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Abstract: Red blood cell (RBC) aggregation and iron status are interrelated and strongly influenced
by dietary factors, and their alterations pose a great risk of dyslipidemia and metabolic syndrome
(MetS). Currently, RBC aggregation-related dietary patterns remain unclear. This study investigated
the dietary patterns that were associated with RBC aggregation and their predictive effects
on hyperlipidemia and MetS. Anthropometric and blood biochemical data and food frequency
questionnaires were collected from 212 adults. Dietary patterns were derived using reduced rank
regression from 32 food groups. Adjusted linear regression showed that hepcidin, soluble CD163,
and serum transferrin saturation (%TS) independently predicted RBC aggregation (all p < 0.01). Age-,
sex-, and log-transformed body mass index (BMI)-adjusted prevalence rate ratio (PRR) showed a
significant positive correlation between RBC aggregation and hyperlipidemia (p-trend < 0.05). RBC
aggregation and iron-related dietary pattern scores (high consumption of noodles and deep-fried
foods and low intake of steamed, boiled, and raw food, dairy products, orange, red, and purple
vegetables, white and light-green vegetables, seafood, and rice) were also significantly associated
with hyperlipidemia (p-trend < 0.05) and MetS (p-trend = 0.01) after adjusting for age, sex, and
log-transformed BMI. Our results may help dieticians develop dietary strategies for preventing
dyslipidemia and MetS.
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1. Introduction

Obesity is driven by the consumption of calorie-dense foods (e.g., deep-fried foods or high-fat
diet (HFD)), together with inadequate physical activity. Dyslipidemia and metabolic syndrome (MetS)
are two of the most common obesity-related non-communicable diseases [1]. Dyslipidemia is the
abnormal amount of lipids in the blood [2]. It signifies a decrease in the concentration of high-density
lipoprotein cholesterol (HDL-C) and an increase in the levels of triglycerides (TG), total cholesterol,
low-density lipoprotein cholesterol (LDL-C), and in the ratio of total cholesterol (total C) to HDL-C [3].
Another term, hyperlipidemia, is also used to described the elevations of fasting total C and TG and
abnormalities of lipoproteins [4]. MetS is a clustering of metabolic abnormalities, including visceral
obesity, hypertension, insulin resistance, low HDL-C, and high TG [5]. These conditions are closely
related to obesity or overnutrition.

One’s diet can alter red blood cell (RBC) functions by affecting the membrane components of
RBCs [6,7], RBC membrane fluidity, and the rheological function of RBCs [8,9]. The production of RBCs
initially occurs in the bone marrow, and a sufficient amount of iron plays a critical role in this process.
Mature RBCs take on a biconcave shape with a diameter of approximately 8 µm, a thickness of around
2 µm, and a life span of 120 days. Their unique shape creates a large surface area for gas exchange, and
their small size allows RBCs to enter microcapillaries in tissues with minimal damage [10]. Studies
found that an HFD induces alterations in RBC membrane phospholipids [7], and such alterations in the
membrane lipid profiles of RBCs trigger macrophage adhesion to endothelial cells [11]. An HFD tends
to alter RBC rheology. According to Cicha, Suzuki, Tateishi, and Maeda [9], diets rich in saturated fats
and cholesterol can influence the blood’s viscosity and RBC aggregability. A multivariate analysis
showed that the TG level independently predicted the elongation index of RBCs [12].

Iron dysregulation may also lead to RBC dysfunction. Iron is an essential component for the
synthesis of hemoglobin (Hb) [13], an oxygen transport protein. More than 95% of cytoplasmic
proteins in RBCs are composed of Hb. Hb in circulating RBCs contains almost 66.7% of the body’s
iron. Since iron is a well-known catalyst of lipid peroxidation, an iron overload can lead to RBC
disruption through peroxidative damage [14]. However, an iron deficiency does not prevent this
situation. Previous studies found that intracellular scavengers of free radicals, such as vitamin E and
glutathione peroxidase, decrease during an iron deficiency [15,16]. Another study in 1983 indicated
that a low Hb concentration in RBCs may provide a greater opportunity for free radicals to react with
cell membranes [17]. Yip et al. [17] also found in both rat and human studies, that an iron deficiency
decreased RBC deformability due to the increase in membrane rigidity or a lack of sufficient membrane
surfaces for full deformation of the cell. Nevertheless, the relationship between iron dysregulation and
RBC aggregation in obese individuals remains unclear.

