
nutrients

Article

A Short Study Exploring the Effect of the Glycaemic
Index of the Diet on Energy intake and Salivary
Steroid Hormones

Emad A.S. Al-Dujaili 1,2,* , Sophie Ashmore 2 and Catherine Tsang 3

1 Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
2 Dietetics, Nutrition & Biological Sciences, Queen Margret University, Edinburgh EH21 6UU, UK;

sashmore@qmu.ac.uk
3 Faculty of Health and Social Care, Edge Hill University, St Helens Road, Ormskirk, Lancashire L39 4QP, UK;

catherine.tsang@edgehill.ac.uk
* Correspondence: ealduja1@exseed.ed.ac.uk or ealdujaili@qmu.ac.uk

Received: 19 November 2018; Accepted: 21 January 2019; Published: 24 January 2019
����������
�������

Abstract: Background: The glycaemic index or load (GI or GL) is a concept for ranking
carbohydrate-rich foods based on the postprandial blood glucose response compared with a reference
food (glucose). Due to the limited research investigating the effect of the GI or GL of the diet
on salivary steroidal hormones, this explorative short study was conducted. Methods: 12 female
participants consumed a low GI and a high GI diet for three days each, followed by a washout
period between each intervention. Saliva was collected at baseline, and following the low or high GI
diets. Cortisol and testosterone concentrations were measured by enzyme-linked immuno-sorbent
assay (ELISA). Results: GI and GL were significantly different between the low and high GI diets
(p < 0.001). There was a small but significant increase in salivary cortisol after the high GI diet
(7.38 to 10.93 ng/mL, p = 0.036). No effect was observed after the low GI diet. Higher levels of
testosterone were produced after the low GI diet (83.7 to 125.9 pg/mL, p = 0.002), and no effect was
found after the high GI diet. The total intake of calories consumed on the low GI diet was significantly
lower compared to the high GI diet (p = 0.019). Conclusions: A low GI diet was associated with a
small but significant increase in salivary testosterone, while a high GI diet increased cortisol levels.
Altering the GI of the diet may influence overall energy intake and the health and wellbeing of
female volunteers.
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1. Introduction

There are numerous dietary regimes available to the general public, which are predominantly
aimed at weight loss. One in five adults are classed as obese (body mass index (BMI) ≥ 30 kg/m2) in
the UK which costs the National Health Service billions of pounds. Following the fall in popularity of
high-protein, low-carbohydrate regimes, the glycaemic index (GI) diet is considered a diet of choice
with the public. The GI diet was initially coined by Jenkins et al. [1] as a way of prescribing a diet
for people with diabetes. Since then it has been developed as a dietary regime for weight loss [2–4].
Despite this, it is not currently endorsed by health authorities such as the British and American Dietetic
Associations [5,6].

The GI is a concept for ranking carbohydrate-rich foods based on their postprandial blood
glucose response compared with a reference food item, usually glucose or white bread. Per gram
of carbohydrate, foods with a high GI produce a higher peak in postprandial blood glucose and a
greater overall blood glucose response during the first 2 h after consumption compared to foods
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with a low GI [7]. A food is said to be of low GI if it has a GI of less than 55, medium GI if it
has a GI of 56–69, and a high GI if it is 70 or greater [8,9]. The glycaemic load (GL) quantifies
the overall glycaemic effect of a portion of food, rather than a 25g or 50g portion of carbohydrate,
as with the GI. Much research of the GI of the diet has focused on improving blood glucose control in
diabetes [10–13], weight reduction and obesity [4,14–21], female reproduction and polycystic ovary
syndrome [22,23], blood lipids and cardiovascular health [5,17,24–26], and its role in cancer risk [27–29].
However, few studies have investigated its potential influence on steroidal hormones; cortisol and
testosterone. Adrenal glucocorticoids (GC) are major modulators of multiple functions; including
energy metabolism, stress responses, immunity, inflammation, cognitive function, mood, growth,
reproduction and cardiovascular function [30]. Cortisol is the major naturally-circulating active GC
secreted from the zona fasciculata, and its synthesis is primarily regulated by adrenocorticotropic
hormone (ACTH) [31]. Cortisol exhibits a circadian rhythm; secretion is lowest in the evening and
highest in the morning. Approximately 5–10% of circulating cortisol is free (biologically active), 75%
is bound to corticosteroid-binding globulin (CBG), and 15% is bound to albumin. Cortisol has been
extensively studied in relation to diabetes and insulin resistance [32], obesity [33], hypertension and
cardiovascular disease (CVD) risk [34], immunosuppression [35], mood and wellbeing [36] and acute
illness [37]. Testosterone, an androgen, is found in much lower concentrations in women compared to
men. In men, it is the primary male sex hormone and an anabolic steroid produced by the testicular
Leydig cells [38], however in women approximately two-thirds is the result of peripheral conversion
of dehydroepiandrosterone (DHEA) and its sulphate to testosterone, with the remaining third being
produced by the ovaries [39]. In both men and women, testosterone is involved in health and wellbeing,
prevention of osteoporosis (men and postmenopausal women), and the ability to increase bone mineral
density [40–43], increased libido [44] and increased muscle mass and strength [45]. Testosterone
may act as a physiological antagonist of the catabolic stress hormone, cortisol. It is also thought to
modulate mood and depression, the development of obesity [46] and breast cancer [47]. Normal
serum concentrations of bioavailable testosterone in adult women are 66–791 pmole/L. Total serum
testosterone in women range 0.347–1.873 nmole/L [48].

