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Abstract: A diet low in fermentable oligosaccharides, disaccharides, monosaccharides and, polyols
(FODMAPs) is recommended for people affected by irritable bowel syndrome (IBS) and non-coeliac
wheat sensitivity (NCWS) in order to reduce symptoms. Therefore, the aim of this study was to
evaluate the impact of 13 sourdough-related yeasts on FODMAP degradation, especially fructans.
First, a model system containing a typical wheat carbohydrate profile was applied to evaluate the
growth rate of each yeast strain. Additionally, changes in the sugar composition, for up to four
days, were monitored by high-pressure anion-exchange chromatography (HPAEC). A more realistic
approach with a wheat flour suspension was used to characterize CO2 production according to
the Einhorn method. The reduction of the total fructans was analyzed using an enzymatic method.
Furthermore, a fingerprint of the present fructans with different degrees of polymerization was
analyzed by HPAEC. The results revealed strong differences in the examined yeast strains’ ability to
degrade fructans, in both the model system and wheat flour. Overall, Saccharomyces cerevisiae isolated
from Austrian traditional sourdough showed the highest degree of degradation of the total fructan
content and the highest gas building capacity, followed by Torulaspora delbrueckii. Hence, this study
provides novel knowledge about the FODMAP conversion of yeast strains.
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1. Introduction

Current data indicates that irritable bowel syndrome (IBS) affects 7–15% of the population
worldwide, with an estimated prevalence of 12% within Europe [1,2]. IBS is the most common
chronic gastrointestinal disorder, which is defined as “a functional bowel disorder in which recurrent
abdominal pain is associated with defecation or a change in bowel habits” [3]. Symptoms are
abdominal pain, flatulence, diarrhea, constipation, intestinal cramps, nausea, and an altered gut
microbiota [1–5], leading to a substantial reduction in the health-related quality of life (HRQOL) of
patients [2]. Similar symptoms have been reported for people with non-coeliac wheat sensitivity
(NCWS). Beside amylase-trypsin inhibitors (ATIs), wheat fructans are suspected to be the main triggers
of symptoms [6,7]. Since no biomarkers are thus far available, and indications are similar to other
disorders, reliable diagnoses are difficult [8].

However, it has been widely acknowledged that FODMAPs plays a major role in the pathological
process of IBS and NCWS [9–11]. The term FODMAPs comprises fermentable oligosaccharides
(fructans and galactans), disaccharides (lactose), monosaccharides (fructose), and polyols (sorbitol
and mannitol), which are present in a number of grains, fruits, vegetables, and dairy products.
A lack of enzymes results in the incomplete hydrolysis of glycosidic linkages in these complex
polysaccharides, leading to malabsorption. In addition, the poorly absorbed short-chain carbohydrates
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are osmotically active, drawing more water into the intestine and affecting gut mobility. The undigested
polysaccharides are transferred further to the large intestine, where the colonic microbiota rapidly
ferments FODMAPs, causing diarrhea and gas production, symptoms consistent with IBS. Therefore,
a diet low in FODMAPs has proven to be an effective approach to reduced symptoms in patients with
both disorders [8,9,12].

Wheat and its products are staple foods worldwide, accounting for a large extent of the daily
consumption of FODMAPs. Moreover, they are the most important source of fructans in the Western
European diet. Within FODMAPs, fructans belong to the class of fermentable oligosaccharides,
contributing up to 70% to the daily fructan intake [13,14]. Several authors have already stated the
influence of FODMAPs, and especially fructans, to trigger the symptoms of IBS and the importance of
reducing its concentration in the diet of patients [15,16].

In wheat flour, fructan concentrations range from 1.4–1.7 g/100 g, with whole-wheat flour
containing 0.7–2.9 g/100 g [17]. Fifty-percent of fructans exhibit a degree of polymerization (DP) of
3, 4, and 5 (average of 4), with a maximum DP of 14–19, consisting of exclusively or mainly fructose
units [14,18], and a maximum of one glucose unit per molecule can be present. Fructans deriving
from cereals belong to the graminan type and are branched, which results in more complex structures
compared to the inulin-type fructans found in vegetables [17,19].

