corn oil or anhydrous milk fat prepared by blending dietary oils to a basal diet mix as
previously reported, whereas the chow control contained 9% energy from corn oil [11]. Mice were
raised in the same room and litter mates were separated into different diet groups post-natally and
then co-housed with four mice per cage. From these four, two mice per cage were used in this
study giving a total of 4 cages per group. Mice (Jackson Laboratories, Bar Harbor, Maine) were
maintained at the Center for Disease Modeling at the University of British Columbia (UBC), Vancouver,
Canada. The animal room was temperature controlled (22+/−2◦C) with a 12-h light/dark cycle and
fed with respective diets ad libitum with free access to autoclaved pH neutral water under a specific
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pathogen-free condition. Food intake and weight gain was monitored weekly. Mice were anaesthetized
with isoflurane and euthanized by cervical dislocation. The distal region of the colon (with the luminal
content and stool removed) was snap frozen in liquid nitrogen and stored at −80◦C prior to amplicon
sequencing/proteomic experiments.

2.2. Bacterial Genomic DNA Extraction

Frozen tissues were homogenized using stainless steel beads in Mixer Mill MM 400 (Retsch).
Bacterial genomic DNA was extracted with QIAamp® DNA Stool Mini Kit according to the
manufacturer’s instructions. DNA concentration and purity were checked with Nanodrop 2000
(Thermo Scientific). Primers were used to amplify the 16S rRNA gene as described previously [19].
The PCR product was purified with QIAquick® Gel Extraction Kit (Qiagen) and PCR amplicons
concentration was normalized with SequalPrepTM Normalization Plate Kit (Invitrogen). Library
preparation, emPCR amplification and picotitre plate pyrosequencing using titanium chemistry was
carried out by Vancouver Prostate Centre, UBC and Vancouver General Hospital Centre of Excellence
in accordance with Roche/454 Life Sciences protocol on the 454 GS FLX+ System.

2.3. Bioinformatics Sequencing and Analysis

Sequencing was performed using Roche 454 technology. Sequences were analyzed using the
Quantitative Insights Into Microbial Ecology (QIIME) pipeline [20] with default parameters. Since
reads in the 454 platform vary in length the two runs (male and female colons) were truncated to a
length of 250 to retain at least 70% of the reads with the recommended 1% expected error threshold [21].
Libraries were processed with a minimum quality score of 25 and a quality score window value of
50. The quality filtered reads were then combined and chimeras were filtered using usearch61 [22].
Sequences were aligned using PyNAST [23] and any sequences that failed to align were omitted
from the subsequent tree and operational taxonomic unit (OTU) table. Both open-reference and
closed-reference OTU clustering was done at 97% similarity level against the most recent GreenGenes
database (gg_13_8_otus). An open-reference OTU table contains a combination of de novo OTUs
(reads that do not match reference sequences) as well as reads that match sequences in the reference
database. Closed-reference OTU table discards any reads that do not match the sequence in the
reference database. Prior to sequence processing, the individual sequencing statistics for the male
colon was 336,801 reads (max length 911, average 400.1) and 326,727 reads (max length 1190, average
421.9) for the female colon. Following quality filtering, truncation and chimera removal a mean total
of 6586 high-quality bacterial 16S rRNA sequence reads from the 32 mice remained prior to rarefaction.
Samples were rarefied to the same sequencing depth of 2069 (open-reference) for alpha diversity and
beta diversity, and 1458 (closed-reference), for phyla ratios using QIIME2. Alpha diversity rarefaction
curves were used to ensure appropriate sampling depth. Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) [24] and linear discriminant analysis effect size
(LEfSe) [25] tools were used for further analyses.

2.4. Alpha and Beta Diversity Analysis

Alpha diversity metrics included observed species richness, Chao1, Simpson’s index (D) and
Shannon’s diversity. A Kruskal–Wallis analysis combined with Benjamini–Hochberg adjustment for
multiple comparisons was used to determine the gut microbiome differences between the dietary
groups. The structure of bacterial communities in each diet group were compared using weighted
and unweighted UniFrac metrics [26]. Based on these distance matrices, a PERMANOVA [27]
was used to analyze sample composition. Significance was assessed by 999 permutations for all
distance-based methods. An adjusted P value (Q-value) less than 0.05 was considered statistically
significant. To visualize microbial community composition, a principal coordinates analysis (PCoA)
was performed on the distance data and the first two principal components were used to generate an
ordination plot in Primer 6.
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2.5. Abundance Analysis

LEfSe was used to identify differences in taxa composition and Kyoto Encyclopedia of Genes
and Genomes (KEGG) orthologs between the dietary groups. Differential abundance analysis was
performed on the closed-reference OTU table with the logarithmic linear discriminant analysis
(LDA) score of 2 as the cutoff and the less permissive ‘all-against-all’ strategy selected for pairwise
comparisons [25]. LEfSe first tests for statistical significance between dietary groups (non-parametric
Kruskal–Wallis test) followed by quantitative tests for biological consistency (non-parametric
Wilcoxon-rank sum test). Multiple test corrections were performed by the Benjamini–Hochberg
procedure-based false discovery rate (FDR) control (‘p.adjust’ in R). An adjusted P value (Q-value) less
than 0.05 was statistically significant.

2.6. Amplicon Sequencing Prediction Analysis

PICRUSt was used to infer the relative abundance of gene families and biochemical pathways
based on the 16S rRNA data (version: 13_5) [24] The rarefied closed-reference OTU table was first
normalized for the 16S copy numbers of each OTU and then linked to KEGG annotations of reference
genomes [28]. The generated KEGG pathways were submitted to HUMAnN (The HMP Unified
Metabolic Analysis Network; version 0.99) for further analysis. The HUMAnN produced pathway
summaries were analyzed by LEfSe to determine the differential abundance of KEGG pathways.
BugBase [29], a microbiome analysis tool used to predict high-level phenotypes, was used to determine
the proportion of Gram-positive, Gram-negative, aerobic, anaerobic, facultative anaerobic, biofilm
forming and mobile element containing bacteria.

2.7. Short-Chain Fatty Acid Analysis

SCFAs were analyzed from cecal tissue samples using direct injection gas chromatography as
previously described [19]. Tissue samples were homogenized in 700 µL of isopropyl alcohol, with
0.01% 2-ethylbutryic acid as the internal standard, at 30 Hz for 13 min using stainless steel beads.
Homogenate was centrifuged at 15,100 × g for 10 min at 4 ◦C. Complete extraction was confirmed by
absence of SCFA in the supernatant after second re-extraction of the remaining tissue pellet. 0.9 µL of
cleared supernatant was directly injected to Trace 1300 Gas Chromatograph (D.I.A.B.E.T.E.S center,
UBCO), equipped with flame-ionization detector, with AI1310 auto sampler in splitless mode. A fused
silica FAMEWAX column 30 m × 0.32 mm i.d. coated with 0.25µm film thickness was used. Data
analysis was carried out with Chromeleon 7 software. Peaks were analyzed on software and the area
under peaks for acetic, propionic, and butyric acid data were represented as percent weight of total
wet cecal sample (mass %).

2.8. Protein Extraction

Frozen colon pieces were scraped to separate the mucosa from the submucosa following a similar
protocol as previously described [30]. The submucosal and the mucosal samples were separately
put into lysis buffer made up of 25 mM HEPES solution (pH = 7.5) with 1 tablet protease inhibitor
containing bestatin, AEBSF, EDTA, pepstatin, and E-64 (Thermo Fisher Scientific), 7 M urea, 2 M
thiourea, and 4% CHAPS. The samples were homogenized via bead beating. Insoluble materials were
removed by centrifugation and then soluble proteins were acetone precipitated from the supernatant
and pelleted by centrifugation.