Studies showed that obesity is characterized by dysfunction of RBCs and iron metabolism [12,18].
RBCs and iron dysregulation are also strongly correlated with metabolic disorders [19–21], but the
causal relationship between dysregulated iron metabolism and RBC dysfunction remains largely
unknown. Obesity induces inflammation, causing an increase in circulating hepcidin and soluble
cluster of differentiation 163 (sCD163) levels [18,22]. Hepcidin, a hormone produced by the liver,
is the master iron regulator. It controls iron homeostasis by inhibiting the release of iron into the
plasma through three mechanisms: (1) by inhibiting dietary iron absorption in the duodenum, (2) by
regulating the release of recycled heme iron from CD163+ macrophages, and (3) by controlling the
release of stored iron from hepatocytes or the spleen [23]. CD163 is a receptor located on macrophages
which recycles heme iron from the haptoglobin (Hp)–Hb complex. When RBCs are lysed, free Hb is
released and immediately binds to Hp in order to prevent oxidative damage from free Hb. The Hp–Hb
complex is then taken up by macrophages through the receptor CD163 [24]. In specific conditions,
when Hp is depleted, CD163 can directly pick up free Hb [25]. However, during inflammation, CD163
is cleaved into a soluble form by the proteolytic action of the metalloproteinase tumor necrosis factor
(TNF)-α-converting enzyme (TACE/ADAM17) [26]. Therefore, circulating sCD163 is considered an
inflammation marker and is frequently associated with obesity and metabolic disorders [26].
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We hypothesized that obesity-related inflammation may cause the upregulation of hepcidin and
sCD 163, and the altered serum hepcidin may affect iron levels, which, in turn, may influence RBC
aggregation. The aims of this study were to: (1) investigate the relationship between serum iron
biomarkers and RBC aggregation and (2) identify dietary patterns associated with RBC aggregation
and their predictive effects on hyperlipidemia and MetS in 212 Taiwanese adults.

2. Materials and Methods

2.1. Participants

In total, 212 Taiwanese adults aged 20–64 years were recruited at the Division of Gastroenterology
and Hepatobiliary Diseases, Department of Internal Medicine, Taipei Medical University Hospital,
from 29 April 2015 to 28 April 2016. A non-probability volunteering sampling was used as the sampling
method. All participants were Han Chinese and were excluded from the study if they had at least
one of the following: (1) were pregnant or breast feeding; (2) were taking hormone drugs; (3) had
been diagnosed with hepatitis virus B or C or liver carcinoma; (4) failed to give a blood sample. This
procedure was approved by the Taipei Medical University Institutional Review Board (TMU-JIRB
201502018), and written informed consent was signed by all participants.

2.2. Definitions

Hyperlipidemia was diagnosed in individuals with at least one of the following:
(1) TG ≥ 200 mg/dL; (2) total C ≥ 240 mg/dL; (3) HDL-C < 40 mg/dL; (4) LDL-C ≥ 160 mg/dL;
(5) a total C/HDL-C ratio ≥ 5 [27]. The criteria of MetS were based on the modified National
Cholesterol Education Program Adult Treatment Panel III for the Asia Pacific [28]. Participants with at
least three of the following were classified as having MetS: (1) a waist circumference ≥90 cm in males,
and ≥80 cm in females (also defined as central obesity); (2) systolic blood pressure ≥130 mmHg or
diastolic blood pressure ≥85 mmHg; (3) fasting blood glucose ≥100 mg/dL; (4) HDL-C < 40 mg/dL;
(5) fasting TG ≥ 150 mg/dL.

