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Abstract: Autism spectrum disorder (ASD) is a complex behavioral syndrome that is characterized
by speech and language disorders, intellectual impairment, learning and motor dysfunctions. Several
genetic and environmental factors are suspected to affect the ASD phenotype including air pollution,
exposure to pesticides, maternal infections, inflammatory conditions, dietary factors or consumption
of antibiotics during pregnancy. Many children with ASD shows abnormalities in gastrointestinal
(GI) physiology, including increased intestinal permeability, overall microbiota alterations, and gut
infection. Moreover, they are “picky eaters” and the existence of specific sensory patterns in ASD
patients could represent one of the main aspects in hampering feeding. GI disorders are associated
with an altered composition of the gut microbiota. Gut microbiome is able to communicate with brain
activities through microbiota-derived signaling molecules, immune mediators, gut hormones as well
as vagal and spinal afferent neurons. Since the diet induces changes in the intestinal microbiota and
in the production of molecules, such as the SCFA, we wanted to investigate the role that nutritional
intervention can have on GI microbiota composition and thus on its influence on behavior, GI
symptoms and microbiota composition and report which are the beneficial effect on ASD conditions.

Keywords: autism spectrum disorders (ASD); diet; nutritional status; anthropometry; metabolites;
gastrointestinal symptoms; gut microbiome

1. Introduction

Autism spectrum disorder (ASD) is a complex behavioral syndrome that occurs before the third
year of life and which affects several spheres of the normal mental development. Children with ASD
are characterized by speech and language disorders, intellectual impairment, learning and motor
dysfunctions [1]. The effects and the severity of symptoms of ASD are different in each person, with a
wide range of types and severity of behavior. Verbal and nonverbal intelligence quotients (IQs) are
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highly variable in ASD [2] and Repetitive and Restricted Behaviors (RRBs) can range from low-level
stereotyped motor behaviors to higher order behaviors, such as insistence on sameness [1]. Recently, an
increase in the diagnosis of ASD has been reported with an average of 1 case for every 88 children [1,3].
It is currently believed that these disorders result from alterations in pre- and/or post-natal neurological
development [1]. Indeed, it has been proposed that these complex behavioral features are associated
with atypical patterns of functional connectivity (FC), compared with typically developing (TD)
individuals [4,5]. These neurodevelopmental abnormalities lead to the child’s impairment in the ability
to relate with others in the first years of life, causing dramatic cognitive, affective and behavioral effects,
which need to be approached in the family and at school.

Among the pathogenic factors of ASD there are very strong genetic components, where heritability
has been estimated to be from 60% [6,7] to more than 80% [8]. The genetic factors affecting ASD
are very heterogeneous [9,10] and there are few genes whose association to ASD have been well
characterized [11,12], for example SH3 and multiple ankyrin repeat domain 3 (SHANK3) [11,13–15],
contactin associated protein-like 2 (CNTNAP2) [16,17], and more recently, chromodomain helicase
DNA binding protein 8 (CHD8) [18]. In particular, both de novo mutations and deletions in the
SHANK3 gene have been related to autism. Furthermore, Mark E. Obrenovich et al. have shown that
metal ion homeostasis is altered in ASD children and involve the deposition of several divalent cations,
as demonstrated in a complex autosomal dominant disorder characterized by ASD, which is known as
Timothy syndrome [19,20]

Next to genetic factors, the environmental elements that are implicated in the increase of ASD risk
seem to include: air pollution, exposure to pesticides, maternal infections, dietary factors, maternal
diabetes, stress, medications, infections, inflammatory conditions or consumption of antibiotics during
pregnancy [21,22]. Proposed dietary risk factors include also maternal prenatal and perinatal folate
and iron status or polyunsaturated fatty acid (PUFA) intake [23–25].

Amongst the others, food restriction, difficult eating behaviors and GI disorders were easily
recorded among medical conditions associated to ASDs. Indeed, children with ASD are very selective
eaters (“picky eaters”) and most of them show aversions to specific food colors, texture, smells or other
foods’ characteristics [26,27]. This exert a direct adversely effect on diet quality, nutritional deficiency
and, on gut microbiota composition. Most of ASD patients that have a co-occurrence of GI disorders
could be influenced by particular dietary habits that may exacerbate ASD symptomatology [28–31].
Immune dysfunction and gastrointestinal (GI) inflammation are also common in individuals with ASD
and contribute to severity of behaviors [28,32,33]. Many ASD children have also been shown to carry
abnormalities in GI physiology, including: increased intestinal permeability [34,35], overall microbiota
alterations [36–40], and gut infection with cresol-producing Clostridium difficile [39,41–44].Recent
evidences in human gut microbiota studies highlighted the existence of a close connection between gut
and brain functions, the so called “gut-brain axis”, including neural, hormonal, immune, and metabolic
pathways [45]. Neuroimmune pathways can contribute to ASD symptomatology via the gut–brain
axis [46]. It has been proposed that cytokines associated with ASD, due to an inflamed gastrointestinal
tract, may cross the blood-brain barrier and help an immune response in the brain, thus influencing
behavior [46]. In this review we will highlight the emerging data about the relationship between gut
microbiome, diet, GI symptoms and autism, and we will discuss nutritional criteria as intervention
and strategy to ameliorate ASD symptoms.