2.9. Protein Digestion, Itraq Labeling and LC-MS/MS Analysis

Samples were prepared for proteomic analysis at the University of Victoria, Genome BC Proteome
Center located at the Vancouver Island Technology Park. Equal amounts of the extracted protein
from each mouse were pooled, group-wise, to generate pooled lysates for low fat (n = 6), milk fat
(n = 6), olive oil (n = 6) and corn oil (n = 6) groups. Further, equal amounts of protein from all dietary
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groups were used to generate a total protein’ pool. Sample pooling strategy has been used widely to
reduce the effect of biological variation while dealing with clinical samples [31–34]. 100 µg of protein
from each dietary group was trypsin digested and then individually labeled using 8-plex iTRAQ
reagents (AB Sciex, ON, Canada). The labeled peptides were pooled and vacuum centrifuged until the
final volume was approximately 100µL. An Agilent 1290 High-Performance Liquid Chromatography
(HPLC) system (Agilent, CA, USA) was equipped with an XBridge C18 BEH300 (Waters, MA, USA)
250 mm X 4.6 mm, 5 µm, 300 A HPLC column. The flow rate was set to 0.75 mL/min, samples were
injected onto the column and fractions were collected every minute for 96 min. The HPLC fractions
were then reduced in volume by lyophilization and concatenated into 24 fractions by combining every
24th fraction. C18 StageTip concentrated samples were analyzed by reversed phase nanoflow HPLC
with nano-electrospray ionization using a LTQ-Orbitrap Velos Pro mass spectrometer operated in
positive ion mode with a 2 h reverse phase gradient per HPLC fraction. Each sample was rehydrated
and samples were separated by on-line reversed phase liquid chromatography coupled on-line to
an LTQ-Orbitrap Velos Pro mass spectrometer equipped with a Nanospray Flex source (Thermo
Fisher Scientific). Spectrum Selection was used to generate peak lists of the higher-energy collisional
dissociation (HCD) spectra (parameters: activation type: HCD; s/n cut-off: 1.5; total intensity threshold:
0; minimum peak count: 1; precursor mass: 350-5000 Da).

2.10. Protein Data Processing and Sequence Database Searching

All data was analyzed using Proteome Discoverer version 1.4. The peak lists were submitted to an
in-house Mascot 2.4 (Matrix Science) server for database searching through the Proteome Discoverer
software. All host data was searched against the mouse sequence database, Uniprot-Mouse database
(43,908 sequences; 19,909,825 residues) using similar search parameters [35]. All bacterial data was
searched against Bacteroidetes (11363 entries) and Firmicutes (17039 entries). Scaffold (version 4.6.1,
Proteome Software Inc., Portland OR), a software suite from Proteome Software was used for statistical
validation of MS/MS based peptide and protein identifications. Scaffold software provides different
levels of blocking in proteome analysis. Blocking is a statistical tool used to reduce biases and minimize
variances within a study. Scaffold provides four blocking levels, for example a single protein in the
original observation matrix can be summarized in terms of all spectra, unique spectra, unique peptides
and unique samples. Unique peptides is the preferred blocking level for analyzing the data [36],
allowing users to compare measurements for each peptide. Since we pooled biological replicates to
minimize biological variance, we do not have biological replicates in our study design. Therefore,
we chose unique peptides as our statistical blocking method. Differential proteins, therefore, were
predicted using the differential peptides determined by Scaffold. Peptide identifications were accepted
if they could be established at greater than 95.0% probability by the Scaffold Local FDR algorithm and
contained at least two identified peptides for the host proteome and at least one identified peptide
for the bacterial proteome. Protein probabilities were assigned by the Protein Prophet algorithm [37].
Spectra data were log-transformed, pruned of those matched to multiple proteins and those missing a
reference value, and weighted by an adaptive intensity weighting algorithm. Differentially expressed
proteins were determined by applying Permutation Test with adjusted significance level P < 0.05
corrected by Benjamini–Hochberg.

2.11. Ingenuity Pathways Analysis for Mucosal Host Proteins

Ingenuity Pathways Analysis (IPA) was used to interpret the host proteome data in the context
of biological processes, pathways and networks. IPA infers hypothetical protein interaction clusters
using the Ingenuity Pathways Knowledge Base, a large database consisting of millions of individual
relationships between proteins. Given its proximity to the microbiome, the host mucosal proteomics
data derived from the iTRAQ experiment was converted by IPA to ‘fold change’ and then uploaded
into the IPA program. No expression value cutoff was selected and both up- and down-regulated
identifiers were defined as value parameters for the analysis. Heatmaps highlighting significant
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downstream biological processes that are increased or decreased based on gene expression results are
displayed as canonical pathways. To further explore connections between dietary intake and expressed
genes, hypothetical networks were generated followed by regulator effect analysis [38], using as many
proteins from the input expression profile as possible. Other proteins from the database were used to
fill out a protein cluster when needed for a highly connected network as previously published [39].
To identify mucosal phyla that correlate with the selected host proteins, a Spearman correlation matrix
was generated and plotted as a heatmap.

2.12. Statistical Analysis

Data is presented as mean ± standard deviation unless otherwise stated. The data was tested
for normality using Shapiro-Wilk test, and a Kruskal–Wallis non-parametric test with a Benjamini–
Hochberg FDR-correction was used for comparing differences in the relative abundance of
Gram-positive, Gram-negative, aerobic, anaerobic and facultatively anaerobic bacteria, Firmicutes
to Bacteroidetes ratio, mobile elements and biofilm formers between dietary groups. SCFAs were
assessed using a Kruskal–Wallis non-parametric test followed by a Dunn’s multiple comparison test.

2.13. Data Availability

16S rRNA gene amplicon sequencing data is made available in the Genbank (SRA study ID:
SRP082836). Metaproteome data is made available via ProteomeXchange for submucosal data
(PXD008165) and mucosal data (PXD008152).

2.14. Ethical Considerations

The protocols used were approved by the Animal Care Committee of UBC under the protocol
A15-0240 and in direct accordance with guidelines drafted by the Canadian Council on the Use of
Laboratory Animals.