This study aims to investigate the consequences of changing the GI of the diet on salivary steroid
hormones levels; cortisol and testosterone.

2. Materials and Methods

2.1. Participants

Participants were recruited through an internal email moderator at Queen Margaret University,
Edinburgh, United Kingdom. Twelve healthy females aged between 20–24 years volunteered to take
part in the study. Eligibility criteria were: (a) female gender; (b) premenopausal and not taking
contraceptive pill or hormone replacement therapy; (c) aged >20 years; (d) no acute illness in the
previous month; and (e) not following a vegetarian, or any other medically prescribed diet. The study
was approved by the research ethics committee at Queen Margaret University, Edinburgh, United
Kingdom, code: 02020490/2012-GI/DNBS/QMU Ethical Committee. The study conformed to the
guidelines set by the Declaration of Helsinki, and all participants provided written informed consent.

2.2. Study Design

The study followed a randomized controlled crossover design. All subjects followed a low GI
and a high GI diet for three days each, separated by a washout period of three days. On days 1 and
2, participants completed diet diaries and also collected saliva samples on day 2 at 07.00hrs (before
breakfast and before tooth brushing), at 09.00 hrs, 12.00 noon (before lunch) and 18.00 hrs (before
dinner) to establish basal cortisol and testosterone values. On days 3–5, subjects consumed a low
GI or high GI diet. Saliva was collected as above on day 5. On days 6–8, participants resumed their
normal diet (washout period) to allow time for any changes in hormone concentrations to return to



Nutrients 2019, 11, 260 3 of 13

basal. On day 8, saliva was collected as above to determine if hormone concentrations had returned to
pre-intervention levels. On days 9–11, participants crossed over to the subsequent GI diet fulfilling
the crossover design, and saliva samples were collected at the aforementioned times on day 11.
Participants were provided with information regarding the types of foods suitable for each GI diet,
and were encouraged to make food choices consistent at each stage.

2.3. Saliva Samples

Steroid hormones, testosterone and cortisol, were measured in saliva due to the ease and
non-invasive nature, and undue stress with this form of collection. It also reflects the unbound,
active concentration of steroid hormones [49]. Studies have also shown good correlations between
serum and saliva levels. With a salivary specimen one is able to collect multiple samples from the
same individual at the optimum times for diagnostic information. This is of particular value for
steroid hormones because they exhibit circadian or monthly variations. Blood concentrations of steroid
hormones are several folds higher than saliva levels and, therefore, caution should be taken to avoid
the problems of contamination from bleeding gums [49,50]. All saliva samples were collected by
volunteers following written instructions on how to take the sample in the provided plastic tubes and
store them in the fridge until their appointment when they were stored at −20 ◦C until processed.

2.4. Dietary Intervention

The diets were ad libitum leaving the choice for the volunteers to select the high GI or Low GI diet
by themselves. A brief explanation of the GI was provided, but the complexities of the glycaemic load
were not explained. For the purposes of this study a cut-off point defining low and high glycaemic
index foods was not set, rather a list of foods were recommended to the subjects to give the greatest
contrast, for example, potato crisps have a GI of 54 whereas corn chips have a GI of 72.