Due to the high concentrations of fructans in wheat products, patients with IBS and NCWS
should consume less FODMAP-containing products, as a single ingestion of approximately 0.3 g/kg
can trigger symptoms [20]. However, the authors of Ziegler et al. [21] reported a 77–90% reduction
of FODMAPs after yeast proofing for four hours, depending on the flour used. They reported a
total reduction of raffinose, whereas fructans were degraded incompletely. Furthermore, this study
revealed an excess of fructose. Additionally, Knez et al. [22] demonstrated a 40–60% decrease in fructan
content during the bread making process, where the fermentation time, present yeast strain, and yeast
counts played a crucial role in the degradation process. The use of sourdough was proven to be one
effective method to reduce the content of fructans in bread, as the invertase activity of yeasts degrades
fructans [23]. An examination of the impact of traditional sourdough application on the reduction of
fructan concentrations in bread showed a decrease of up to 0.06 g/100 g [24].

Lactic acid bacteria and yeasts are present in traditional sourdough at a ratio of 10:1 to 1000:1,
whereat these microorganisms lead to superior characteristics of sourdough [25–29]. The most
prevalent yeast species in traditional sourdough are Saccharomyces cerevisiae, Candida humilis,
Wickerhamomyces anomalus, Torulaspora delbrueckii, Kazachstania exigua, Pichia kudriavzevii, and Candida
glabrata. Less frequent species include Kluyveromyces marxianus and Hanseniaspora uvarum [28,30].
Recent investigations [1,31] have already determined the probability of Kl. marxianus strain
CBS6014 to degrade fructans, showing a 90% decrease of the initial fructan concentration due
to dough fermentation for two hours. However, information about the applicability of further
sourdough-relevant yeasts to degrade FODMAPs, especially fructans, and a comparison of different
yeast strain processes is still lacking.

Therefore, the aim of this study was to investigate the potential of several yeast strains to reduce
FODMAP levels, especially fructans. First, a model system with the typical carbohydrates found
in wheat was applied to study the degradation of fructans and to monitor the metabolism of other
carbohydrates. In addition, a more applied approach with wheat flour was used to obtain data on the
gas production and reduction of graminan-type fructans.

2. Materials and Methods

2.1. Applied Yeast Strains

In total, 13 yeast strains were screened for their specific ability to ferment carbohydrates,
especially for their potential to degrade fructans. Three strains were isolated from traditional
Austrian sourdoughs and one from a baker’s yeast; eight strains were obtained from either the
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BCCM or DSMZ databases. Table 1 lists all of the examined strains and their origin. Previously,
the isolates obtained from traditional Austrian wheat or rye sourdoughs were identified by partial
26S rDNA sequencing according to Waite et al. [32] and/or by MALDI-TOF MS (matrix-assisted
laser desorption/ionization-time of flight mass spectrometry; MALDI Biotyper, Bruker Corporation).
For identification by MALDI-TOF MS, the procedure was followed according to the manufacturer’s
manual for the extraction method. Table S1 reports the sequencing and MALDI-TOF MS results.

Table 1. Yeast species, strain information, and source of isolation used for the determination of the
potential to degrade FODMAPs.

Species Strain Source of Isolation

Candida glabrata BCCM/MUCL 1 51245 wheat sourdough, mill D12
Candida humilis BCCM/MUCL 1 30041 San Francisco sourdough

Kazachstania exigua BCCM/MUCL 1 52365 brewing, Japan
Kluyveromyces marxianus BCCM/MUCL 1 30016 -

Pichia kudriavzevii BCCM/MUCL 1 29043 industrial sourdough, France
Torulaspora delbrueckii BCCM/MUCL 1 51211 wheat and rye sourdough, artisan bakery, Belgium
Torulaspora pretoriensis BCCM/MUCL 1 27827 soil, South Africa

Wickerhamomyces anomalus DSM 2 6766 -
Candida lambica isolate rye sourdough, Austria

Hanseniaspora uvarum isolate wheat sourdough, Austria
Saccharomyces cerevisiae isolate baker’s yeast
Saccharomyces cerevisiae isolate rye sourdough, Austria
Torulaspora delbrueckii isolate wheat sourdough, Austria

1 BCCM/MUCL: Belgian Coordinated Collection of Microorganisms/Agro-food and Environmental Fungal
Collection. 2 DSMZ: Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures.

2.2. Preparation and Growth of Yeast Cells in a Model System

For the model system, a typical carbohydrate profile found in wheat grains and flours was used.
The concentrations of sugars and fructans were set according to the results obtained by Call et al. [33]
and are presented in Table 2. To obtain a more realistic profile, sucrose and maltose were added, which
are usually included intentionally or are produced by amylases in wheat dough. The appropriate
amount of tryptone was dissolved in H2Odest and autoclaved at 121 ◦C for 15 min at one1 bar
overpressure. The dissolved carbohydrate solution was filter sterilized through a 0.2-µm polyamide
membrane (VWR International GmbH, Darmstadt, Germany) and added to the tryptone solution.