3. Results

3.1. Dietary Lipid Type Affects Gut Microbial Diversity

Dysbiotic bacterial communities are often associated with low diversity [40], although a causal
relationship has not been established. Since the microbial composition of feces and mucosal tissue
have different microbiomes [41], we focused on the mucosal associated microbes as these microbes are
most likely respond to the dietary changes and have been suggested to be a reservoir for keystone
species that contribute to disease activity [42]. Both the milk fat and corn oil diets resulted in increased
alpha diversity (Figure 1A). Specifically, observed species richness and Chao1 were increased with
corn oil and milk fat exposure whereas the olive oil diet resulted in similar richness to the low-fat chow.
Similarly, Shannon’s index revealed that milk fat had high richness and evenness compared to low-fat
chow and olive oil groups. An increase in Simpson’s index, indicating a decrease in evenness, was
observed in all high-fat diets compared to the low-fat chow. These patterns of alpha diversity aligned
with comparisons between samples amongst dietary groups. The PCoA plot using the weighted
UniFrac revealed three distinct clusters where the milk fat and corn oil groups clustered together and
away from olive oil and the low-fat groups (Figure 1B). A total of 80.8% of the overall variation in
taxon composition was attributed to dietary exposure, of which the first and second axes explained
71.6% and 9.2% of the total variation, respectively. While the permutational multivariate analysis of
variance (PERMANOVA) based on the weighted UniFrac distance suggests that milk fat and corn
oil groups are similar, the unweighted UniFrac showed separation between the milk fat and corn oil
groups suggesting that while the dominant species in the groups are similar, the rare species in the
milk fat and corn oil groups are unique from each other (Figure 1C). Overall, the various dietary lipids
each uniquely predicted the microbial community composition that are present in the gut.
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displayed. (B) PCoA plot of the weighted UniFrac distances of colonic microbial communities from 
mice fed high-fat diets composed of milk fat, olive oil, corn oil or low-fat chow. The first two principal 
components from the PCoA are plotted. (C) Statistical summary (p-values after Benjamini–Hochberg 
adjustment for multiple comparisons) of all alpha and beta diversity measures. 
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did not see a significant difference in body weight between any of the groups(Figure S1). These 
findings coincided with a predicted increase in the relative abundance of Gram-positive bacteria in 
the high-fat diets and a corresponding decrease in Gram-negative (Figure 2B). Additionally, our 
findings indicated there were changes to the relative abundances of facultative anaerobes, aerobes 
and anaerobes as a result of the type of fat feeding (Figure 2C). Olive oil diets associated with the 
least abundance of oxygen tolerating microbes, important given the hypothesis that oxygen tolerant 
microbes are abundant during gut stress [43]. Specifically, the predicted abundances of facultative 
anaerobic bacteria were higher in the low-fat dietary group compared to the olive oil and corn oil 
groups, and were higher in the milk fat group compared to the olive oil group. Finally, each dietary 
fat resulted in a unique set of taxa (Figure 2D). The low-fat diet had an increase in the abundance of 
Lachnospiraceae [Firmicutes (P = 0.01)], Aldercretzia spp. [Actinobacteria (P = 0.03)], family S24_7 
[Bacteroidetes (P = 0.002)], and Ruminococcus spp. [Firmicutes (P = 0.005)]. Uniquely, olive oil resulted 
in an increased abundance of several Firmicutes including Clostridiaceae (P = 0.003), 
Peptostreptococcaceae (P = 0.01), Ruminococcaceae (P = 0.005), and Dorea spp (P = 0.003). In contrast, 
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Figure 1. The effect of lipid diets on the diversity of the gut microbiota. (A) Alpha diversity of colonic
microbiota from mice fed high fats diets composed of low-fat chow (blue), milk fat (red), olive oil
(purple) or corn oil (green). Observed species richness, Chao1, Shannon’s, and Simpson’s indexes are
displayed. (B) PCoA plot of the weighted UniFrac distances of colonic microbial communities from
mice fed high-fat diets composed of milk fat, olive oil, corn oil or low-fat chow. The first two principal
components from the PCoA are plotted. (C) Statistical summary (p-values after Benjamini–Hochberg
adjustment for multiple comparisons) of all alpha and beta diversity measures.

The differences in bacterial communities between the dietary cohorts were further evident when
samples were ordered according to their Firmicutes to Bacteroidetes ratio. In agreement with previous
literature [3,4], our results revealed that high-fat diets induce a microbiome with a high Firmicutes to
Bacteroidetes ratio in the colon compared to the low-fat diet (Figure 2A), although we did not see a
significant difference in body weight between any of the groups (Figure S1). These findings coincided
with a predicted increase in the relative abundance of Gram-positive bacteria in the high-fat diets
and a corresponding decrease in Gram-negative (Figure 2B). Additionally, our findings indicated
there were changes to the relative abundances of facultative anaerobes, aerobes and anaerobes as
a result of the type of fat feeding (Figure 2C). Olive oil diets associated with the least abundance
of oxygen tolerating microbes, important given the hypothesis that oxygen tolerant microbes are
abundant during gut stress [43]. Specifically, the predicted abundances of facultative anaerobic
bacteria were higher in the low-fat dietary group compared to the olive oil and corn oil groups, and
were higher in the milk fat group compared to the olive oil group. Finally, each dietary fat resulted in a
unique set of taxa (Figure 2D). The low-fat diet had an increase in the abundance of Lachnospiraceae
[Firmicutes (P = 0.01)], Aldercretzia spp. [Actinobacteria (P = 0.03)], family S24_7 [Bacteroidetes
(P = 0.002)], and Ruminococcus spp. [Firmicutes (P = 0.005)]. Uniquely, olive oil resulted in an increased
abundance of several Firmicutes including Clostridiaceae (P = 0.003), Peptostreptococcaceae (P = 0.01),
Ruminococcaceae (P = 0.005), and Dorea spp (P = 0.003). In contrast, milk fat promoted different
families of Firmicutes including Erysipelotrichales (P = 0.008) and several genera from Ruminicoccus
(P = 0.003). Corn oil enhanced the abundance of Firmicutes family members from Turicibacteraceae
(P = 0.008) in addition to Coprococcus spp. (P = 0.002). Overall, high-fat diets resulted in analogous
modulation of the gut microbiota at higher taxonomic levels, but the type of fatty acid present in the
dietary lipid uniquely altered the intestinal microbes at lower taxonomic levels.
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Figure 2. The effect of lipid diets on the gut microbial taxa. (A) Comparison of the log abundance of the
Firmicutes to Bacteroidetes ratio among experimental diet groups in the colon. The y-axis of the box
plot indicates the log of the abundance of the Firmicutes divided by the abundance of Bacteroidetes.
The low-fat group had a significantly lower Firmicutes to Bacteroidetes ratio than all the high-fat diets.
Within the high-fat diets, olive oil had a significantly lower ratio of Firmicutes to Bacteroidetes than
the milk fat group. (B) Relative abundances of Gram-positive and Gram-negative bacteria in the diet
groups show a significantly lower abundance of gram positive bacteria and a corresponding higher
abundance of gram negative bacteria in the low-fat dietary group. (C) Relative abundances of aerobic,
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anaerobic and facultatively anaerobic bacteria in the diet groups show significantly lower facultative
anaerobic bacteria in the olive oil group compared to the milk fat and low-fat group. An asterisk above
a single column indicates P < 0.05 for that group compared to every other group. An asterisk with a
line connecting two groups indicates P < 0.05 between the two groups. (D) Differentially abundant
microbial clades in the colon microbiota from mice fed high-fat diets composed of anhydrous milk
fat, olive oil, corn oil or a low-fat normal chow. Cladogram represents taxonomic representation of
statistically and biologically consistent differences among lipid diet groups. Significant differences are
represented in the color of the most abundant class. Yellow circles represent non-significant microbial
clades. The all-to-all version of LEfSe was used with Kruskal–Wallis test (P < 0.05). LDA score threshold
was set at default value 2.