2. Materials and Methods

2.1. Search Strategy

We conducted the review of literature to evaluate the altered gut microbiota and the effect of
nutritional intervention in ASD patients. The research was conducted on PubMed, since 1955 to 2019
and using the following terms: “autism” or “autism spectrum disorder” or “diet” or “nutritional status”
or “microbiota” or “microbiome” or “metabolites” or “dysbiosis” and “gastrointestinal symptoms”. All



Nutrients 2019, 11, 2812 3 of 21

articles providing sufficient information about the relationship between the gut microbiota, nutritional
intervention and ASD were included.

2.2. Selection Criteria

The inclusion criteria for study were as follows: (1) observational prospective and retrospective
studies, case–control studies, cohort studies or systemic review; (2) investigating gut microbiota profiles
and their metabolites in ASD children; (3) studies including information about nutritional intervention
e nutritional status on ASD patients; and (4) studies written in English. All the studies that did not fall
in the following criteria were excluded from the reviewing process.

3. The role of Nutrition and Interventions in ASD

3.1. Food Selectivity and ASD

Neurotypical children, especially preschoolers, are often referred to as “picky eater” and often
show an attitude of preference towards certain foods and rejection of others. This alimentary conduct
usually falls around the age of six and can be part of an adequate developmental framework typical of
the developmental age [47,48].

In children with ASD, this picture is intensified, begins in a very early age and results in a real
food selectivity framework. In addition, food problems tend to remain stable over time, with negative
consequences on health and nutritional status. From a nutritional point of view this leads to an
inadequate caloric intake and hence to nutritional deficits [49,50]. The importance of food regulation
in children with ASD is emphasized in DSM-5, although it is not a diagnostic criterion [1].

However, one of the major issues concerns the definition of selectivity, which complicates the
evaluation and the comparison of the results of different studies. Atypical eating behaviors and the
peculiar lifestyle of ASD (i.e., different levels of physical activity; idiosyncratic social skills; poor social
interaction) are factors that imply risks of malnutrition, both in excess and in default [51]. Furthermore,
studies have indicated that food selectivity is being determined by the following factors: texture (69%),
appearance (58%), taste (45%), smell (36%), and temperature (22%), as well as reluctance to try new
foods (69%) and a small repertoire of accepted foods (60%) (Figure 1) [52–55]. A strong preference
for starches, snacks and processed foods, along with a rejection of fruits, vegetables or protein, is
particularly common [56,57]. Increased consumption of snack foods and calorie-dense foods can
lead to excessive weight gain, with related higher rates of obesity in ASD children than in unaffected
children [58]. Indeed, obesity-related complications (e.g., hypertension, diabetes) are generally more
prevalent among adults with ASD [59]. Nadon et al. found that nearly 90% of preschool and school
age ASD children do not process sensory information, in particular related to touch, smell, sight, and
hearing, in the same way as their typically developing peers [60]. Some studies reported that ASD
children had strong food preferences [61].
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Other factors related to food selectivity are linked to the way the food is presented (48.6%), to the
use of certain utensils and to the characteristics of the tableware (13.8%) [53,62].

The study of Spek et al. [63] examined eating problems in the context of the Swedish Eating
Assessment for Autism spectrum disorders [SWEAA] [64]. It has been shown that males with ASD can’t
adapt their eating behavior to other people present and have problems doing two things simultaneously
during a meal. Besides these, women with ASD showed eating rituals, a pronounced sensory sensitivity
to the smell, taste, texture and visual appearance of food and were uncomfortable in sharing meals
with other people [63].

Indeed, there are studies on the identification of specific sensorial patterns in ASD focused mainly
on visual and auditory perception. A study on sensory profiles highlighted the existence of different
clusters of sensory expression in ASD people [65]. In particular, the study identified a subpopulation
of subjects among ASDs with particular taste/smell sensitive clusters, which could represent one of the
major aspect in hampering feeding and introducing new foods. In another study, Miller identified
three different cluster of modulating sensory sensitivity in ASDs and found a positive correlation
between sensory overresponsivity (SOR) in ASDs and the severity level of food selectivity, expressed
by number of foods accepted by the child [66].