2.5. Assessment of Dietary Intake

Dietary intake was assessed using a three-day estimated food diary (basal: on 3 days prior to
assessment). Food diaries were also completed during the high GI diet and the low GI diet using
Win Diets Research software program (Version 2010, Robert Gordon University, Aberdeen, UK). Food
portion sizes were determined using average or medium sizes (unless the subject specifically stated
small or large) from published literature [51]. The GIs of food items were obtained from published
tables [7], and were assigned to either low GI or high GI by matching to the most similar product;
the reference food for all GIs was glucose. Where more than one GI was associated with a food item,
for example, white bread has been studied 6 times providing GIs of 69–71, the GI of the product from
the United Kingdom was used if possible, otherwise an average of all GIs for that product was used.
If a brand name was specified in the food diary, the GI for this brand was used if available. The GI
of a mixed dish where individual components were unclear was determined by its major source of
carbohydrate, for example pasta with a creamy sauce was assigned the GI of plain pasta. The GL of
each diet was also calculated based on the values presented by Foster-Powell et al. [7] according to the
portion size of the food consumed [51]. The mean GI and GL of each diet was calculated and used for
statistical analysis.

2.6. Laboratory Analyses

Saliva samples were processed, extracted and cortisol and testosterone were estimated by specific
and sensitive enzyme-linked immuno-sorbent assays (ELISA), following the methods previously
designed and published in our laboratory [50,52,53]. To reduce the effects of inter-assay variability,
testosterone and cortisol saliva samples were assayed for each in duplicate in the same assay.
The coefficients of intra- and inter-assay variation were 4.6–7.8% and 5.5–9.7% for testosterone ELISA
respectively, and 3.8–7.2% and 4.8–10.4% for cortisol ELISA respectively. Minimum detection limit for
testosterone and cortisol ELISAs were 2 pg/mL and 0.05 ng/mL, respectively.
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2.7. Compliance

All participants completed the study and produced the full number of saliva samples requested.
However, some volunteers provided samples up to 30 min outside the specified times. All saliva
samples and diet diaries were included in statistical analysis.

2.8. Statistical Analysis

The mean values and standard deviations were calculated for testosterone and cortisol
concentrations, and GI, GL and individual dietary components of each diet. Data was analysed using
SPSS (Statistical Package for the Social Sciences, version 21, Chicago, IL, USA). To evaluate the variation
between the three sets of data; basal, low GI and high GI, one way analysis of variance (ANOVA)
was performed. Post hock comparisons using Bonferroni’s method was used to see which groups
were statistically different. Paired-wise, 2-tail t-tests were also used to detect statistical significance
in testosterone and cortisol concentrations, and changes in GI, GL and dietary components. p value
of ≤0.05 was considered to be significant. Graphs were constructed in Microsoft Excel for windows
XP version (Reading, UK).

3. Results

3.1. Participant Characteristics

Participant characteristics at baseline (Mean ± SD) are: Age was 21.1(0.9) years, BMI was
22.4(4.6) (kg/m2), alcohol intake was 3.2(2.4) units/week and exercise was 1.9(1.7) h/week. There
were no significant differences between the above parameters at basal, low GI, washout or high GI diet.

3.2. Concentrations of Testosterone and Cortisol

Table 1 shows basal, low GI, washout and high GI average salivary testosterone values per day.
Testosterone concentrations in saliva increased significantly after the low GI diet (p = 0.002) compared
to basal, and the difference between low GI and high GI testosterone concentration was significant
(p = 0.009). There was no significant differences between basal and washout testosterone or basal
and high GI testosterone concentrations. Figure 1 shows that testosterone concentrations increased
from 83.71 pg/mL at basal to 125.86 pg/mL on the low GI diet, then declined to 100.57 pg/mL and
82.57 pg/mL for washout and high GI diet, respectively.

Table 1. Testosterone values at basal, low glycaemic index (GI), washout and high-GI diet.

Average Testosterone/day Mean (pg/mL) Standard Deviation p Value

Basal
Low GI

83.71
125.86

34.93
39.71 0.002

Basal
Washout period

83.71
100.57

34.93
28.32 0.339

Basal
High GI

83.71
82.57

34.93
20.8 0.896

Low GI
High GI

125.86
82.57

39.71
20.8 0.009

Table 2 shows basal, low GI, washout and high GI average salivary cortisol values per day.
Salivary cortisol concentrations after high GI diet showed a significant increase compared to basal
cortisol levels (p = 0.036). Differences between the low GI diet and basal or washout and basal were not
significant. However, there was a significant difference between the low GI and high GI diet salivary
cortisol (p = 0.012). Cortisol concentrations increased from 7.383 ng/mL at basal to 10.935 ng/mL on
the high GI diet (Figure 2).