Table 2. Medium composition of the model system [33].

Ingredient Supplier [g/100 mL]

Natural ratios occurring
in flour

D-Glucose

Carl Roth GmbH + Co. KG,
Karlsruhe, Germany

0.02

D-Fructose 0.04

Sucrose 0.41

Raffinose pentahydrate 0.17

Maltose monohydrate 0.04

Fructooligosaccharides
from chicory (max. DP 8) Megazyme, Bray, Ireland 1.37

Supplements

Maltose monohydrate Carl Roth GmbH + Co. KG,
Karlsruhe, Germany

0.64

Sucrose 0.4

Tryptone Oxoid LTD, Hampshire, England 0.6

The yeast species were routinely cultivated in worth broth (Merck KGaA, Darmstadt, Germany)
and incubated for 48 h at 25 ◦C. For starvation of the cells, the biomass was transferred to tryptone
(6 g/L; Oxoid Ltd., Hampshire, UK) at a dilution ratio of 1:100. After 24 h, the medium, together with
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starved yeast cultures (1:100) was added in duplicate to Honeycomb format plates (Bartelt GmbH,
Graz, Austria). Turbidity data for growth curves of yeast species were analyzed using the automated
density monitoring system BioscreenC analyze reader (Oy Growth Curves Ab Ltd., Helsinki, Finland).
Reading for 96 h at 25 ◦C, measurements were taken at an optical density of 600 nm (OD600) every
10 min after shaking.

2.3. Gas Production Measurement According to Einhorn

The CO2 building capacity of yeasts were measured according to the method of Einhorn.
Whole-wheat flour from the Austrian variety Arnold was used. Kernels of this variety were collected
from nine different locations in Austria (research fields of AGES) over two years (2016 and 2017) to
produce a standardized flour. A total of 1 g of flour was mixed with 10 mL of sterilized water and
inoculated with the listed yeast strains (Table 1). Yeast counts were in the range of log 7 CFU/mL
(detailed yeast counts are presented in Table S2). The yeast-containing wheat flour suspensions were
transferred to fermentation locks according to Einhorn. The CO2 building capacity was read in mL
every 15 min for up to 8 h and 15 min. Figure S1 gives examples of the fermentation locks.

2.4. FODMAP Extraction of the Model System

To determine FODMAP conversion in the carbohydrate model system, 4 measuring intervals
were defined based on the results of the previous growth experiments—6 h, 24 h, 48 h, and 72 h
of incubation. The respective cell mass was transferred from the Honeycomb format plates into
2 mL centrifugation tubes. Proteins were removed by Carrez-precipitation. Hence, 15 µL of Carrez
I solution—potassium hexacyanoferrate(II)trihydrate (Merck, Darmstadt, Germany) in 1000 mL
H2O, and 15 µL of Carrez II Solution—300 g zinc acetate dehydrate (VWR International GmbH,
Darmstadt, Germany) in 1000 mL H2O was added to precipitate the proteins. After centrifugation
at 16,000× g for 30 min at 4 ◦C, the supernatant was transferred to a volumetric flask and filled
up to 1 mL. Next, the solution was filtered through a 0.2-µm filter (Rotilabo Mini-Tip syringe filter;
Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and diluted to receive carbohydrate concentrations
between 5–200 ppm and transferred into vials (1.5 mL clear glass; VWR International GmbH,
Darmstadt, Germany) for further analysis.

2.5. Extraction of Graminan-Type Fructans

To determine changes of DP of graminan-type fructans after fermentation, a fingerprint analysis
was performed after extraction of the wheat flour-water suspension. Following fermentation for 8 h and
15 min, the suspensions in the Einhorn locks were subjected to an ethanol extraction. The matrix was
transferred into a centrifugation tube, 30 mL of 96% ethanol (VWR International GmbH, Darmstadt,
Germany) was added and the mixture was heated to 80 ◦C for 20 min. After centrifugation at 9000× g
for 6 min, the supernatant was filled up to the defined volume of 50 mL. A 3 mL aliquot of the extract
was evaporated at 50 ◦C under a nitrogen stream to dryness and resuspended in 0.96 mL of water.
Twenty µL each of amyloglucosidase (AMG) and alpha-amylase (Novozymes, Ireland) were added,
and incubation was carried out at 50 ◦C for 30 min. Afterwards, protein precipitation, as described in
Section 2.4, was conducted. The solution was sterile-filtered through a 0.2-µm filter (Rotilabo Mini-Tip
syringe filter; Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and used further for HPAEC-PAD
(high pressure anion-exchange chromatography-pulsed amperometric detection) analysis.