Overall, the available evidence suggests that this food selectivity and an altered elaboration
of sensory stimuli could imply a higher risk of nutritional deficiencies that could, in turn, affect
gastrointestinal symptom and microbiota.

3.2. Nutrient Intake and ASDs.

The ASD has been included among the psychiatric conditions associated with nutritional
deficiencies due to food selectivity [67–69]. However, literature still shows conflicting results
regarding the risk of nutritional deficits in children with ASD [70], especially because ASDs are
compared with NTs. However, in many studies children with ASDs show a considerably smaller
variety of foods, but authors report no overall differences in their total calories, carbohydrates, or
fat intakes [62,71–74], suggesting that their satiety mechanisms are not impaired. Protein intake was
adequate or quite similar to that of typically developing children [69,72–77]. Children with ASDs
eat fewer vegetables and eat more energy-dense foods [76,78], so fiber intake was inadequate in a
considerable number of children with ASDs [71,73,79,80]. Substantial number of subjects with ASDs
had inadequate intakes of micronutrients. In particularly they showed deficiencies of few minerals such
as calcium [67,69,71,73,75,77,79], iron [73,77], zinc [75,77,80], potassium [81], copper [81] and vitamins
as vitamin A [71,75,77], vitamin D [67,69,73,78], vitamin E [71,73], riboflavin [77], vitamin C [75,78],
vitamin B-12 [69,77,82], folic acid [75,82], and choline [80,83]. Excessive consumption of sodium was
reported [79,84], probably due to the consumption of packaged foods. Some studies reported decreased
bone development lower mineral density and a greater risk of fractures in children with ASD compared
to controls (TDs), linked to a lack of calcium and vitamin D in the diet, despite good anthropometric
growth [85–88]. Very interesting is the case of beta carotene excess reported in a case report of a
4-year-old ASD child with selective feeding and excessive consumption of carrot juice (>2.5 L/day) [89].
Cases of vitamin C deficiency with scurvy have been described in the literature [90–95]. However,
dietary data obtained in the studies may be inaccurate due to the influence of parents, who, being
concerned about the nutritional behavior of their children, do not actually reflect the correct nutritional
approaches of their children. A schematic overview of food selectivity in ASDs’ children is provided
below (Figure 2).

Therefore food selectivity and an inadequate nutrient intake could increase the risk of malnutrition
in ASDs that ultimately leads to either obesity or undernutrition. In fact, it has been shown that
this two conditions are associated with an altered composition and diversity of the gut microbiota
compared to healthy individuals [96–98]. Furthermore this changes has been associated with altered
SCFA composition, energy homeostasis, and inflammation [99]. Therefore it is important to take into
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account this influence that has the nutritional status on the intestinal microbiota, in order to choose the
best nutritional approach for patients with ASD.Nutrients 2019, 11, x FOR PEER REVIEW 5 of 21 
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3.3. Effects of Dietary Interventions in ASD

Effects of dietary interventions in ASD have recently begun to emerge. It is important to understand
what physiological effects dietary interventions may have, because individuals with ASD already
exhibit difficult and picky eating behaviors [26,27]. So it is most important to investigate diets, because
they could also aggravate the imbalances in gut microbiota composition and the GI problems. In the
literature the most studied nutritional approaches are gluten-free/casein-free diet (GF/CFD), ketogenic
diet (KD), the specific carbohydrate diet (SCD), and the Mediterranean diet (MD).

3.3.1. Gluten-Free/Casein-Free Diet (GF/CFD)

One of the dietary interventions in ASD is the GF/CFD. This diet is characterized by exclusion of
all food items containing wheat, oats, barley or rye, which are, all flours, bread, rusks, pasta, pastries,
and other bakery products made with these cereals, while the elimination of casein means no intake of
dairy products: milk, including breast milk, yogurt, cheese, butter, cream or ice cream, among others.

Evidences on healthy subjects showed that gluten-free diet has been associated with the
reduction of beneficial gut bacteria populations, the increase in opportunistic pathogens and with
immune-suppressive effects [100–102]. In the ASD population, and beyond, this diet could be
recommended when an allergic or allergic intolerance is diagnosed [103,104]. Conflicting results have
been recorded on ASD cohorts. Indeed, some evidence supports the use of this diet in the amelioration
of ASD symptoms showing that the GF/CF diet decreases urine peptides, improves behavior [105] and
decreases GI symptoms [106]; while other studies highlighted that the adoption of this elimination diet
could decrease fiber intake [103], thus probably aggravating the GI problems.