Nutrients 2019, 11, 260 5 of 13

Nutrients 2018, 10, x FOR PEER REVIEW  5 of 15 

 

Table 1. Testosterone values at basal, low glycaemic index (GI), washout and high-GI diet. 

Average 
Testosterone/day 

Mean 
(pg/mL) 

Standard 
Deviation 

p 
Value 

 

Basal 
Low GI 

83.71 
125.86 

34.93 
39.71 

0.002  

Basal 
Washout period 

83.71 
100.57 

34.93 
28.32 

0.339  

Basal 
High GI 

83.71 
82.57 

34.93 
20.8 

0.896  

Low GI 
High GI 

125.86 
82.57 

39.71 
20.8 

0.009  

Table 2. Cortisol values of basal, low GI, washout and high-GI cortisol. 

Average Cortisol/day Mean (ng/mL) Standard Deviation p value  
Basal  

Low GI  
7.383 
7.065 

3.588 
3.036 

0.733  

Basal  
Washout period  

7.383 
7.518 

3.588 
3.248 

0.876  

Basal  
High GI  

7.383 
10.935 

3.588 
4.337 

0.036  

Low GI  
High GI  

7.065 
10.935 

3.036 
4.337 

0.012  

 
Figure 1. Testosterone concentration for basal, after low-GI diet, washout period and high-GI diet. 

0

20

40

60

80

100

120

140

160

180

Basal Low GI Washout High GI

Sa
liv

ar
y 

Te
st

os
te

ro
ne

 (p
g/

m
L)

Diet  Intervention

Salivary Testosterone results (mean(sd))

Figure 1. Testosterone concentration for basal, after low-GI diet, washout period and high-GI diet.

Table 2. Cortisol values of basal, low GI, washout and high-GI cortisol.

Average Cortisol/day Mean (ng/mL) Standard Deviation p Value

Basal
Low GI

7.383
7.065

3.588
3.036 0.733

Basal
Washout period

7.383
7.518

3.588
3.248 0.876

Basal
High GI

7.383
10.935

3.588
4.337 0.036

Low GI
High GI

7.065
10.935

3.036
4.337 0.012Nutrients 2018, 10, x FOR PEER REVIEW  6 of 15 

 

 
Figure 2. Cortisol concentration for basal, after low-GI diet, washout period and high-GI diet. 

3.3. Individual Dietary Components 

Table 3 shows the individual components of the diet of the basal, low-GI and high-GI diets. The 
GI of the low-GI diet was significantly lower compared to the high-GI diet (p < 0.001) and basal (p = 
0.003), and the GI of the high-GI diet was significantly higher compared to basal (p = 0.022). The GL 
of the low-GI diet was significantly lower compared to the high-GI diet (p < 0.001) and basal (p = 
0.001), and the GL of the high-GI diet was significantly higher compared to basal (p = 0.021). 

Energy intake was significantly reduced on the low-GI diet compared to the high-GI diet (p = 
0.022). There were no significant differences between the amount or percentage of energy supplied 
from fat, nor the amount of protein consumed. However a significantly higher proportion of energy 
came from protein on the low-GI diet (p = 0.01) compared to the high-GI diet. Significantly less 
carbohydrate was consumed on the low-GI diet compared to basal-GI diet (p = 0.002), and a 
significantly higher proportion of energy came from carbohydrate in the high-GI diet compared to 
low GI (p = 0.004). There was a significantly higher intake of starch and sugar on the high-GI diet 
compared to the low-GI diet (p = 0.004 and p = 0.012, respectively). There was no difference between 
the amount of sugar consumed at basal and on the high-GI diet. There was no significant differences 
in fibre content between the low- and high-GI diets; however there was a significantly lower fibre 
intake in the low-GI diet and high-GI diet compared to basal (p = 0.015 and p = 0.018, respectively). 
  

0

2

4

6

8

10

12

14

16

18

Basal Low GI Washout High GI

Sa
liv

ar
y 

C
or

tis
ol

 (n
g/

m
L)

Diet  Intervention

Salivary Cortisol results (mean(sd))

Figure 2. Cortisol concentration for basal, after low-GI diet, washout period and high-GI diet.