2.6. FODMAP and Fructan Analysis

To determine the FODMAP concentrations and the DP of fructans, HPAEC with a Carbopac PA210
column (2 × 150 mm) from ThermoFisher Scientific (Sunnyvale, CA, USA) was applied at a flow rate
of 0.15 mL/min. A gradient elution with 150 mM NaOH and 150 mM NaOH/500 mM Na-acetate was
used on a DionexTM ICS-5000+ System (ThermoFisher Scientific, Sunnyvale, CA, USA) for separation.
The concentrations of glucose, fructose, sucrose, maltose, raffinose, and fructans were determined by
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pulsed amphoteric detection (PAD). A gold electrode with a carbohydrate waveform was used for
electrochemical detection according to the manufacturer’s instructions. For integration and calibration,
the software Chromeleon 7 was utilized. The method was calibrated in a range from 0.1–25 mg/L with
glucose, fructose, sucrose, maltose, raffinose (≥99.5% purity; Carl Roth GmbH + Co. KG, Karlsruhe,
Germany), and small fructans from DP 3–5 (Megazyme, Bray, UK). For comparison, a fructan
standard with up to DP 8 was also analyzed (fructooligosaccharide P-FOS28, Megazyme, Bray, UK).
The qualitative reduction of the total graminan-type fructans, present in the wheat flour suspensions,
was determined by an enzymatic-spectrophotometric method according to AOAC standard 999.3.

2.7. Statistical Analysis

The data interpretation was performed with SPSS software (IBM). The correlation test according
to Pearson was applied to compare the fructan conversion results gained by the enzymatic assay
and HPAEC-PAD.

3. Results

3.1. Yeast Growth

The cell growth of 13 different yeast strains were evaluated for up to 96 h at 25 ◦C with an
automated density monitoring system using a model medium, containing a typical carbohydrate
profile found in whole-grain wheat. The growth curves are plotted in Figure 1.
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Figure 1. Measurement of the optical density at 600 nm (OD600) over 96 h of incubation at
25 ◦C to indicate the growth rate of sourdough-relevant yeasts in a model medium containing
mono-/di-/trisaccharides, and fructans, according to the average concentrations found in 20 Austrian
wheat varieties (Table 1).

Torulaspora delbrueckii strains (MUCL 51211 and the sourdough isolate) exhibited the highest
optical density at 600 nm (OD600) of 1.3–1.2 nm, respectively, after 96 h of incubation, followed by
Wickerhamomyces anomalus DSM 6766 and Kluyveromyces marxianus MUCL 30016. Pichia kudriavzevii
MUCL 29043, Candida glabrata MUCL 51245, and the sourdough isolate C. lambica showed OD600

values ranging from 0.9–0.7 nm. Kazachstania exigua MUCL 52365, the isolate Hanseniaspora uvarum,
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and Torulaspora pretoriensis MUCL 27827 exhibited values between 0.4 and 0.2 nm. Only Saccharomyces
cerevisiae isolates (baker’s yeast and the sourdough isolate) and C. humilis MUCL 30041 showed no
significant increase in the OD600.

A lag phase shorter than 12 h was only achieved by W. anomalus DSM 6766. Exponential growth
after 18–20 h was observed for T. delbrueckii and P. kudriavzevii MUCL 29043. The other strains started
the log phase after a period of more than 20 h. T. pretoriensis MUCL 27827 showed slow growth, and a
moderate increase of OD600 was detected after over 36 h. Generally, the strains with the fastest growth
rates had the highest OD600 values. Nevertheless, some exceptions were observed. T. delbrueckii isolated
from sourdough achieved high final OD600 values, although the log phase started after approximately
24 h. K. exigua MUCL 52356 accomplished the lag phase after about 20 h, whereas only medium-range
OD600 values were achieved after 96 h. H. uvarum exhibited similar growth behavior, but the final
OD600 was low in comparison to K. exigua MUCL 52356.