To date evidence to support or refute GF/CF in ASD is limited and inadequate in terms of quantity,
quality and multiple methodological limitations of studies in the literature.

3.3.2. Ketogenic Diet (KD)

The KD is a high fat and low-carbohydrate diet and it is an effective treatment for epileptic patients
that fails in responding to anticonvulsant medications [84]. KD has been researched in a variety of
neurological conditions and also it has been suggested as a treatment for ASD. The administration
of KD to individuals with ASD underlined positive effects especially for mild and moderate cases
and some reports of improvements in seizure symptoms and behavioral deficits [84,107]. Biological
findings for the effects of the KD come from animal studies. KD was shown to improve behavioral
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ASD deficits (such as sociability, repetitive behaviors, and social communication) in BTBR T+Itpr3tf/J
mouse model of ASD (BTBR) [108]. KD treatment of BTBR mice also improved deficits typical of ASD
related to myelin formation and white matter development/connectivity, acting on neurotransmitter
signaling pathways including glutamate, serotonin, neuronal nitric acid synthase, and dopamine [109].
Additionally BTBR mice was characterized by a gut microbiota profile that was different from that of
controls [110]. However, KD is associated with higher inflammatory and defective mitochondria risk
and its side effects of constipation and reflux may worsen GI comorbidities in ASD. In a systematic
review of KD in ASD it was concluded that the limited number of reports of improvements after
treatment with the diet is not sufficient to attest to the practicability of KD as a treatment for the
disorder [84].

3.3.3. The Specific Carbohydrate Diet (SCD)

Another dietary protocol used in ASDs is the specific carbohydrate diet (SCD) but the studies
conducted on this protocol are few. The SCD was developed in the 1930s as a dietary protocol intended
for patients with celiac disease [111] but it is also employed to treat Crohn’s disease, ulcerative colitis,
diverticulitis and chronic diarrhea [112–114]. Its purpose was to alleviate symptoms of malabsorption
and to prevent growth of pathogenic gut microbiota. The diet recommends monosaccharides whose
sources are fruit, some vegetables and honey, whereas the consumption of complex carbohydrates are
restricted because they take much longer to digest than monosaccharides and may lead to difficulties of
absorption and residual food becomes a breeding ground for pathogenic bacteria. We found one study
that examined the implementation of an SCD protocol in a child with ASD, which showed that the SCD
protocol was well tolerated in this 4 year old child diagnosed with ASD and fragile X syndrome (FXS),
leading to improvements in growth status, gastrointestinal symptoms, and behaviors [112]. Further
research is needed to further evaluate implementation of the SCD protocol in young children with
ASD and/or FXS and GI concerns.

3.3.4. Mediterranean Diet (MD)

The Mediterranean diet is characterized by a high consumption of fruits, vegetables, legumes,
nuts, cereals, and olive oil, a moderate high intake of fish, dairy products, and alcohol (which comes
primarily from wine), and a low intake of saturated lipids, sweets, and red and processed meat [115].
It represents the dietary pattern consumed by the populations situated near the Mediterranean Sea,
and several studies have shown that this diet has beneficial effects against cardiovascular [116–118],
metabolic [119,120] and mental diseases [121,122]. Actually, at our knowledge, no studies have reported
the effect of MD on ASD patients. The only studies founded in the scientific literature about the
influence of MD on neurodevelopmental diseases are about Attention Deficit Hyperactivity Disorder
(ADHD). Ríos-Hernández et al., investigated the effect of MD in 60 children and adolescents with
newly diagnosed ADHD. This was the first study showing that low adherence to the MD is associated
with odds of an ADHD diagnosis in children and adolescents. Among the habits that characterize a
MD pattern, individuals with ADHD more often missed having a second serving of fruit daily and
showed reduced intakes of vegetables, pasta, and rice almost every day when compared with controls.
Moreover, subjects with ADHD ate at fast-food restaurants and skipped breakfast more often than
controls. In addition, a high consumption of sugar and candy, cola beverages, and noncola soft drinks
and a low consumption of fatty fish were also associated with a higher prevalence of ADHD diagnosis.
Authors found a positive relationship between a lower adherence to the MD and ADHD diagnoses.
The findings suggest that certain dietary habits may play a role in ADHD development, even though
further work is required to investigate causality and to determine if dietary manipulation could reverse
the symptoms of ADHD, taking into consideration all potential factors [123].
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4. The role of GI Symptoms, Gut Microbiota and Gut-Brain Axis in ASD

4.1. GI symptoms in Children with Autism

Individuals with ASD often suffer from gastrointestinal (GI) symptoms [30,124]. Frequent reports
of GI symptoms in children with ASD are beginning to be clarified by research efforts examining the
issue. Although the connection between gastrointestinal problems and autism is still not resolved and
the prevalence of gastrointestinal symptoms varies from 23 to 70% [31,125–129].