3.2. Dietary Lipid Type Confers Core Functionality to Each Microbial Community

Since microbial compositions change according to type of lipid diets, we next investigated
how lipids affect the functionality of the microbiota using amplicon sequencing predictions and
comparing SCFA metabolites. Amplicon sequencing functional content was predicted from marker
genes (16S rRNA) and LDA was performed (Figure 3). The low-fat chow was predicted to enrich
functions of the microbiome that included lipopolysaccharide biosynthesis, vitamin and cofactor
biosynthesis (including biotin metabolism, folate biosynthesis, pantothenate and CoA biosynthesis,
lipoic acid metabolism, and riboflavin metabolism), protein export, and digestion and absorption.
This suggests that all high-fat diets, despite the type of fatty acid, may have reduced capacity for
vitamin biosynthesis and cofactor metabolism. The olive oil diet is predicted to result in a microbiome
that have an increased potential for pyruvate metabolism, enhanced synthesis and degradation of
ketone bodies, butanoate metabolism and propanoate metabolism, enhanced lipid metabolism and
abundant RIG-I-like receptor signaling important for viral immune recognition. The corn oil diet
is predicted to result in a microbiome with functions characterized by increased flagellar assembly,
ABC transporters, lipid metabolism (glycerolipid metabolism, sphingolipid metabolism, linoleic acid
metabolism), and carbohydrate metabolism for ATP production (pentose phosphate pathway, galactose
metabolism, starch and sucrose metabolism, fructose and mannose metabolism). Two component
systems are also predicted be increased in the corn oil diet, which controls cellular processes such
as cell motility and virulence. This may suggest that corn oil may result in a microbiota that is more
invasive. Predictions from the milk fat diets suggest the highest potential for bacterial chemotaxis and
similar to the corn oil diet carbohydrate metabolism was also predicted to be higher. This included
glycolysis and gluconeogenesis, glyoxylate and dicarboxylate metabolism, C5-branched dibasic acid
metabolism, biosynthesis of unsaturated fatty acids and xenobiotic degradation (styrene, dioxin, and
xylene). This suggests that milk fat results in a microbiota with increased capacity for energy harvest.
Overall, the predicted functional analysis suggest that total calories from fat altered common functional
characteristics of the microbiota and that the type of lipid uniquely affected additional characteristics.
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Figure 3. The effect of lipid diets on predicted microbial functions. Statistically and biologically
differentially abundant pathways amongst the four dietary group shown as a histogram of the LDA
scores. The length of the bars represents a log10 transformed LDA score set to a threshold value of 2.
The one-to-all version of LEfSe was used with Kruskal–Wallis test (P < 0.05).
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To determine if virulence attributes of the gut microbiome were modulated by high-fat diets,
we used 16S OTUs to categorize functionality. We found that all high-fat diets predicted an increase in
the abundance of mobile genetic elements (Figure 4A); however, this finding should be interpreted
cautiously as mobile elements are subject to microevolutionary processes and may vary over short
periods of time [44]. The diets composed of corn oil, including the standard chow, predicted increased
levels of biofilm formers (Figure 4B). Specifically, the abundance of biofilm formers in the low-fat diet
was significantly higher than the abundance of biofilm formers in the milk fat and olive oil groups but
were not statistically different from the corn oil dietary group. Since SCFA metabolism was predicted
to be modulated based on the amplicon sequencing extrapolations, we examined the abundance of
cecal acetic, propionic and butyric acid to understand if the predicted changes in metabolic pathways
affected the bioavailability of SCFAs. We found that the milk fat group had similar levels of SCFA as
the low-fat chow groups whereas both olive oil and corn oil groups resulted in a decreased abundance
of acetic acid, important for lipid biosynthesis, and propionic acid, important for gluconeogenesis,
compared to the low-fat chow, respectively (Figure 4C). A similar trend was observed with abundance
of butyric acid. Overall, these results suggest that the microbiome’s ability to yield SCFAs resulting
from high calories of fat can be compensated via exposure to milk fat.
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Figure 4. Predicted bacterial virulence traits and quantified secondary metabolites. Virulence traits
such as (A) the relative abundance of bacteria which contain mobile elements and (B) the relative
abundance of bacteria which are able to form biofilms are displayed for each diet group. (C) The
effect of lipid diets on short-chain fatty acid production. Short-chain fatty acid analysis performed
via gas chromatography on cecal samples from mice fed high-fat diets composed of milk fat, olive
oil, corn oil or a low-fat chow. Acetic, propionic, and butyric acid are expressed as mass % of total
cecal tissue sample. Values are expressed as mean +/− SEM (n = 8–12). An asterisk above a single
column indicates P < 0.05 for that group compared to every other dietary group. An asterisk with a
line connecting two groups indicates P < 0.05 between the two groups.
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3.3. Dietary Lipids Alter Microbial and Host Proteins in the Colon

To understand the interactions between lipid diets, gut bacteria and the host, we performed
metaproteomics to examine microbial and host proteins associated with the colonic mucosa and
submucosa. Over 300 bacterial proteins were identified in the mucosa (Table S1) and 112 were identified
in the submucosa based on single peptide hits (Table S2). However, it is currently recommended
that a minimum of four peptides are required to be matched for positive protein identification,
to decrease the number of false positives [45]. Based on this recommendation the only bacterial
protein we could positively identify was the mucosal molecular chaperone dnaK protein which is
significantly upregulated in the corn oil group (0.4-fold increase) compared to the low fat and olive
oil groups (supplemental materials). In stark contrast to the bacterial proteome, 1956 host proteins
were identified in the submucosa and 1749 were identified in the mucosa based on a single peptide
hit. Of these, 676 and 390 were confidently identified using four or more peptides with a P value
≤0.006 in the submucosa (Table S3) and mucosa (Table S4), respectively. Overall, there was low
homogeneity between the submucosal and mucosal proteins with only 127 proteins overlapping
the two biological niches. Overlapping proteins (Table S5) largely included proteins important for
host fatty acid metabolism such as Apolipoprotein A-1, Apolipoprotein E, fatty acid-binding protein,
fatty acid synthase and 2,-4-dienoyl-CoA reductase; proteins important for cellular function such as
ribosomal proteins, anion exchange proteins and endoplasmic reticulum resident proteins; proteins
involved in epithelial remodeling such as cadherin-17 and vinculin; and proteins involved in mucosal
defense and immunity including complement C3, and mucin-2.

3.3.1. High-Fat Diets Associated with Decreased Death Receptor Signaling and Apoptosis and
tRNA Charging

Molecular crosstalk between the commensal microbiota and the intestinal epithelial cells occurs
at the intestinal mucosal surface. As such, we focused our investigation on host proteins expressed in
the mucosa. To understand higher ranking response pathways due to different lipid diets, mucosal
proteins were evaluated using IPA [46] which identifies the most significant canonical pathways,
biological functions, and networks. After generating the pathway comparison heat map, we ranked
the effects of each diet and ordered the results in descending order based on the high-fat corn oil diet
(Figure 5A). The IPA heatmap highlights that all high-fat diets have decreased predicted pathways
associated with cell death, indicated by the down-regulation of apoptosis signaling and death receptor
signaling pathways. These findings were based on the overall down-regulation of cell death proteins
such as apoptotic chromatin condensation inducer 1, cytochrome c somatic, lamin A/C, spectrin alpha
non-erythrocytic 1, calpain 1, mitogen-activated protein kinase 1 and heat shock protein family B
(small) member 1 (Table 1). While not included in the IPA pathway, increased interleukin-1 receptor
antagonist in the corn oil and milk fat group, has also been shown to reduce apoptosis.

Transfer RNA charging was similarly down-regulated in all high-fat diets. This was based on
the overall down-regulation of glutamyl-prolyl-tRNA synthetase, phenylalanyl-tRNA synthetase
beta subunit, lysyl-tRNA synthetase, asparaginyl-tRNA synthetase, arginyl-tRNA synthetase,
threonyl-tRNA synthetase, valyl-tRNA synthetase and tyrosyl-tRNA synthetase. In contrast, all high-
fat diets, had upregulated peroxisome proliferator activated receptor (PPAR)α/ retinoid X receptor
(RXR)α pathways compared to the low-fat control. IPA selected proteins used to determine PPAR
activation included: acyl-CoA oxidase 1, apolipoprotein A1, cytochrome P450 family 2 subfamily C
member 18, fatty acid synthase, glycerol-3-phosphate dehydrogenase 1, heat shock protein 90 beta
family member 1, mitogen-activated protein kinase 1, and protein disulfide isomerase family A member
3. Overall, increased consumption of fat regardless of the saturation index, results in decreased cell
death and tRNA charging signaling and increased PPARα/RXRα activation signaling.
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Figure 5. Effects of lipid diets on the gut proteome shown by the Ingenuity pathway comparative
analysis. (A) Heatmap visualization of metabolites detected in each dietary group. Orange color
indicates a higher activation score, whereas blue color indicates a lower activation score. Ingenuity
pathway analysis (IPA) identified many upstream regulators predicted to be active based on the
gene expression profile including: (B) bleeding in the high-fat corn oil and (C) low-fat chow groups,
(D) contractility of muscles in the corn oil group and (E) tumorigenesis of tissue in the olive oil group.
Faded colors represent less of an effect.
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Table 1. Mucosal proteins contributing to IPA pathways and networks.