3.2. CO2 Formation Properties

The CO2 production capacity of 13 yeast strains were tested using fermentation locks according
to Einhorn (Figure S1). The data on the CO2 production rates (mL CO2/min) of CO2-positive yeast
strains are presented in Figure 2. S. cerevisiae strains exhibited the highest CO2 formation capacity
(1.8 mL) after 8 h and 15 min of incubation at 25 ◦C, followed by T. delbrueckii MUCL 51211 with a CO2

production of 0.8 mL. K. exigua MUCL 52365 and C. glabrata MUCL 51245 exhibited poor formation
capacities of 0.2 mL. Further tested strains C. humilis MUCL 30041, Kl. marxianus MUCL 30016,
P. kudriavzevii MUCL 29043, T. pretoriensis MUCL 27827, W. anomalus DSM 6766, and sourdough isolates
P. fermentans, C. lambica, T. delbrueckii, and H. uvarum had no observable CO2 production.
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Figure 2. Time course of CO2 production (mL CO2/min) of CO2-positive yeast strains S. cerevisiae,
T. delbrueckii MUCL 51211, K. exigua MUCL 52365, and C. glabrata MUCL 51245 over 8 h and 15 min of
incubation at 25 ◦C.

For CO2-positive yeast strains, the graphs showed mainly constant levels during the period of
30–90 min, followed by an observable strong and sudden increase. This effect can be explained by
the production of small CO2 bubbles, which were first entrapped within the wheat flour suspension.
After they have aggregated to bigger bubbles, the volume of CO2 was measureable as the bubbles were
able to displace the suspension and rise to the top. However, although the curves of the S. cerevisiae
strains looked different, similar gas productions can be assumed because of these circumstances.
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3.3. Conversion of Carbohydrates by Yeasts in the Model System

The fermentation profile of 13 different yeast strains were examined over three days. After four
different time periods (6 h, 24 h, 48 h, and 72 h), samples were taken and analyzed to evaluate changes
in the carbohydrate profile, i.e., the degradation or production of glucose, sucrose, fructose, raffinose,
maltose, and fructans (DP 4–8). The results are illustrated in Figure 3 as pie charts, showing the relative
abundance of quantified sugars and fructans based on HPAEC-PAD analysis.
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Of the 13 tested yeasts, P. kudriavzevii MUCL 29043, C. glabrata MUCL 51245, T. pretoriensis
MUCL 27827, and the sourdough isolates H. uvarum and C. lambica were not able to reduce fructan
levels to a relevant degree. Furthermore, the concentration of raffinose remained constant, which
indicted that these strains were not able to consume this trisaccharide. The small amount of initial
glucose were digested quite fast, and fructose slightly slower. Among these strains, only T. pretoriensis
MUCL 27827 showed fructose residues after three days. The maltose concentrations remained almost
unchanged. Sucrose was fermented to a small degree by T. pretoriensis MUCL 27827, H. uvarum and C.
lambica, whereas sucrose levels were not significantly affected by the other yeast strains of this group.

A second group consisted of strains with moderate fructan conversion including K. exigua
MUCL 52356, C. humilis MUCL 30041, W. anomalus DSM 6766, and both S. cerevisiae strains. These yeasts
were able to degrade fructans. However, after three days of fermentation, high fructan levels
still remained. Raffinose was degraded only partially by the examined yeast strains, with one
exception—the isolate of S. cerevisae completely converted this trisaccharide. Due to depolymerisation
of the oligosaccharides, the content of monosaccharides had risen. In particular, the concentration of
fructose increased markedly, and glucose increased to a lesser extent. Maltose was not fermented in
notable amounts and remained more or less constant. Due to the reduction of other sugars, the relative
abundance of maltose could actually increase, as was illustrated for K. exigua MUCL 52356. Sucrose
was fermented incompletely, as low sucrose concentrations were detected after three days.

Both of the T. delbrueckii strains, and Kl. marxianus MUCL 30016 demonstrated the best fructan
degradation. In addition, the highest amounts of fructose were produced by these strains. Kl. marxianus
MUCL 30016 and T. delbrueckii MUCL 51211 were able to completely ferment fructans after two days;
a reduction in the fructose and glucose content from 48–72 h of incubation was observable for these
yeasts as well. The T. delbrueckii isolate degraded fructans more slowly, and small fructans residues were
detected. Raffinose and sucrose were digested entirely. Maltose was fermented only to a minor extent
and persisted more or less unchanged. Again, due to the reduction of other sugars, a relative increase
in maltose was seen, which can be explained by presenting the relative abundance as pie charts.