This demonstrates a high variability in prevalence of GI problems that may be due to several
differences across studies including: variations in the criteria used to define a GI symptom; the number
of different GI symptoms considered; the definition of any particular GI symptom or lack of variations
in methodology such as data source (medical chart versus self-report) or time period for reporting
(last few months, lifetime, etc.); and study population characteristics such as age and other criteria for
participation [130].

In the literature, we have found in-depth studies on 140–170 children with ASD, of which 24–63%
had a history of at least one GI symptom, including: diarrhea or unformed stools, constipation, bloating,
and/or gastroesophageal reflux (GERD) [31,125,131,132].

Another study on 150 children (50 ASD, 50 controls, and 50 children with other developmental
disabilities (DD)) found that 70% of children with ASD presented GI symptoms, compared to 28% of
typically developing children and 42% of DD children [126].

However, a study conducted in 2009 on people with ASD followed longitudinally up to 18
years, did not report an increased risk of GI diseases of an inflammatory and/or malabsorption nature
compared to the typical development controls; the only significant difference found was the higher
incidence of food selectivity and constipation in ASD people [127].

Therefore, it is not clear which kind of relationship correlates GI disorders and food selectivity, in
fact, the malaise associated with GI disorders could increase feeding difficulties. Few evidences have
been collected, at the moment, to deeply understand if GI symptoms may affect picky attitudes or if
are principally the ASD dietary habits to influence GI disorders. Indeed, it could hypothesize that the
picky attitude in ASD behavior could be due to a protective attitude, which the child implements to
avoid discomfort resulting from the diet [133]. Interestingly other studies have shown that people
with verbal and intestinal problems show poor appetite and react by rejecting a wide range of foods,
and find it difficult to communicate their discomfort [51,134].

Moreover, food selectivity can exacerbate or determine GI symptoms (e.g., constipation) due to
a diet rich in carbohydrates and poor in fiber that do not promote intestinal transit and can lead to
constipation [127].

The presence of GI disorders together with food selectivity could constitute a specific
clinical phenotype [31,127,135], characterized by frequent problematic behaviors, such as anxiety,
self-aggression, sleep problems, resulting from both conditions [136]. Indeed correlation between
certain behavioral problems, such as anxiety and aggression, and the increase in GI disorders is now
known [137]. Indeed, abdominal pain, constipation, and/or diarrhea likely to produce frustration and
may contribute to the severity of the disorder, with decreased ability to concentrate on tasks, behavior
problems, and possibly aggression and self-abuse, especially in children unable to communicate their
discomfort [29]. GI disorders also result in a decreased ability to learn toilet training, leading to
increased frustration for the child and their parents/caregivers.

However, at the moment, it is difficult to precisely decipher the physiological processes that link
together food selectivity and GI problems. What is certain is that both conditions, food selectivity and
gastrointestinal disorders require attention from the clinician. Further studies characterized by a more
accurate methodology, both in the selection of the samples and in the development and use of more
accurate diagnostic tools, could allow a more precise estimation of the prevalence of GI disorders in
the ASD [138–140].
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4.2. GI Disorders, Microbiota and Microbiota-Gut-Brain Axis Alteration in ASD

GI disorders such as intestinal pain, constipation and diarrhea are often associated with an altered
composition of the gut microbiota [28,132,140–142].

In the literature it has been reported that ASD children have altered gut microbiota profiles
compared with NT children, although in some studies, no significant difference has been reported [19,20]
Several studies on ASD have showed changes in the composition of the microbiota, particularly in the
relative abundance of the mains gut bacterial phyla [36,37,143,144]. Indeed, some studies have revealed
significant reductions in the relative abundance of Prevotella, Coprococcus, Enterococcus, Lactobacillus,
Streptococcus, Lactococcus, Staphylococcus, Ruminococcus, and Bifidobacterium species in children with
ASD compared with healthy controls [36,128,143]. In the scientific literature, some studies highlight a
higher abundance of Clostridia and Desulfovibrio bacteria and a lower ratio of Bacteroidetes to Firmicutes
in ASD [37,39,143,145]. A significantly higher prevalence of Sutterella species in biopsies taken from
the GI tract of ASD children with GI disturbances compared to controls with GI disturbances has been
found [146]. Wang et al. also demonstrated elevated numbers of Sutterella, as well as Ruminococcus
torques, in the feces of children with ASD as compared to community controls [147]. Others studies
observed, in ASD children, high abundance of: Akkermansia muciniphilia, [36,143,148] Desulfovibrio, [37]
and Faecalibacterium prausnitzii [36]. A recent study, conducted on a set of 40 people with ASD and a
control group of 40 NT, confirmed a different bacterial composition of the GI tract, but also showed
an altered fungal colonization, in particular, the genus Candida was identified as the most important
distribution, with a representation up to 2 times greater than that of the control population [149].
Intestinal dysbiosis is often associated, in the ASD population, with an alteration of the barrier of the
intestinal mucosa with consequent increase of the intestinal permeability to exogenous substances of
alimentary or bacterial origin, in some cases even neurotoxic [35].