Pathway Symbol Gene Name Low Fat Milk Fat Olive Oil Corn Oil

High fat

Death
Receptor ACIN1 apoptotic chromatin condensation

inducer 1 0.4 −0.2 0 −0.3

signaling CYCS cytochrome c, somatic 0.7 0.3 −0.2 −0.2

HSPB1 heat shock protein family B (small)
member 1 −0.5 0.5 0.1 −0.2

LMNA lamin A/C 0.6 −0.2 −0.1 −0.4
SPTAN1 spectrin alpha, non-erythrocytic 1 0.6 −0.1 −0.1 −0.2

Apoptosis ACIN1 apoptotic chromatin condensation
inducer 1 0.4 −0.2 0 −0.3

CAPN1 calpain 1 0.8 0 −0.1 −0.1
CYCS cytochrome c, somatic 0.7 0.3 −0.2 −0.2
LMNA lamin A/C 0.6 −0.2 −0.1 −0.4
MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
SPTAN1 spectrin alpha, non-erythrocytic 1 0.6 −0.1 −0.1 −0.2
IL1RN Interleukin-1 receptor antagonist protein −1 0.4 -0.1 0.7

tRNA
charging EPRS glutamyl-prolyl-tRNA synthetase 0.8 −0.1 −0.2 0

FARSB phenylalanyl-tRNA synthetase beta
subunit 0.7 0 −0.2 −0.1

KARS lysyl-tRNA synthetase 0.8 −0.2 −0.3 −0.2
NARS asparaginyl-tRNA synthetase 0.9 −0.3 −0.5 −0.4
RARS arginyl-tRNA synthetase 0.7 −0.1 −0.2 0
TARS threonyl-tRNA synthetase 0.8 0 −0.2 −0.1
VARS valyl-tRNA synthetase 0.4 0 −0.1 −0.2
YARS tyrosyl-tRNA synthetase 0.5 −0.4 −0.3 −0.2

PPARa/RXRa ACOX1 acyl-CoA oxidase 1 0.5 0 −0.3 −0.4
Activation APOA1 apolipoprotein A1 −0.7 0.2 −0.1 0.5

CYP2C18 cytochrome P450 family 2 subfamily
C member 18 0.3 −0.4 0.4 −1.7

FASN fatty acid synthase 0 0 0 0.4

GPD1 glycerol-3-phosphate dehydrogenase
1 1.3 −0.6 −0.4 −0.3

HSP90B1 heat shock protein 90 beta family
member 1 0.2 −0.4 −0.3 −0.1

MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1

PDIA3 protein disulfide isomerase family A
member 3 −0.5 0 0 0.1

Corn oil

Glycolysis I ALDOB aldolase, fructose-bisphosphate B 1.4 −0.5 −0.6 −0.5
ENO1 enolase 1 −0.5 0.2 0.1 0.3
FBP2 fructose-bisphosphatase 2 0.2 −0.2 −0.2 0.1
TPI1 triosephosphate isomerase 1 −0.6 0 0 0.4

Oxidative ATP5F1B ATP synthase F1 subunit beta −0.8 0.2 0 0.5

phosphorylation ATP5PB ATP synthase peripheral
stalk-membrane subunit b 0.6 −0.1 −0.1 −0.3

ATP5PO ATP synthase peripheral stalk
subunit OSCP −0.7 0.1 0.1 0.4

COX5A cytochrome c oxidase subunit 5A −0.9 0.3 0.2 0.6
CYCS cytochrome c, somatic 0.7 0.3 −0.2 −0.2

NDUFA9 NADH:ubiquinone oxidoreductase
subunit A9 0.8 0.2 0.2 −0.1

NDUFS1 NADH:ubiquinone oxidoreductase
core subunit S1 −0.4 −0.2 0 0.4

NDUFS2 NADH:ubiquinone oxidoreductase
core subunit S2 0.6 0 0 −0.1

NDUFS3 NADH:ubiquinone oxidoreductase
core subunit S3 −0.8 0.1 0.1 0.3

NDUFV2 NADH:ubiquinone oxidoreductase
core subunit V2 −0.3 −0.1 −0.1 0.3

UQCRB ubiquinol-cytochrome c reductase
binding protein 0.2 −0.3 −0.3 0
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Table 1. Cont.

Pathway Symbol Gene Name Low Fat Milk Fat Olive Oil Corn Oil

Corn oil

UQCRC2 ubiquinol-cytochrome c reductase
core protein 2 0.3 −0.1 −0.1 0.1

NRF2-mediated CBR1 carbonyl reductase 1 −0.4 0.1 0.1 0.2
oxidative
stress CCT7 chaperonin containing TCP1 subunit

7 0.5 −0.2 −0.2 −0.3

response DNAJB11 DnaJ heat shock protein family
(Hsp40) member B11 0.7 −0.2 −0.4 −0.5

FTH1 ferritin heavy chain 1 −0.4 0.3 0 0.1
FTL ferritin light chain −0.2 0.2 0.2 0.3
GSR glutathione-disulfide reductase 0.6 −0.1 −0.2 0.1
GSTM3 glutathione S-transferase mu 3 1.2 0.3 0.4 0.3
MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
SOD1 superoxide dismutase 1 0.6 −0.1 −0.2 0.2
USP14 ubiquitin specific peptidase 14 0.6 −0.2 −0.2 −0.1
CA3 Carbonic anhydrase 3 0 −0.1 0 0.7
ALDH2 Aldehyde dehydrogenase −0.6 0.2 0 0.6

Glutathione-
mediated ANPEP alanyl aminopeptidase, membrane 1.8 −1.1 −0.8 −0.8

detoxification GGH gamma-glutamyl hydrolase 0.6 0.2 −0.1 0.6
Gsta4 glutathione S-transferase, alpha 4 0.4 0 0 −0.5
GSTM3 glutathione S-transferase mu 3 1.2 0.3 0.4 0.3
GSTZ1 glutathione S-transferase zeta 1 −0.3 −0.1 0.1 0.5

ILK signaling ACTN1 actinin alpha 1 0.3 0.1 0.1 −0.3
ACTN4 actinin alpha 4 0.6 −0.3 −0.3 −0.2
DSP desmoplakin 0.6 −0.1 0 −0.3
FLNA filamin A 0.4 0.2 0.3 −0.4
FLNC filamin C 0.7 0.1 0.1 −0.6
FN1 fibronectin 1 0.7 −0.1 0.1 −0.8
MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
MYH9 myosin heavy chain 9 0.6 −0.2 −0.2 −0.2
MYH11 myosin heavy chain 11 0.7 0.2 0.4 −0.6
MYH14 myosin heavy chain 14 0.5 −0.1 −0.1 −0.2
MYL9 myosin light chain 9 −0.5 0.4 0.6 −0.2