3.4. Fructan Degradation by Yeasts in Wheat Flour

Chromatograms of fructan fingerprints, showing the distribution of DP, from two selected strains
with the best and worst ability for fructan degradation are presented in Figure 4. The overall results of the
13 yeast strains analyzed by HPAEC-PAD are available within the supplementary material (Figure S3).
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Figure 4. HPAEC (high pressure anion-exchange chromatography) fingerprint of fructans fermented by
(A) Saccharomyces cerevisiae–sourdough isolate, and (B) Pichia kudriavzevii MUCL 29043. Chromatograms
showing the initial fructan profile (grey line) and the alteration after 8 h and 15 min of fermentation at
25 ◦C (black line) and are illustrated for both strains. G (glucose) and F (fructose).

To evaluate the alteration of the fructan profile ranging from DP 4–16, the fingerprint before and
after fermentation is illustrated. The DP of fructans was estimated based on their retention times
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according to Verspreet et al. [34]. Due to the removal of starch-based dextrins by amylases, all detected
peaks can be assigned to fructans.

C. humilis MUCL 30041, C. glabrata MUCL 51245, and P. kudriavzevii MUCL 29043 exhibited
the lowest degree of alteration compared to the initial fructan fingerprint. The adulteration of
fructans, as shown by HPAE chromatography, was very low. Only the smallest fructans with DP
4 were reduced in noticeable amounts. The height of all other peaks was reduced only to a small
degree. T. delbrueckii MUCL 51211, S. cerevisiae–baker’s yeast, Kl. marxianus MUCL 30016, W. anomalus
DSM 6766, T. pretoriensis MUCL 27827, and the sourdough isolates C. lambica and H. uvarum exhibited
moderate degradation of fructans. The most significant changes were observed for K. exigua MUCL
52365 and the sourdough isolates S. cerevisiae and T. delbrueckii (Figure 4). Fingerprints of these
strains revealed severe reductions of peaks until DP 11 (GF 10). The fructans with higher molecular
weights showed less adulteration in peak height. These findings were confirmed by other studies,
which reported that smaller fructans were consumed more efficiently than those with higher DP [35].

In addition to the qualitative characterization of fructans by HPAEC, the samples from the
CO2 production tests were analyzed by an enzymatic method to evaluate the decrease of fructan
concentration. The reduction of total fructan content after 8 h and 15 min of incubation at 25 ◦C was
measured according to AOAC standard 999.3. To calculate the decrease of fructose oligomers, the initial
content and the amount of fructans after fermentation were quantified. The reductions in fructan
content (%) due to fermentation of single yeast strains are presented in Figure 5. With a decrease of the
total fructan content of 10–30%, Candida spp., H. uvarum, T. pretoriensis MUCL 27827, and W. anomalus
DSM 6766 showed the lowest capacity for FODMAP reduction of the tested yeast species. K. exigua
MUCL 52365 revealed a total fructan reduction of approximately 50%. S. cerevisiae-baker’s yeast,
the T. delbrueckii stains, and Kl. marxianus MULC 30016 revealed a decrease in the total fructan content
between 60–80%. With a reduction of 83%, the sourdough isolate of S. cerevisiae had the highest
decrease in fructans.
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4. Discussion

This study provides novel findings regarding the FODMAP reduction during fermentation
by yeasts. First, the degradation potential of 13 yeast strains related to traditional sourdough
were evaluated using a model system containing small fructooligosaccharides (max. DP 8) from
chicory. Second, the alteration of graminan-type fructans in wheat flour was investigated using a
yeast-mediated fermentation procedure. For examination of the leavening capacity, the CO2 building
potential was determined according to Einhorn.

4.1. Conversion Dynamics of Carbohydrates by Yeasts in the Model System and in Wheat Flour

An assessment of the degradation and consumption of saccharides in a model system revealed
very different capacities of the examined yeast strains. The chosen sugar profile, together with
short-chain fructans (until DP 8), was suitable for the evaluation of fructan degradation and
consumption of sugars found in wheat flour. Due to the simple fructan profile, a fast and accurate
quantification by HPAEC was possible. The addition of maltose and sucrose provided a realistic system
that closely matched atypical wheat dough. The established model system classified the examined
yeast strains into three groups: Yeasts with poor, moderate, and superior fructan degradation. Similar
results were obtained for the fermentation experiments of CO2 production within a wheat flour
suspension. Again, three different groups regarding the degree of fructan hydrolysis could be defined.

Correlation analysis according to Pearson revealed a high consistency between the two systems.
A highly significant (p-level of 0.01) relationship with an R2 of 0.59 was observed between the
enzymatically measured fructan hydrolysis in wheat flour and the remaining fructan levels in the
model system after fermentation for 72 h. Obviously, a stronger correlation was prevented due to the
different time periods of fermentation (the model system was 72 h compared to approximately 8 h for
the fermentation experiments with wheat flour). A second reason for the low correlation could be the
different growth rates of the examined yeast strains, especially with respect to both S. cerevisiae strains.
These strains showed very low OD600 values and thus poor growth. Furthermore, fructans were
hydrolysed to a lower extent, compared to the setup with wheat flour. Excluding the data from both of
the S. cerevisiae strains revealed an increased correlation, with an R2 of 0.83 between the fermented
wheat flour suspension and the model system.