2.3. Questionnaires

A simple questionnaire was used to record the basic information of participants, including
age, sex, anthropometry, alcohol consumption, and history of diseases and medication. A food
frequency questionnaire (FFQ) was used to investigate the dietary patterns of the participants. This
was modified from a Chinese FFQ, which originally consisted of 64 items [29], and included three
major categories: (1) food intake frequency; (2) cooking method used; (3) frequency of eating outside
the home. The modified FFQ contained 66 food items that were categorized into 32 food groups,
including five commonly used cooking methods for protein-rich foods and the frequencies of eating
outside and homemade food. The food frequency was divided into eight levels: (1) 0–1 time/week;
(2) 2–3 times/week; (3) 4–5 times/week; (4) 6–7 times/week; (5) 8–10 times/week; (6) 11–13 times/week;
(7) 14–16 times/week; (8) ≥17 times/week.

2.4. Anthropometric Measurements

Body weight, height, waist and hip circumference of each participants were recorded, and the
body mass index (BMI) was then calculated in kg/m2. The waist circumference was measured around
the midpoint between the lower margin of the last rib and the top of the iliac crest.

2.5. Laboratory Measurements

Samples consisting of 15 mL of blood were collected after 8 h of fasting. Blood analyses included a
complete blood cell count, inflammation biomarkers analysis, lipid profile, and serum iron biomarkers
analysis. Serum iron biomarker analysis included serum ferritin (SF), serum iron, total iron-binding
capacity (TIBC), serum-free Hb, serum hepcidin, and sCD163. Serum transferrin saturation (%TS)
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was calculated using the formula: (serum iron ÷ TIBC) × 100%. Serum iron was measured by
a colorimetric method (Le-Zen Clinical Laboratory, Taipei, Taiwan). Serum-free Hb (Immunology
Consultants Laboratory, Portland, OR, USA), serum hepcidin (DRG International Inc, Springfield,
NJ, USA), and sCD163 (R&D Systems, Minneapolis, MN, USA) were analyzed by an enzyme-linked
immunosorbent assay (ELISA) according to the manufacturer’s procedures. RBC aggregation was
analyzed by pipetting 500 µL of whole blood into the left well of an RSD-K01 chip (MicroStar
Instruments, Seoul, Korea) that was inserted into RheoScan-AnD300 (MicroStar Instruments, Seoul,
Korea), a microfluidic ektacytometer, for measurement. The measurements provided the critical shear
stress (CSS), which stands for the minimum amount of shear stress exerted by blood stream currents
to disperse RBCs [30]. A greater value of CSS indicates higher RBC aggregability.

2.6. Statistical Analysis

Analyses were carried out using IBM® SPSS® 21 (IBM Corp., Armonk, NY, USA), SAS version 9.4
(SAS Institute Inc., Cary, NC, USA) and GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA).
Categorical data were presented as the number (percentage (%)), and continuous data were presented
as the mean ± standard deviation (SD). RBC aggregation data were divided into quartiles (Q) using
SPSS by assigning Q1 to the smallest value. A general linear model was used to analyze the p-trend
between variables for continuous data, and Chi-squared was used for categorical data. A normality
test was carried out to test for the distribution of each variable. Variables that were not normally
distributed were log-transformed. An age-, sex-, log-transformed BMI-adjusted Poisson regression
model was performed to estimate the prevalence rate ratio (PRR) and 95% confidence interval (CI) of
hyperlipidemia and MetS [31]. A multivariate linear regression analysis was implemented to examine
the relationships between RBC aggregation and potential variables. A reduced rank regression
(RRR) was carried out to derive RBC aggregation-associated dietary patterns with the 32 food groups
from the FFQ as predictors, and biomarkers determined from the multivariate linear regression
analysis as responses [32]. Food groups with factor loadings of ≥0.20 or ≤−0.20 were used to
describe RBC aggregation-associated dietary patterns. The dietary pattern score was derived from
each participant and represented the sum of food intake variables weighted by a factor loading.
These scores indicated the conformity of food consumption to the RBC aggregation-associated dietary
pattern. The directed acyclic graph below explains the conceptual framework of the RRR (Figure 1).
If the p-values were ≤0.05, the differences were considered significant.