PPP2R1A protein phosphatase 2 scaffold
subunit Alpha −0.5 0.1 0.2 0.5

VCL vinculin 0.6 −0.1 0.1 −0.4
Epithelial
integrity Muc2 mucin-2 0.2 −0.1 −0.2 −0.6

Cing cingulin 0.6 −0.3 −0.2 −0.3
VEGF
signaling ACTN1 actinin alpha 1 0.3 0.1 0.1 −0.3

ACTN4 actinin alpha 4 0.6 −0.3 −0.3 −0.2

EIF2S3 eukaryotic translation initiation
factor 2 subunit γ 0.4 −0.1 −0.1 −0.2

ELAVL1 ELAV like RNA binding protein 1 0.7 −0.1 −0.1 −0.1
MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
VCL vinculin 0.6 −0.1 0.1 −0.4

Bleeding
network APOE apolipoprotein E −0.7 0.2 −0.1 0.5

CNN1 cluster of calponin-1 −0.1 0.5 0.5 −0.2
FLNA filamin-a 0.4 0.2 0.3 −0.4
MYH9 cluster of myosin-9 0.6 −0.2 −0.2 −0.2
PLEC cluster of plectin 0.4 −0.1 0 −0.5

IL1RN interleukin-1 receptor antagonist
protein −1 0.4 −0.1 0.7

Contractility
of muscle
network

ATP2A2 sarcoplasmic/endoplasmic
reticulum calcium ATPase 0.5 −0.2 −0.1 −0.4

CKM cluster of creatine kinase M-type −0.3 0.2 0.3 −0.3
DES cluster of desmin 0.6 0.4 0.3 −0.5
MYH11 cluster of myosin-11 0.7 0.2 0.4 −0.6
MYH14 myosin-14 0.5 −0.1 −0.1 −0.2
VCL vinculin 0.6 −0.1 0.1 −0.4
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Table 1. Cont.

Pathway Symbol Gene Name Low Fat Milk Fat Olive Oil Corn Oil

Milk fat

Acute Phase
Response APOA1 apolipoprotein A1 −0.7 0.2 −0.1 0.5

C3 complement C3 0.4 −0.1 −0.8 −0.7
FN1 fibronectin 1 0.7 −0.1 0.1 −0.8
FTL ferritin light chain −0.2 0.2 0.2 0.3
HP haptoglobin 0.8 0.2 −1.6 −1.3
IL1RN interleukin 1 receptor antagonist −1 0.4 −0.1 0.7
MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
SERPINA3 serpin family A member 3 −0.6 0.6 −1.4 −1.1
AAG1 alpha-1 acid glycoprotein 1 0.8 0.4 -0.8 -0.6

Sirtuin
signaling ADAM10 ADAM metallopeptidase domain 10 0.4 −0.1 −0.2 0

APEX1 apurinic/apyrimidinic
endodeoxyribonuclease 1 0.7 −0.1 −0.2 −0.3

ATP5F1B ATP synthase F1 subunit beta −0.8 0.2 0 0.5

ATP5PB ATP synthase peripheral
stalk-membrane subunit b 0.6 −0.1 −0.1 −0.3

CPS1 carbamoyl-phosphate synthase 1 2.3 −2 −1.3 −1.9
H1F0 H1 histone family member 0 −0.5 1.2 0.4 −0.6
Hist1h1e histone cluster 1, H1e 0.3 1.1 0.1 −0.6

HMGCS2 3-hydroxy-3-methylglutaryl-CoA
synthase 2 −0.4 0 −0.2 −1.5

MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1

NAMPT nicotinamide
phosphoribosyltransferase 0.6 −0.1 −0.2 −0.3

NDUFA9 NADH:ubiquinone oxidoreductase
subunit A9 0.8 0.2 0.2 −0.1

NDUFS1 NADH:ubiquinone oxidoreductase
core subunit S1 −0.4 −0.2 0 0.4

NDUFS2 NADH:ubiquinone oxidoreductase
core subunit S2 0.6 0 0 −0.1

NDUFS3 NADH:ubiquinone oxidoreductase
core subunit S3 −0.8 0.1 0.1 0.3

NDUFV2 NADH:ubiquinone oxidoreductase
core subunit V2 −0.3 −0.1 −0.1 0.3

PDHA1 pyruvate dehydrogenase E1 alpha 1
subunit −0.3 0 0 0.1

SF3A1 splicing factor 3a subunit 1 0.7 0 0.1 −0.1
SLC25A5 solute carrier family 25 member 5 0.9 0 0 −0.2
SOD1 superoxide dismutase 1 0.6 −0.1 −0.2 0.2

TIMM13 translocase of inner mitochondrial
membrane 13 −0.2 0 0 0.3

UQCRC2 ubiquinol-cytochrome c reductase
core protein 2 0.3 −0.1 −0.1 0.1

VDAC1 voltage dependent anion channel 1 0.1 0.3 −0.1 0.2
Fatty acid B
oxidation ACAA2 acetyl-CoA acyltransferase 2 −0.4 0.1 0.2 0

HADHA
hydroxyacyl-CoA dehydrogenase
trifunctional multienzyme complex
subunit alpha

−0.1 0.2 0.1 0.2

HADHB
hydroxyacyl-CoA dehydrogenase
trifunctional multienzyme complex
subunit beta

−0.4 0.2 0.1 0.1

IVD isovaleryl-CoA dehydrogenase −0.6 −0.1 0 0.2

Olive oil

Actin
cytoskeleton ACTN1 actinin alpha 1 0.3 0.1 0.1 −0.3

signaling ACTN4 actinin alpha 4 0.6 −0.3 −0.3 −0.2

ARPC5 actin related protein 2/3 complex
subunit 5 −0.4 0.2 0 0.4

FLNA filamin A 0.4 0.2 0.3 −0.4
FN1 fibronectin 1 0.7 −0.1 0.1 −0.8
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Table 1. Cont.

Pathway Symbol Gene Name Low Fat Milk Fat Olive Oil Corn Oil

Olive oil

IQGAP2 IQ motif containing GTPase
activating protein 2 0.7 0 −0.1 −0.2

MAPK1 mitogen-activated protein kinase 1 0.2 0 −0.2 −0.1
MYH9 myosin heavy chain 9 0.6 −0.2 −0.2 −0.2
MYH11 myosin heavy chain 11 0.7 0.2 0.4 −0.6
MYH14 myosin heavy chain 14 0.5 −0.1 −0.1 −0.2
MYL9 myosin light chain 9 −0.5 0.4 0.6 −0.2
VCL vinculin 0.6 −0.1 0.1 −0.4
Col6a3 cluster of protein Col6a3 −0.1 -0.6 1.1 −1.1

Tumorigenesis
of ACOX1 acyl-coenzyme A oxidase 1 0.5 0 −0.3 −0.4

tissue network APOA1 apolipoprotein a-1 −0.7 0.2 −0.1 0.5

ATP2A2 sarcoplasmic/endoplasmic
reticulum calcium ATPase2 0.5 −0.2 −0.1 −0.4

C3 complement C3 0.4 −0.1 −0.8 −0.7
HP hippocalcin-like protein 1 0.8 −0.2 −0.2 0.2

IL1RN interleukin-1 receptor antagonist
protein −1 0.4 −0.1 0.7

MTTP microsomal triglyceride transfer
protein large subunit 2.4 −2 −1.7 −2.1

PC pyruvate carboxylase −0.2 0.2 0.1 0.4

Displayed are the experimental log ratios. Compared to the pooled reference channel (value normalized to
zero), positive values indicate an increased fold-change expression whereas negative values indicate a decreased
fold-change expression Italicized proteins were not included in IPA pathway. NA indicates the protein did not
reach the 0.006 threshold. All groups are compared to the pool which was set to zero. Abbreviations used: OSCP,
oligomycin sensitivity conferral protein; VEGF, vascular endothelial growth factor.