Moreover, the conversion and consumption of other sugars could be evaluated by the model
system. Each strain fermented sucrose, whereat for C. glabrata MUCL 51245, the lowest sucrose
decrease of 26% was observed. One exception was P. kudriavzevii MUCL 29043, where an increased
concentration of 6% was measured due to partial fructan hydrolysis. These results were in accordance
with previous studies [36]. Raffinose was metabolized by the majority of the examined yeasts. Some
strains showed no or only minor breakdown of raffinose, which could arise from small variations
due to the determination method used. A comparison with the literature verified this assumption for
Candida spp. and P. kudriavzevii [36]. Controversial findings were found in respect to K. exigua [36].
Furthermore, relationships between fructan degradation and the consumption of raffinose and sucrose
were found. Yeast strains, which depolymerized fructans to a large extent, consumed raffinose and
sucrose as well, and invertase and inulinase are responsible for releasing the fructose moiety of these
carbohydrates [37].

According to the literature [36], each tested yeast strain is able to ferment glucose, which was
confirmed by this study as well. However, the consumption was partly masked due to the production
of glucose, as it was released during the decomposition of fructans, sucrose, and raffinose. This effect
was also observable for fructose concentrations, which increased as the fructans and raffinose were
degraded. However, for species exhibiting the highest potential to depolymerize fructans (T. delbrueckii
MUCL 51211 and Kl. marxianus MUCL 30016), a decrease in fructose was apparent after 72 h of
incubation. This is consistent with studies showing the capacity of T. delbrueckii and Kl. marxianus to
degrade fructose [38,39].
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As previously mentioned, invertase and inulinase are able to depolymerize fructans. However,
large polysaccharides barely pass the cell wall and thus must be hydrolysed outside of the cell [40].
The invertase produced by S. cerevisiae is retained inside the cell wall, whereas inulinase, produced
by Kl. marxianus, is partly secreted [40]. This might explain why Kl. marxianus degrades fructans
faster and to a higher degree than S. cerevisiae. The chosen system and sugar concentrations were
not suitable to evaluate maltose conversion, because other sugars were present in excess during the
evaluated time period. Nevertheless, maltose-positive strains [36], such as baker’s yeast, T. delbrueckii,
and W. anomalus, showed a decrease in maltose concentration over 72 h of incubation.

Furthermore, the detected range of fructan DP (up to 15) was similar to the results reported in
other studies. An average DP of five makes up 50% of the total fructan content in whole-wheat flour,
with reported values up to DP 15 [14], whereas Haskå, Nyman, and Andersson [18] found the highest
DP of 19. The fingerprint analysis of graminan-type fructans supported the results. Strains with a high
degree of fructan hydrolysis showed intensively reduced peak heights in the HPAE chromatograms.
Since high molecular weight fructans affect the enzymatic quantification stronger than smaller ones,
only a moderate correlation can be expected.

4.2. Fructan Degradation Potential of Different Yeast Strains

For T. delbrueckii and Kl. marxianus MULC 30016, the highest potential to degrade fructans was
observed in the model system and in the whole-wheat flour fermentation experiment. These findings
are consistent with previous results [1] that have reported a 90% degradation of fructans by
Kl. marxianus CBS6014 during bread making. In addition, Kl. marxianus MULC 30016 exhibits the
potential to degrade fructose, which is released due to fructan depolymerisation to fructose and
glucose. As described in other studies [31], S. cerevisiae showed a decreased potential to ferment
fructans compared to the already mentioned yeast species. These findings concur with those of our
study, as S. cerevisiae isolated from Austrian traditional sourdough had a degradation potential of 18%
within 6 h of incubation, whereas after 72 h, a decrease of 54% in the fructan content was achieved
within the model system. However, within the whole-wheat flour experimental setup, a decrease
in total fructans (until DP 15) of up to 83% was determined. As discussed previously, the marginal
growth should be responsible for a low fructan conversion, whereas inoculation with similar yeasts
counts inhibited this problematic circumstance.