Figure 1. Directed acyclic graph of the reduced rank regression (RRR) conceptual framework. RBC:
red blood cell; %TS: serum transferrin saturation; MetS: metabolic syndrome; sCD163: soluble cluster
of differentiation 163.
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3. Results

The mean age and BMI of the study subjects were 41.94 ± 12.53 years (men: 41.60 ± 11.86 years,
women: 42.27 ± 13.21 years; p = 0.705) and 24.56 ± 5.16 kg/m2 (men: 25.57 ± 4.20 kg/m2, women:
23.57 ± 5.81 kg/m2; p < 0.001), respectively. The prevalence rates of central obesity, hyperlipidemia,
and MetS were 47.9% (men: 50.5%, women: 45.3%; p = 0.450), 38.2% (men: 39.0%, women: 37.4%;
p = 0.803), and 25.5% (men: 36.7%, women: 24.3%; p = 0.692), respectively.

3.1. RBC Aggregation Shows a Positive Correlation with Dysregulated Iron and Is Positively Associated
with Hyperlipidemia

We next stratified individuals according to the RBC aggregation concentrations. Table 1 shows that
RBC aggregation was positively correlated with BMI (p-trend = 0.001), hyperlipidemia (p-trend < 0.001),
MetS (p-trend = 0.001), blood lipids, and hepcidin (both p-trend < 0.01). On the other hand, %TS was a
negatively correlated with RBC aggregation (p-trend = 0.001).

Table 1. Baseline characteristics of the study population according to quartiles of RBC aggregation
levels (N = 196).

RBC Aggregation CSS (mPa), Quartiles $
p-Trend

Q1 (n = 48) Q2 (n = 49) Q3 (n = 50) Q4 (n = 49)

Age (years) 42.13 ± 13.99 40.08 ± 13.00 41.51 ± 11.53 46.63 ± 10.68 0.055
BMI (kg/m2) 23.72 ± 4.97 23.12 ± 4.02 24.86 ± 5.61 27.16 ± 5.64 0.001
Male (n, %) 23 (47.9) 24 (49.0) 24 (49.8) 24 (49.0) 0.999

Hyperlipidemia (n, %) 15 (31.3) 12 (24.5) 18 (36.0) 31 (63.3) <0.001
MetS (n, %) 11 (22.9) 5 (10.2) 15 (30.0) 22 (44.9) 0.001

Lipids

Total C (mg/dL) 188.44 ± 38.73 193.00 ± 27.01 200.60 ± 36.92 213.49 ± 41.69 0.005
TG (mg/dL) 99.54 ± 67.29 100.29 ± 63.02 116.18 ± 67.40 165.88 ± 88.67 <0.001

HDL-C (mg/dL) 60.21 ± 15.60 56.33 ± 12.59 55.10 ± 16.48 53.73 ± 15.78 0.184
LDL-C (mg/dL) 105.83 ± 30.81 115.31 ± 25.52 120.94 ± 31.23 129.24 ± 35.53 0.003

Iron

HCT (%) 42.28 ± 5.58 43.72 ± 7.13 42.33 ± 7.97 43.90 ± 8.90 0.577
Hb (g/dL) 14.55 ± 1.99 15.00 ± 2.63 14.44 ± 3.05 15.04 ± 3.18 0.614

Free Hb (µg/mL) 157.27 ± 49.48 143.84 ± 52.73 162.09 ± 45.42 154.99 ± 59.97 0.472
SF (ng/mL) 141.74 ± 169.22 131.27 ± 103.73 139.56 ± 167.79 189.90 ± 137.88 0.191