3.3.2. Corn Oil Diets Show Responses Indicative of Increased Energy Requirements and Oxidative
Stress, and Decreased Barrier Function

Two of the most highly affected host pathways in the corn oil group were glycolysis I and
oxidative phosphorylation, indicating increased energy demand in the mucosal epithelial cells of corn
oil fed mice (Figure 5A). These pathways were determined through upregulated proteins involved
in glycolysis, such as enolase 1, fructose-bisphosphatase 2 and triosephosphate isomerase 1 (Table 1).
Similarly, proteins involved in oxidative phosphorylation such as ATP synthase F1 subunit beta,
ATP synthase peripheral stalk subunit OSCP (oligomycin sensitivity conferral protein), cytochrome
c oxidase subunit 5A, and nicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase
core subunit S3 were upregulated in the high-fat corn oil and milk fat dietary groups. Other pathways
heightened in corn oil diets are nuclear factor (erythroid-derived 2)-like 2 (NRF2) mediated oxidative
stress response, and glutathione-mediated detoxification. IPA determined NRF2 mediated oxidative
stress in the n-6 PUFA rich diets through the expression of glutathione-disulfide reductase, glutathione
S-transferase mu 3 and superoxide dismutase 1. In contrast to the low-fat diet, the high-fat diet also had
increased expression of carbonyl reductase 1, ferritin heavy chain 1 and ferritin light chain. Carbonic
anhydrase 3 (CA3) and aldehyde dehydrogenase (ALDH2) are similarly increased in the corn oil
group but were not included in the NRF2-mediated oxidative stress pathway. Overall, increased
consumption of n-6 PUFA diets show responses indicative of increased energy demands and oxidative
stress. While all high-fat diets have down-regulated integrin-linked kinase (ILK) signaling, this was
especially pronounced in the corn oil group which showed decreased expression of actinin alpha 1 and
4, desmoplakin, filamin A and C, fibronectin 1, mitogen-activated protein kinase 1, myosin heavy chain
9, 11, and 14, myosin light chain 9 and vinculin. This is important because ILK signaling has been found
to be indispensable for barrier function [47]. Other proteins important for epithelial integrity include
mucins and proteins involved in junctional complexes. Here, we found that in addition to the prior
mentioned proteins, Mucin-2 (Muc2; fragments) and cingulin were down-regulated in the high-fat
dietary groups, particularly in corn oil. This decreased barrier function is not limited to the epithelium.
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The pathways show decreased vascular endothelial growth factor (VEGF) signaling in the corn oil
and olive oil group which corresponds with the network generated by IPA predicting that the corn oil
diet would increase bleeding based on the down-regulation of cluster of calponin-1 (CCN1), filamin-a
(FLNA), cluster of myosin-9 (MYH9), and cluster of plectin (PLEC) proteins and the upregulation
of interleukin-1 receptor antagonist protein (IL1RN) and apolipoprotein E (Figure 5B). In contrast,
low-fat diets had FLNA, MYH9, and PLEC and down-regulated IL1RN, CCN1 and APOE, and was
predicted to inhibit bleeding pathways (Figure 5C). Significant mucosal networks generated by IPA
also predicted that high-fat corn oil diets inhibit contractility of muscle based on the down-regulation
of Sarcoplasmic/endoplasmic reticulum calcium ATPase (ATP2A2), Cluster of Creatine kinase M-type
(CKM), Cluster of Desmin (DES), Cluster of Myosin-11 (MYH11), myosin-14 (MYH14) and vinculin
proteins (VCL) (Figure 5D). Taken together, diets rich in corn oil appear to have decreased barrier
function, increased oxidative stress and require increased energy for maintenance.

3.3.3. Milk Fat Diet is Associated with Increased Inflammation and Compensating Restitution

The milk fat dietary group had upregulated acute phase response (Figure 5A). Acute phase
proteins are defined as proteins which are increased by at least 25 percent during inflammation and
includes proteins such as apolipoprotein A1, ferritin, haptoglobin, interleukin-1 receptor antagonist
protein, and serpin family A member 3, which were all upregulated in the milk fat group (Table 1).
While not included in the IPA derived pathway, alpha-1 acid glycoprotein 1 was similarly upregulated
and is involved in acute phase response. The milk fat group was the only high-fat diet to have
upregulated fatty acid β-oxidation 1 and sirtuin signaling. Previous studies have shown that the sirtuin
signaling pathways link inflammation and metabolism particularly protective restitutive responses
helping to resolve inflammation [48]. Of the 22 proteins utilized in the IPA sirtuin signaling pathways,
6 were upregulated in the milk fat group including ATP synthase F1 subunit beta, H1 histone family
member 0, NADH: ubiquinone oxidoreductase subunit A9, NADH: ubiquinone oxidoreductase core
subunit S3, and voltage dependent anion channel 1. In contrast to the corn oil and olive oil dietary
groups, IPA did not generate a hypothesis to explain how activation or inactivation of regulators leads
to an increase or decrease of function in the milk fat group. Given these data, milk fat appears to have
increased expression of inflammatory pathways.

3.3.4. Olive Oil Consumption Was Associated with Increased Cytoskeletal Dynamics

Similar to the low-fat group, the olive oil group had increased proteins involved in actin
cytoskeleton signaling and epithelial integrity (Figure 5A) due to increases in actinin alpha 1,
filamin A, fibronectin 1, myosin heavy chain 11, myosin light chain 9 and vinculin. Additionally,
the olive oil group had upregulated cluster of protein Col6a3 involved in microfibril formation.
Predicted gene interaction networks show that olive oil was associated with inflammation of
liver (tumorigenesis of tissue), commonly caused by virial infections. This prediction was based
on the down-regulation of peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), apolipoprotein a-1
(APOA1), Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (ATP2A2), complement C3 (C3),
hippocalcin-like protein 1 (HP), interleukin-1 receptor antagonist protein (IL1RN), microsomal
triglyceride transfer protein large subunit (MTTP), and pyruvate carboxylase (PC) proteins (Figure 5E).

3.4. Microbial Taxa Associate with Host Proteins

To understand potential interactions between the bacteriome and host mucosal proteins,
we evaluated Spearman correlations between mean phyla abundance and the selected mucosal proteins
contributing to IPA pathways and networks (Figure S2). The heatmap shows that low expression
of Proteobacteria and Tenericutes inversely correlates with apoptosis in high-fat diets. Increased
relative abundance of TM7 in the corn oil group correlated with several host proteins involved in
glycolysis, oxidative phosphorylation and NRF2-mediated oxidative stress response. With respect to
the olive oil diet, higher relative abundances of Bacteroidetes positively correlated with 42% of the
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proteins involved in actin cytoskeleton signaling. Finally, 55% of the acute phase response proteins in
the milk fat group were associated with the relative abundances of Proteobacteria, Tenericutes and
Verrucomicrobia. However, because the peptides were pooled, there were only four observations
available for the Spearman Rank correlation analysis, one for each diet group. As a result, we cannot
realistically draw conclusions from this correlative data, but rather advocate for well-controlled and
designed experiments that ask specific questions based on the observations made here.