Nutrients 2019, 11, 260 6 of 13

3.3. Individual Dietary Components

Table 3 shows the individual components of the diet of the basal, low-GI and high-GI diets. The GI
of the low-GI diet was significantly lower compared to the high-GI diet (p < 0.001) and basal (p = 0.003),
and the GI of the high-GI diet was significantly higher compared to basal (p = 0.022). The GL of the
low-GI diet was significantly lower compared to the high-GI diet (p < 0.001) and basal (p = 0.001),
and the GL of the high-GI diet was significantly higher compared to basal (p = 0.021).

Table 3. Dietary components on basal, low-GI and high-GI diets.

Dietary Component Variables Compared Mean Standard Deviation p Value

Energy intake
(kcal/day)

Basal energy intake
low-GI energy intake

1925
1509

297.88
258.14 0.019

Basal energy intake
high-GI energy intake

1925
1841

297.88
222.11 0.492

Low-GI energy intake
high-GI energy intake

1509
1841

258.15
222.11 0.022

Fat intake (g/day)

Basal fat intake
low-GI fat intake

63.6
55.9

23.48
13.29 0.432

Basal fat intake
high-GI fat intake

63.6
63.9

23.48
10.11 0.974

Low-GI fat intake
high-GI fat intake

55.9
63.9

13.29
10.11 0.172

% energy from fat

Basal percent energy
low-GI percent energy from fat

30
33

7.15
3.02 0.258

Basal percent energy
high-GI percent energy from fat

30
31

7.15
2.86 0.607

Low-GI percent energy
high-GI percent energy from fat

33
31

3.02
2.86 0.148

Protein intake (g/day)

Basal protein intake
low-GI protein intake

58.5
64.1

15.85
9.09 0.467

Basal protein intake
high-GI protein intake

58.5
63.5

15.85
7.51 0.564

Low-GI protein intake
high-GI protein intake

64.1
63.5

9.09
7.51 0.869

Percent energy from
protein

Basal percent energy
low-GI percent energy from protein

13
17

1.50
2.12 0.005

Basal percent energy
high-GI percent energy from protein

13
14

1.58
2.58 0.275

Low-GI percent energy
high-GI percent energy from protein

17
14

2.18
2.58 0.010

Carbohydrate intake
(g/day)

Basal carbohydrate intake
low-GI carbohydrate intake

278.8
197.8

40.00
33.46 0.002

Basal carbohydrate intake
high-GI carbohydrate intake

278.8
267.2

40.04
43.55 0.322

Low-GI carbohydrate intake
high-GI carbohydrate intake

197.8
267.2

33.47
43.55 0.004

Percentage energy
from carbohydrate

Basal % energy
low-GI % energy from carbohydrate

56
49

8.83
3.33 0.026

Basal % energy
high-GI % energy from carbohydrate

56
54

8.83
4.07 0.420

Low-GI % energy
high-GI % energy from carbohydrate

49
54

3.33
4.07 0.015
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Table 3. Cont.

Dietary Component Variables Compared Mean Standard Deviation p Value

Starch intake (g/day)

Basal starch intake
low-GI starch intake

157.6
117.9

28.53
16.47 0.008

Basal starch intake
high-GI starch intake

157.6
147.8

28.53
21.12 0.278

Low-GI starch intake
high-GI starch intake

117.9
147.8

16.47
21.12 0.004

Sugar intake (g/day)

Basal sugar intake
low-GI sugar intake

113.8
78.9

21.03
21.45 0.006

Basal sugar intake
high-GI sugar intake

113.8
114.1

21.03
29.29 0.957

Low-GI sugar intake
high-GI sugar intake

78.9
114.1

21.45
29.29 0.012

Fibre intake (g/day)

Basal fibre intake
low-GI fibre intake

12.9
10.3

3.14
1.55 0.015

Basal fibre intake
high-GI fibre intake

12.9
9.1

3.14
1.90 0.018

Low-GI fibre intake
high-GI fibre intake

10.3
9.1

1.55
1.90 0.206

Glycaemic Index (GI)

Basal GI
low-GI GI

51
42

4.56
2.43 0.003

Basal GI
high-GI GI

51
59

4.56
3.07 0.022

Low-GI GI
high-GI GI

42
59

2.43
3.07 <0.001

Glycaemic load (GL)