TS (%) 31.51 ± 12.05 35.01 ± 12.21 27.97 ± 13.75 25.71 ± 8.67 0.001
Hepcidin (ng/mL) 116.87 ± 101.17 151.07 ± 86.61 136.78 ± 102.47 207.19 ± 123.12 <0.001
sCD163 (ng/mL) 761.47 ± 470.38 744.03 ± 411.93 810.59 ± 299.62 978.99 ± 514.13 0.069

p-trend values were analyzed by a general linear model for continuous variables, and Chi-squared for categorical
variables. Continuous data are presented as the mean ± standard deviation, while categorical data are presented as
a number (percentage of the same group). $ Red blood cell (RBC) aggregation critical shear stress (CSS) quartiles:
Quartile 1, male ≤ 224.35, female ≤ 239.03; Quartile 2, 224.35 < male ≤ 263.12, 239.03 < female ≤ 284.21; Quartile
3, 263.12 < male ≤ 324.55, 284.21 < female ≤ 351.37; Quartile 4, male > 324.55, female > 351.37 mPa. BMI: body
mass index; C: cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density
lipoprotein cholesterol; HCT: hematocrit; Hb: hemoglobin; SF: ferritin; TS: serum transferrin saturation; sCD163:
soluble cluster of differentiation 163.

Age-, sex-, and log-transformed BMI-adjusted Poisson regression model showed that quartile
levels of RBC aggregation CSS had a significant positive correlation with hyperlipidemia (p-trend < 0.05
(Figure 2)).
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Figure 2. Prevalence rate ratio (PRR) and 95% confidence intervals of red blood cell (RBC) aggregation
critical shear stress (CSS) quartile levels for hyperlipidemia adjusted by age, sex, and log-transformed
body mass index (BMI); * p ≤ 0.05.

3.2. RBC Aggregation Is Positively Correlated with Hepcidin and sCD163, but Negatively Correlated
with %TS

We next investigated potential confounding variables associated with RBC aggregation.
A multivariate linear regression analysis was used to explore variables that could independently predict
RBC aggregation. A univariate regression analysis indicated that log-transformed BMI (β = 0.316
(0.120–0.512), p < 0.01), hyperlipidemia (β = 0.169 (0.092–0.246), p < 0.001), MetS (β = 0.151 (0.065–0.237),
p = 0.001), inflammation biomarkers (all p < 0.05), and lipid biomarkers (all p < 0.001, except for
HDL-C) were positively correlated with RBC aggregation. For iron biomarkers, hepcidin (β = 0.0007
(0.0003–0.0010), p < 0.001) and log-transformed sCD163 (β = 0.152 (0.071–0.233), p < 0.001) were
positively correlated with RBC aggregation, while %TS (β = −0.006 (−0.009–0.003), p < 0.001) was
negatively correlated. After adjusting for covariates, only the iron biomarkers, which were hepcidin
(β = 0.0009 (0.0005–0.0013), p < 0.001), log-transformed sCD163 (β = 0.116 (0.040–0.193), p < 0.01), and
%TS (β = −0.006 (−0.010–0.003), p < 0.001), remained significantly correlated with RBC aggregation
(Table 2; model 2).

A further investigation was performed to investigate the dual effect of hepcidin and %TS on
RBC aggregation by using multivariate linear regression analysis (Figure 3). Hepcidin and %TS were
divided into median (M) groups, with M1 as the lower level and M2 as the higher level. A reference
(Ref) was set in hepcidin M1 and %TS M2 groups. The participants in this group were considered to
have sufficient iron levels compared to other groups due to lower levels of hepcidin and higher levels
of %TS. When hepcidin remained at the M1 level but %TS decreased to the M1 level, RBC aggregation
significantly increased (β = 0.119 (0.02–0.22), p < 0.05) compared to the Ref. When hepcidin increased
to the M2 level and %TS decreased to the M1 level, RBC aggregation increased to an even larger extent
(β = 0.232 (0.11–0.35), p < 0.001).
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Table 2. Multivariate linear regression of correlations between log-transformed RBC aggregation and
selected anthropometric, inflammation, lipid, glucose, and iron indicators.