4. Discussion

The mammalian gut has co-evolved with trillions of microorganisms, the collection of which is
referred to as the gut microbiome. We have yet to understand how microbes succeed in the gut as a
consortium and then co-exist in a community and affect the host responses. It has been hypothesized
that several external factors, including diet, play a role in the host-microbe interaction in the gut. Several
studies over the past few years have shown that a high-fat diet can lead to different gut microbial
profiles, yet the effects on bacterial taxa and their functional responses caused by distinct types of fatty
acids are not well understood. To define the specific changes in bacterial taxa as well as functional
outputs, we analyzed the effect of commonly consumed dietary lipids on the colonic microbiome.

While there were differences between the high-fat and low-fat diets suggesting calories may play
a role, these diets are not directly comparable since the macronutrients and micronutrients are different
in the low-fat diet. By changing the amount of dietary fat, the proportion of carbohydrates and
proteins automatically changes making it difficult to disentangle lipid driven changes. For example,
the availability of dietary carbohydrates has been shown to modulate biofilm development [49]
and acquisition of plasmids encoding relevant metabolic pathways (mobile genetic elements) [50]
which could account for the predicted differences between the “low” and high-fat diets. Therefore,
we focus on changes observed between the high-fat diets. We found that each type of dietary lipid
distinctly affected the clustering effects of the microbial communities indicating that different taxa
thrive with exposure to the types of fatty acids. While all high-fat diets caused an increase in the
abundance of Firmicutes, each dietary lipid promoted specific taxa within the phyla with differing
functions, indicating that different Firmicutes species thrive in the presence of different lipid substrates.
Promoting the growth of certain bacterial species through diet, or prebiotics, has primarily been
documented in carbohydrates [51], yet the potential for other macronutrients to act as prebiotics has
largely been unexplored. Correspondingly, SCFA production was also altered as a result of the type of
lipid consumed. Propionic acid and acetic acid were suppressed in the corn oil and olive oil group,
respectively, whereas the milk fat group had similar levels of SCFA production as the low-fat control.
Our data also indicates that higher species richness is observed in mice fed corn oil and milk fat diets;
however, the differential composition and predicted functions of the gut microbiota do not seem to
be associated with better health outcomes. This is apparent in the corn oil group which promoted a
microbiota with high invasive and infection potential. In support of this, previous studies from our lab
have shown that the corn oil diet promotes exacerbated immune-driven damage when challenged with
Citrobacter rodentium [11], whereas olive oil consumption is protective [9] despite the low microbial
diversity shown here. Therefore, diversity alone may not be a predictor for a better health.

The data presented in this work show that diet induced changes to the microbiome mirrors
diet induced responses from the host. For instance, the predicted increase in invasive potential
observed in the corn oil bacteriome parallels the predicted decrease in pathogen resistance and barrier
function observed in the host. Specifically, the corn oil diet increased the microbial diversity in the
gut that was predicted to increase microbial virulence traits such as increased microbial motility and
bacterial signal transduction by two component regulatory systems. The host proteome indicated the
protective barrier protein MUC2 was decreased alongside proteins important for tight and adherins
junctions, and endothelial integrity (bleeding). Furthermore, decreased peristalsis (contractility of
muscle), and increased oxidative stress response predicted in the corn oil group may be in response
to increased microbial invaders. This supports the phenotype observed in previous studies using a
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similar diet which showed n-6 PUFA results in increased oxidative stress and tissue damage [11,52],
increased inflammation and mortality during enteric infection [9,11], and metabolic insufficiencies [53].
Our data, in combination with previous literature, indicates that increased n-6 PUFA in the diet
may be a risk factor for the development of a dysfunctional barrier in the gut. While descriptive,
the data presented here provides a potential mechanism (bacterial-host interactions) by which corn
oil, rich in n-6 PUFA, imparts toxicity in the gut. Indeed, an overabundance of dietary n-6 PUFA
promotes chronic inflammation [54] and excessive consumption of n-6 PUFA is a risk factor for IBD
in humans [10]. Prospective cohort studies conducted over a 5-year period demonstrated that PUFA
positively associated with UC risk [55]. Similarly, retrospective case-control studies found increased
levels of IBD in people consuming diets rich in n-6 PUFA [56]. Our research and others support the
observations made here that n-6 PUFA tends to increase gut inflammation and damage resulting
in an exacerbated colitis in several animal models [11,57–61]. Currently, we do not understand the
mechanisms behind n-6 PUFA being detrimental during colitis but this study does reveal pathways
that need to be investigated further.

Similar parallels between the microbiome and host responses were observed in the milk fat
group. Specifically, the milk fat diet increased microbes in the gut whose functions are involved in
carbohydrate and lipid metabolism. This was reflected in the host by increased proteins involved
in fatty acid β-oxidation. Mounting evidence supports that sirtuins link metabolism and host
inflammation. While inflammation is required to defend against invading organisms, compensatory
mechanisms are required to prevent chronic inflammation. Host sirtuins, increased in the milk
fat group, improve outcomes in chronic inflammatory diseases and sepsis by ‘mending’ the host
or promoting restitution through immune repression and restoring homeostasis following stress
responses [48]. Moreover, while the milk fat diet resulted in a host-microbe relationship that
promoted host inflammation, there were no significant decreases in protective microbial SCFA
responses suggesting that both the host and the commensal microbes promote a homeostatic
inflammation-resolution cycle. This supports previous studies showing increased pathology in the
milk fat group during infection but also increased compensatory protective responses, unlike the corn
oil group [9].

This relationship between the microbiome, host and dietary lipids is not limited to the bacteriome
and there is evidence that the virome may similarly be involved. In support of this, sequencing
data predicted upregulated RIG-I-like receptor signaling pathways in the olive oil dietary group.
The RIG-I-like family of pattern recognition receptors identify viral RNA [62], and are important
for virus-host signaling crosstalk. Host mucosal proteins in the olive oil cohort also predicted liver
inflammation (tumorigenesis of tissue) which is often caused by viral infections. Previous experiments
have shown viral infections can inhibit C3 complement production [63], and that the loss of IL1RN can
enhance susceptibility to viral infections [64], which may suggest an interaction between dietary olive
oil, the host and the virome. However, 16S rRNA gene amplicon sequencing predictions face several
limitations, one of which is the inability to study viral microbiome community members. As such,
future studies should test this potential relationship under controlled settings while specifically
targeting the virome.

5. Conclusions

Overall, we conclude that the type of dietary lipids distinctly impacts the gut microbiome. While
high fat consumption has a distinct impact on the gut microbiota as compared to a normal chow diet,
the type of fatty acids alters the relative microbial abundances where olive oil was most distinct from
the corn oil and milk fat. The corn oil and milk fat diets shared similarities in diversity but had different
functional characteristics. We show that the corn oil diet, rich in n-6 PUFA, resulted in a microbiome
with enhanced predicted virulence and pathogenicity associated with increased host inflammation,
oxidative stress and increased barrier dysfunction. While the milk fat diet, rich in SFA, resulted in a
host-microbe relationship that promoted inflammation which could result in inflammatory induced
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intestinal damage, there was a compensatory protective response evident by the production of sirtuins
and SCFAs. In marked contrast to both corn oil and milk fat, the olive oil diet, rich in MUFA, resulted in
a host-microbe dynamic suggesting the involvement of the less-explored virome. These results suggest
that fat type is an important consideration for gut health and not all high-fat diets are detrimental.
However, given this study is descriptive in nature, future studies should focus on well-designed
experiments unraveling the mechanisms of each lipid on gut health. These results have the potential
to guide evidence-based nutrition recommendations for IBD patients who can suffer from nutrient
deficiencies from overly restrictive dietary regimes including low-fat diets.
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