Basal GL
low-GI GL

133
72

18.65
14.78 0.001

Basal GL
high-GI GL

133
149

18.65
21.25 0.021

Low-GI GL
high-GI GL

72
149

14.78
21.25 <0.001

Energy intake was significantly reduced on the low-GI diet compared to the high-GI diet (p = 0.022).
There were no significant differences between the amount or percentage of energy supplied from fat,
nor the amount of protein consumed. However a significantly higher proportion of energy came from
protein on the low-GI diet (p = 0.01) compared to the high-GI diet. Significantly less carbohydrate
was consumed on the low-GI diet compared to basal-GI diet (p = 0.002), and a significantly higher
proportion of energy came from carbohydrate in the high-GI diet compared to low GI (p = 0.004). There
was a significantly higher intake of starch and sugar on the high-GI diet compared to the low-GI diet
(p = 0.004 and p = 0.012, respectively). There was no difference between the amount of sugar consumed
at basal and on the high-GI diet. There was no significant differences in fibre content between the low-
and high-GI diets; however there was a significantly lower fibre intake in the low-GI diet and high-GI
diet compared to basal (p = 0.015 and p = 0.018, respectively).

4. Discussion

4.1. Dietary Recommendations

The low- and high-GI diet provided, respectively, 33% and 31% energy from fat, 17% and 14%
energy from protein and 49% and 54% energy from carbohydrate. Both the low- and high-GI diets
complied with the recommendations set by Scientific Advisory Committee on Nutrition—GOV.UK
(SACN) Dietary Reference Values for Energy and carbohydrate (2011, 2015). A significantly lower
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energy intake was seen on the low-GI diet compared to the basal and high-GI diet. No advice was
given to subjects about decreasing their energy intake and appeared to occur as a consequence of the
low-GI diet, suggesting its potential for use as a weight control diet. The decreased energy intake could
be due to the low-GI diet which is bulkier and more satiating than the basal diet, or the slower release
of glucose into the blood stream with low-GI foods, resulting in smaller peaks in insulin release making
the person to feel fuller for longer periods. Ajala et al. [12] reported that reducing blood glucose
concentrations, induced weight loss, improved the lipid profile, and that low-GI and Mediterranean
diets reduced cardiovascular risk in people with type 2 diabetes as evidenced by greater improvement
in glycaemic control (glycated hemoglobin reductions). Schwingshackl and Hoffmann [16] provided
evidence for beneficial effects of long-term interventions with a low-GI/GL diet in respect to fasting
insulin and pro-inflammatory markers. Absolute fat intake did not change between diets, however a
slightly higher percentage of energy came from fat on the low-GI diet and if the low-GI diet was to
be used as a weight loss diet, the types of fat consumed have to carefully chosen. However, there is
now evidence that people should avoid trans-fats which is more susceptible for oxidation. Subjects on
low-GI diet days consumed less carbohydrate and more protein, and thus lower percentage energy
from carbohydrate. There was no significant difference in carbohydrate intake or percentage energy
between the basal- and high-GI diet, which indicates that the subjects basal diet is high in carbohydrate.

The GI of the two diets was significantly different. The low-GI diet had an average GI of 42 (well
within the low-GI category of <55), which was raised to 59 on the high-GI diet, however this is at the
lower end of the medium GI category (GI = 56–69). This small, but significant, rise in GI is probably due
to the large amounts of fruits and vegetables consumed on the high-GI diet, thus lowering the average,
despite the conscious efforts of the subjects to choose a high-GI diet. Subjects were not advised to
limit their intake of fruits and vegetables as this has implications on health, however in hindsight this
should have been recommended. Although subjects were not given information regarding the GL, this
was significantly decreased on the low-GI diet compared to the high-GI diet, indicating that the portion
sizes of carbohydrate-rich foods decreased, or that carbohydrate containing foods were simply cut
down. We demonstrated that there was no significant difference in the fibre intake between the low-GI
and high-GI diets, however increased dietary fiber intake was associated with better glycemic control
and improved CVD risk factors including chronic kidney disease suffering from type 2 diabetes [54].