Univariate Model 1 # Model 2 $

ß (95% CI) p-Value ß (95% CI) p-Value ß (95% CI) p-Value

Age (years) 0.004 (0.001–0.007) 0.020 0.003 (0.000–0.006) 0.035 0.001 (−0.003–0.004) 0.713
Log BMI (kg/m2) 0.316 (0.120–0.512) 0.002 0.378 (0.182–0.574) <0.001 0.010 (−0.195–0.215) 0.923
Hyperlipidemia

Control Ref Ref Ref
Hyperlipidemia 0.169 (0.092–0.246) <0.001 0.124 (0.042–0.205) 0.003 0.025 (−0.061–0.110) 0.572

MetS
Control Ref Ref

MetS 0.151 (0.065–0.237) 0.001 0.072 (−0.027–0.171) 0.155

Lipids

Log total C (mg/dL) 0.450 (0.247–0.653) <0.001 0.390 (0.192–0.587) <0.001
Log TG (mg/dL) 0.144 (0.084–0.203) <0.001 0.131 (0.061–0.201) <0.001

Log HDL-C (mg/dL) −0.102 (−0.254–0.050) 0.188
LDL-C (mg/dL) 0.002 (0.001–0.004) <0.001 0.002 (0.001–0.003) <0.001 0.001 (0.000–0.002) 0.073

Iron

Log HCT (%) −0.087 (−0.324–0.151) 0.472
Log Hb (g/dL) −0.104 (−0.322–0.114) 0.350

Free Hb (µg/mL) 0.000 (−0.001–0.001) 0.896
Log SF (ng/mL) 0.021 (−0.012–0.053) 0.208

TS (%) −0.006 (−0.009–0.003) <0.001 −0.004 (−0.007–0.001) 0.017 −0.006 (−0.010–0.003) <0.001
Hepcidin (ng/mL) 0.0007 (0.0003–0.0010) <0.001 0.0008 (0.0004–0.0011) <0.001 0.0009 (0.0005–0.0013) <0.001

Log sCD163 (ng/mL) 0.152 (0.071–0.233) <0.001 0.119 (0.037–0.201) 0.005 0.116 (0.040–0.193) 0.003
# Model 1: Adjusted for age, sex, and log BMI; $ Model 2: Adjusted for age, sex, log BMI, LDL-C, TS, hepcidin, and
log sCD163. RBC: red blood cell; BMI: body mass index; MetS: metabolic syndrome; C: cholesterol; TG: triglycerides;
HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; HCT: hematocrit;
Hb: hemoglobin; SF: ferritin; TS: serum transferrin saturation; sCD163: soluble cluster of differentiation 163.

Figure 3. Multivariate linear regression of correlation between log-transformed red blood cell (RBC)
aggregation critical shear stress (CSS), medians of hepcidin and transferrin saturation (%TS) levels
adjusted by age, sex, and log-transformed body mass index (BMI); β, unstandardized coefficients.
* p ≤ 0.05, *** p ≤ 0.001.
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3.3. RBC Aggregation-Associated Dietary Patterns Independently Predict Hyperlipidemia and MetS

RBC aggregation-associated dietary pattern scores were derived by the RRR. The response
variables were selected on the basis of strong correlations between the independent variables, which
were hepcidin (p < 0.001), log-transformed sCD163 (p < 0.01) and %TS (p < 0.001), and RBC aggregation
(Table 2; model 2). Table 3 shows the percentage of food variation corresponding to the first dietary
pattern scores and factor loading of the food groups. Noodles and deep-fried foods were positively
correlated with the first dietary pattern scores (factor loadings ≥0.20). On the other hand, steamed,
boiled, and raw foods, dairy products, orange, red, and purple vegetables, white and light-green
vegetables, seafood, and rice were negatively correlated with the dietary pattern scores (factor
loadings ≤−0.20).