A possible mechanism could be that this condition would allow macromolecules coming from
GI tract to pass into the blood stream and exert an important systemic action; in particular, this
action would apply at the level of the Central Nervous System (CNS) [150]. Indeed, microbiota
and their ligands are crucial in maintaining the cell–cell junctions critical to barrier integrity, with
GI barrier defects seen with dysbiosis [144]. Moreover, a higher intestinal permeability allow the
increase in circulating bacteria-derived lipopolysaccharide (LPS) which leads to an immunological and
inflammatory response, with an augmented systemic pro-inflammatory cytokines [151]. High levels of
cytokines (e.g., IL-1B, IL-6, IL-8, and IL-12p40) have been reported in ASD children associated with
poor communication and impaired social communication [32,152]. In a study that analyzed autopsy
and cerebrospinal fluid (CSF) of individuals with ASD, a neuroinflammatory response involving
excess microglial activation and increased proinflammatory cytokine profiles as compared to non-ASD
controls was found [153]. The role of microglia deficits in neurological development disorders in a
mouse model has emerged [154]. Therefore, this leads to the hypothesis that the leaky gut may play an
important role in some behavioral manifestations of ASD children.

Thus the existence of a close connection between the gut and brain was highlighted, and that
cross-communication occurs regularly. In fact, the CNS control the gut microbiome composition
through peptides, which are sent upon satiation and thus affect nutrient availability. Furthermore,
the hypothalamic–pituitary–adrenal (HPA) axis releases cortisol, which regulates intestinal motility,
integrity and hypersecretion of CRH is a crucial factor in depression and anxiety disorders [155]. In turn,
the immune and neuronal pathways regulate the secretion of mucin from intestinal epithelial cells,
which control microbial populations within the intestine. However, communication is bidirectional
and the intestinal microbiota is able to control the activity of the CNS through neural, endocrine,
immune, and metabolic mechanisms that could have a possible influence on behaviours typical of
ASD patients. [156]. A further confirmation of the possible central regulation mechanism of the
gut-brain axis comes from studies on animal models, where it has been observed that an alteration of
autonomic nervous system activity, such as anxiety and stress, could play a key role in the pathogenesis
of increased permeability of the intestinal epithelium, found in the ASD population [40,157,158].
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For example, germ-free (GF) mice showed reduced anxiety-like behavior and no spatial memory,
altered neurotransmitter levels in the brain, and altered hypothalamic–pituitary–adrenal (HPA) axis
activity [159–162]. Particularly intriguing for ASD is the influence of gut microbiota on the development
of social behavior [163,164]. Indeed, the gut microbiota is reported to modulate structural and functional
changes in the amygdala, a critical brain area for social and fear-related behaviors, which are associated
with a variety of neuropsychiatric disorders [165]. A study conducted on early adolescence in mice
showed that the modification of the intestinal microbiota alters their behavior and significantly
reduces the neurotrophic factor (BDNF), oxytocin and vasopressin expression in the adult brain [166].
A study demonstrated that treatment with microbial-produced short-chain fatty acids (SCFAs) could
rescue microglial function impaired in GF animals [167]. Furthermore, the microbiota affects the
circulating levels of other mediators and substances, such as melatonin, serotonin, histamine and
acetylcholine [168,169], which are important for brain maturation [170]. We can assume that if the
hypothesis of a connection between symptoms related to autism and gastrointestinal disorders was
confirmed, the manipulation of the intestinal microbiota, with supplementation with probiotics and
treatment with Fecal Microbiota Transplantation (FMT), could constitute a therapeutic approach for
the symptoms of autism and the associated medical comorbidities [171].