4.2. Testosterone

Because of the often extremely low levels of testosterone in female saliva, one of the particular
requirements for its quantitative determination is that the assay be especially sensitive. The in house
testosterone ELISA reagents and conditions were optimised to produce the required sensitivity of
2 pg/mL [50]. Testosterone concentrations were significantly increased by the low-GI diet compared
to basal and high GI diet, and this might be beneficial, in particular, to overweight and obese people.
Santos et al. [55] compared the effects of a protein and an energy restricted diets on serum testosterone
levels in rats, and found that only the energy-restricted group showed a significant decrease in
serum testosterone concentrations. Although the low-GI diet provided fewer calories, a decrease in
testosterone concentrations was not seen. However, it cannot be assumed that the energy deficit of
400 kcal on the low GI diet did not affect the results. It was reported that low-fat diets cause a reduction
in total and free testosterone [47,56], but in our study, there was no significant difference between
fat intake, percentage energy derived from fat and the GI of the diet. Some researchers reported an
association between low testosterone and obesity in men [57], and that testosterone was found to
increase adiposity, leading to a cycle of metabolic complications [58]. Moreover, sugar-sweetened
beverage intake was associated with low serum testosterone in men [59], and a high-GI diet was found
to induce a reduction in total and free testosterone levels in men [60].
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4.3. Cortisol

The actions of cortisol on carbohydrate, protein and fat metabolism are well known, however
the effects of these macronutrients on cortisol production is less well understood. Stimson et al. [61]
found no differences in plasma cortisol between high carbohydrate meals with a high GI or low GI
and changes in cortisol concentrations usually occur slowly over a period of few days. However, our
study showed an increase in cortisol levels after the high-GI diet compared to the basal- or low-GI diet.
There are many variables that influence cortisol production, including stress, diet and feeding times,
sleep pattern and light-dark exposure, however cortisol levels are mostly influenced by stress, whether
it is physical, such as illness, or psychological, such as anxiety [31,62].

Venkatraman et al. [63] reported that plasma cortisol levels were elevated on a 40% fat diet
and post endurance exercise. Repeated elevation of cortisol can lead to weight gain via visceral fat
storage [64,65], and reducing the glycaemic impact (GI and GL) of the diet was found to restore
hormone balance and maintenance of a healthy weight [66], particularly, for women with polycystic
ovary syndrome [23]. High visceral fat mass is now widely accepted to be a risk factor for the
development of cardiometabolic diseases, and low testosterone levels could also be important [67].
In addition, 11β-HSD1 (the enzyme responsible for activating cortisone to cortisol) was found to be
selectively elevated in adipose tissue where it contributes to metabolic complications [68].

4.4. Limitations of Study

There were several limitations of the present study. Food combinations most likely would have
affected the GI; a lower GI food eaten with a higher GI food lowers the overall GI, and high fat foods
usually have a lower GI than expected. Another limitation was the great inter-subject variation in the
GI of foods and day-to-day variation of the glycemic response in subjects. Due to the exploratory nature
this was a short-term study involving a small number of participants, with the dietary intervention
periods limited to 3 days, which was perhaps not long enough to see the full extent of their effects
on hormone concentrations. Moreover, accurately recording food intake is inherently difficult as
perceptions of portions differ between individuals, and people tend to lie about what they have eaten
or modify their eating habits when having to record food intake. Participants noted that it was difficult
to adhere to the low-GI diet as many products habitually eaten have a high GI. This observation was
confirmed by the fact that the GI of the basal diet was closer to the GI of the high-GI diet than the
low-GI diet. Comprehensive lists of GI values may have aided compliance yet subjects also found it
difficult to estimate the GI of some products that were eaten frequently in hidden foods e.g., sauces.

4.5. Conclusions

The take-home message from this exploratory short-term and small study is that lowering the GI
and GL of the diet may produce better health in lowering the energy intake, and in particular, sugar
intake. Modulating the levels of testosterone and the stress hormone, cortisol, might be of benefit to
mood and well being. Longer-term studies are needed to enable the observed changes to be detected
on a large scale and thus recommendation to check the GI of the diet would then be justified. However,
if the GI of diet is to be followed by many people in this country, better labelling and more GI testing
of foods are required which may prove to be costly and time consuming.
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Abbreviations

ACTH adrenocorticotropic hormone
BMI body mass index
CBG corticosteroid-binding globulin
CVD cardiovascular disease
DHEA dehydroepiandrosterone sulphate
ELISA enzyme linked immuno-sorbent assay
GC glucocorticoids
GI glycaemic index
GL glycaemic load
SHBG sex hormone binding globulin
SPSS Statistical Package for the Social Sciences
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