In contrast, other sourdough-relevant yeasts proved to be less applicable in reducing FODMAPs
in the model system and in the whole-wheat flour experiment. In particular, P. kudriavzevii MUCL
29043, C. glabrata MUCL 51245, W. anomalus DSM 6766, T. pretoriensis MUCL 27827, and the sourdough
isolates H. uvarum and C. lambica showed poor fructan degradation.

5. Conclusions

This study evaluated the FODMAP degradation ability of different typical sourdough yeasts
in a simplified model and when using wheat flour as a matrix. Both systems were able to identify
differences between the examined strains and showed high consistency. Only the poor growth of
S. cerevisiae inhibited a higher reliability of the model system. Furthermore, the results regarding the
conversion of other FODMAPs such as raffinose were generated by the model system. The fingerprints
of fructans measured by HPAEC before and after fermentation supported the fructan degradation
results. A comparison with data from other studies confirmed the findings of this study. Wheat bakery
products with low FODMAP content might be suitable for IBS patients, but probably only to a very
limited degree for individuals suffering from NCWS. The role of ATIs (amylase/trypsin inhibitors) in
wheat products must also be considered for people with NCWS [6,7]. In addition, further studies are
needed to demonstrate the degradation of FODMAPs in the consumed product, in this case, sourdough
fermented bread.

In summary, the results of this study clearly demonstrated the potential of several yeast strains,
especially S. cerevisiae and T. delbrueckii, isolated from traditional sourdough, to strongly reduce
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FODMAPs, and particularly, the fructan content during fermentation. Furthermore, these yeasts
exhibited superior CO2 production, which revealed their potential to produce wheat bread with
improved leavening characteristics. Therefore, this study might aid to explore the potential of several
yeasts to produce a low FODMAP diet with palatable food. However, typical sourdoughs contain a
wide range of different lactic acid bacteria and yeasts. Thus, further research on their synergistic effects
should be conducted. In particular, the ability of LAB to lower pH, thus supporting yeast invertase
activity, is of great interest [17]. Summing up, the purpose of this study was to generate basic data
about the potential of single yeast strains to reduce FODMAPs. Based on our findings, more applied
research studies should be performed to produce wheat breads suitable for patients with IBS or NCWS.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/2072-6643/
10/9/1247/s1. Table S1: Utilized yeast species, source of isolation, and determination of identification by
MALDI-TOF MS and % similarity with the accession number of the closest relative by blastn received by 16S
rDNA sequencing, Table S2: Determination of log CFU g−1 of 13 different yeast strains on YG-agar (Merck,
Darmstadt, Germany), with incubation conditions of 25 ◦C for 48 h, Figure S1: Determination of the gas building
capacity of (A) Saccharomyces cerevisiae, (B) Torulaspora delbrueckii MUCL 51211 and (C) Kluyveromyces marxianus
MUCL 30016 by fermentation locks according to Einhorn, Figure S2: HPAEC-PAD analysis with CarboPac PAD
210 250 × 2 mm and eluent A (100 mM NaOH) and B (100 mM NaOH/500 mM NaAcetate) to determine glucose,
sucrose, fructose, raffinose, maltose, and fructans (max. DP 8) metabolism by Kluyveromyces marxianus MUCL
30016 at point 0, after 6 h, 24 h, 48 h, and 72 h of fermentation, Figure S3: HPAEC-PAD analysis of (A) Candida
humilis MUCL 30041 and (B) Candida glabrata MUCL 51245, and (C) Pichia kudriavzevii MUCL 29043 showing the
initial fructan presence (black line) and after 495 min of fermentation at 25 ◦C (blue line), with a low conversion
rate of fructan, Figure S4: HPAEC-PAD fructan fingerprint analysis of (A) Torulaspora delbrueckii MUCL 51211,
(B) Saccharomyces cerevisiae–baker’s yeast, (C) Kluyveromyces marxianus MUCL 30016, (D) Wickerhamomyces anomalus
DSM 6766, (E) Torulaspora pretoriensis MUCL 27827, (F) Candida lambica–sourdough isolate, and (G) Hanseniaspora
uvarum–sourdough isolate, showing the initial fructan presence (blue line) and after 8 h 15 min of fermentation
(black line) at 25 ◦C, with moderate degradation of fructans, Figure S5: HPAEC-PAD analysis of (A) Kazachstania
exigua MUCL 52365, (B) Saccharomyces cerevisiae-sourdough isolate, and (C) Torulaspora delbrueckii-sourdough
isolate, showing the initial fructan presence (blue line) and after 8 h 15 min of fermentation (black line) at 25 ◦C,
with the highest degradation of fructans.
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