4.3. Focus on Bacterial Metabolites and Gut-Brain Axis

As we discussed, it is known that certain bacteria are able to produce different essential
neurotransmitters and specific neuromodulators. Indeed, several neurotransmitters such as
gamma-aminobutyric acid (GABA), serotonin, catecholamines and acetylcholine are produced by
bacteria, some of which are inhabitants of the human gut. Indeed, researchers report that Lactobacillus
spp. and Bifidobacterium spp. produce GABA [169]; Escherichia spp., Bacillus spp. and Saccharomyces
spp. produce noradrenalin; Candida spp., Streptococcus spp., Escherichia spp. and Enterococcus spp.
produce serotonin; Bacillus spp. produce dopamine; and Lactobacillus spp. produce acetylcholine [172].
Neurotransmitters secreted from gut bacteria may induce cells to release molecules that have the
ability to modulate neural signaling within the enteric nervous system and subsequently control brain
function and behavior, trough the microbiome-gut-brain axis. Significant deviations in the bacterial
metabolites present in faeces and urine of children with ASD were seen [173]. Two possible pathways
we hypothesize may be principally involved which are reviewed below.

4.3.1. Short-Chain Fatty Acids (SCFAs) and Gut-Microbial Metabolites

Short-chain fatty acids (SCFAs) as acetic acid (AA), propionic acid (PPA), and butyric acid (BA), are
the fermatation end-products of non-digested carbohydrates in the colon and have been suggested to
have various health benefits to the host related to weight control, lipid profiles, and colon health [174].

However, the accumulation of SCFAs, and specifically of propionate, has also been shown to have
broad effects on the nervous system physiology, and it is associated to the pathogenesis of ASD [175,176].
In fact, higher levels of AA and PPA that is used as a preservative in the food industry and can also
induce autistic-like behaviors in rodents have been reported in ASD children [177,178]. At the same
time, lower levels of BA, that can positively modulates neurotransmitter gene expression and can rescue
behavioural abnormalities in mouse model, have been reported in ASD [179]. Moreover, ASD patients
seem to be characterized by both elevated levels of SCFA concentrations in stool and serum, and
increased level of SCFA-producing bacteria (e.g., Clostridia, Desulfovibrio, and Bacteroides) [29,36,180].
Thereby, translocation through the blood–brain barrier by transporters or by passive diffusion could
cause potential effects on the brain and lead to development of some ASD symptoms [181]. The precise
mechanisms of how SCFAs alter behavior in ASD are unknown, but effects on mitochondrial function
(e.g., Krebs cycle) or epigenetic alterations may be involved [182].

In addition to direct effects on the brain, propionate has been shown to modulate
5-hydroxytryptamine (5’-HT) secretion in the gut and deplete 5’-HT and dopamine levels in the brain,
which could potentially contribute to the hyperserotonemia observed in children with ASD [182–184].
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Another metabolite that we could considered is p-cresol and its co-metabolite p-cresyl sulfate, which
are phenolic compounds that are produced by bacteria such as C. difficile and Bifidobacterium [185–187].
It has been demonstrated that an early exposure to p-cresol may contribute to the severity of behavioral
symptoms and cognitive impairment in ASD [185].

Furthermore, ASD patients have high level of free amino acids (FAAs) [186], which are derived
from hydrolysis of proteins and peptides, like glutamate that may be involved in the etiopathogenesis
of neurodevelopmental disorders [187].

This picture shows how there is a bidirectional influence between microbiota and diet, through
the production of metabolites, which can be characterized through metabolomics and can help to
delineate new therapeutical strategies in autistic patients.

4.3.2. Neurotransmitters

In the last few years a role of the serotonin pathway in ASD, especially in the gut-brain axis, is
emerging in the literature. Although most serotonin, or 5′-HT, is produced in the GI tract and can
also be metabolized directly by the gut microbiota, it modulates neurodevelopment and might be
important in social function and repetitive behavior [188]. High levels of 5′HT may be caused by
a gastrointestinal 5′HT hypersecretion, produced by the enterochromaffin cells in the gut and it is
involved in functions such as motility and secretion [189]. Furthermore, a study show the role of the
5′-HT as the link for the gut-brain-axis in ASD [190]. However, hyposerotonemia and lower synthesis
of 5′HT in the brain in ASD children has been reported [191].

Some bacterial species that are known to influence 5′-HT metabolism (e.g., Clostridium
spp, Lactobacillus spp) were observed to be increased in stool samples from ASD children.
In patients with ASD, altered function and metabolism of neurotransmitters, such as 5′-HT and
catecholamines, and dysfunction of the serotonergic system have been reported to contribute to
symptomatology [188,192–196]. 5′-HT is elevated in whole blood and platelets in approximately 30%
of children with ASD, making it a potential candidate as a biomarker for ASD [193]. Interestingly,
administration of Bacteroides fragilis normalized plasma levels of 5′-HT in an animal model of
ASD [197,198].

These data indicate that the gut microbiota could be involved in higher 5′-HT production, thus
identifying 5′-HT as a potential pathway through which the gut microbiota and brain communicate
in ASD. In ASD, abnormal intestinal permeability could allow 5′-HT to translocate into the systemic
circulation, leading to elevated levels of blood 5′-HT [34,35,127,193]. Increased 5′-HT production by
some species of the gut microbiota in ASD could deplete peripheral tryptophan availability. This
corresponds to data showing decreased capacity for 5′-HT synthesis in children with ASD as well
as to reports showing a worsening in repetitive behaviors in individuals with ASD after tryptophan
depletion [191,199].

Lastly, higher levels of 5′-HT in children with ASD can be linked to intestinal inflammation and
play an important role in intestinal inflammatory responses [200], so there is a connection between
enteric serotonin production and dysbiosis. On the other hand, dysbiosis can decrease the number of
amino acids that are absorbed from the diet and reduce the availability of tryptophan [201], that is
a precursor for a number of metabolites as serotonin, thus creating a vicious cycle. Indeed, a lower
level of tryptophan may influence the synthesis of serotonin in the brain, playing a role on the mood
and cognitive impairment which characterize ASD children [202]. Thus, it can be proposed that the
intestinal inflammatory response in children with ASD, which is exacerbated by gut microbiota, can
lead to a further increase in 5′-HT levels and, ultimately, to upstream behavioral effects on the brain.

5. Conclusions

It has been observed that ASD children are characterized by a strong food selectivity that consequently
deeply influences their gut microbiota composition. Indeed, an increase in SCFA and 5′-HT-producing
bacteria was observed in several studies on ASD patients. Increased levels of 5′-HT result in a different
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modulation of 5′-HT metabolism in the host, leading to tryptophan depletion and hyperserotoninemia,
which may affect GI symptoms. Moreover, some ASDs are even characterized by higher levels of intestinal
permeability which allow passive diffusion of bacteria-derived lipopolysaccharides (LPS) and metabolites
through the intestinal barrier. As a consequence, an increase in pro-inflammatory cytokines (e.g., IL-1B,
IL-6, IL-8, and IL-12p40) was observed, which are associated with impaired social communication and
neurodevelopmental disorders. At the same time, gut-brain cross-talk through the vagus nerve and the
hypothalamus-pituitary-adrenal (HPA) glands, influences vagal chemo- and mechanoreceptors on the
mucosal villi and systemic cortisol levels, leading to an exacerbation of GI symptoms and inflammatory
status (Figure 3). Further studies are needed to assess the effect of different dietary interventions (such as
the Mediterranean diet) on GI symptoms and, as a consequence, how they may affect behavioral patterns
associated to ASD conditions.
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Figure 3. Role of the gut-brain axis in the etiology of ASD. (1,2) Food that escapes digestion can be
used by the gut microbiota bacteria to produce metabolites (e.g., SCFAs and/or 5′-HT) that can be
used by the host. Among metabolites (3) 5′-HT is produced particularly by Lactobacillus, Streptococcus,
and Lactococcus species, while SCFAs (e.g., propionate) are produced by Clostridia, Bacteroidetes, and
Desulfovibrio species. (4) Increased 5′-HT production by the microbiota acts on the metabolism of
5’-HT, leading to tryptophan depletion and contributing to hyperserotonemia, which is associated
with GI Symptoms. (5) Intestinal permeability in children with ASD could allow passive diffusion of
metabolites, and cause neurodevelopment disorders, such as behavioral and chemical changes (e.g.,
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mood, cognitive state and emotion). (6,7) Moreover, higher intestinal permeability allow the increase
in circulating bacteria-derived lipopolysaccharide (LPS), thus stimulating systemic pro-inflammatory
cytokines production (e.g., IL-1B, IL-6, IL-8, and IL-12p40), which is associated with impaired social
communication. (8) The vagal-mediated signaling from the gut microbiota to the brain can be
transmitted through vagal chemoreceptors on mucosal villi that are activated by bacterial metabolites
(e.g., 5′-HT, SCFAs) or by vagal mechanoreceptors that sense motility changes induced by bacterial
species. (9) Gut microbiota influences the activity of Hypothalamus-Pituitary-Adrenal glands (HPA)
axis that increased levels of cortisol in the systemic system. As a consequence, higher levels of cortisol
may affect cytokines response and exacerbate GI symptoms.
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