Table 3. Food groups which were strongly associated with RBC aggregation-related dietary pattern
scores identified by using an RRR.

Food Group Explained Variation (%) Factor Loading *

Noodles 12.66 0.38
Deep-fried foods 6.78 0.28

Steamed/boiled/raw foods 10.43 −0.34
Dairy products 7.73 −0.30

Orange/red/purple vegetables 7.49 −0.29
White/light-green vegetables 5.39 −0.25

Seafood 4.13 −0.22
Rice 3.74 −0.21

Total explained variation (%): 58.37

* Factor loadings are correlations between food groups and the first dietary pattern scores (correlation coefficient for
the RRR-derived pattern ≥ |0.20|). RRR: reduced rank regression.

Table 4 shows a positive correlation between RBC aggregation-related dietary pattern scores and
RBC aggregation after adjusting for age, sex, log BMI, and hyperlipidemia (p-trend = 0.01, model 5).

Table 4. Adjusted linear regression of the relationship between the quartiles of dietary pattern score
levels and log-transformed RBC aggregation.

Dietary Pattern Scores
p-Trend

Quartile 1 Quartile 2 p-Value Quartile 3 p-Value Quartile 4 p-Value

Univariate Ref 0.086 (−0.009–0.181) 0.076 0.086 (−0.016–0.189) 0.097 0.193 (0.084–0.302) 0.001 0.001
Model 1 * Ref 0.083 (−0.011–0.177) 0.081 0.085 (−0.017–0.188) 0.101 0.180 (0.071–0.288) 0.001 0.002
Model 2 # Ref 0.087 (−0.007–0.180) 0.068 0.087 (−0.015–0.188) 0.093 0.208 (0.102–0.314) <0.001 <0.001
Model 3 $ Ref 0.085 (−0.004–0.174) 0.062 0.062 (−0.036–0.161) 0.214 0.190 (0.074–0.306) 0.002 0.010
Model 4 ˆ Ref 0.065 (−0.028–0.158) 0.167 0.068 (−0.032–0.168) 0.178 0.155 (0.049–0.261) 0.005 0.004
Model 5 & Ref 0.069 (−0.021–0.159) 0.131 0.049 (−0.049–0.146) 0.322 0.158 (0.045–0.270) 0.007 0.024

* Model 1. adjusted for age; # Model 2: adjusted for age and sex; $ Model 3: adjusted for age, sex, and log BMI; ˆ

Model 4: adjusted for age, sex, and hyperlipidemia; & Model 5: adjusted for age, sex, log BMI, and hyperlipidemia.
RBC: red blood cell.

Age-, sex-, and log-transformed BMI-adjusted Poisson regression model showed that the quartile
levels of dietary pattern scores had a significant positive correlation with hyperlipidemia (p-trend < 0.05
(Figure 4)) and MetS (p-trend = 0.01 (Figure 4)).
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Figure 4. Prevalence rate ratio (PRR) and 95% confidence intervals of dietary pattern score quartile
levels for hyperlipidemia and metabolic syndrome (MetS) adjusted for age, sex, and log-transformed
body mass index (BMI). * p ≤ 0.05, ** p ≤ 0.01.

4. Discussion

Our study found that RBC aggregation is closely linked to obesity and dysregulated iron
metabolism (as indicated by decreased %TS and increased hepcidin and sCD163). Increased RBC
aggregation also increased the rate of hyperlipidemia (p-trend < 0.05). The RBC aggregation and
iron-associated dietary pattern, which was characterized by high-frequency consumption of noodles
and deep-fried foods and low-frequency intake of steamed, boiled, and raw food, dairy products,
orange, red, and purple vegetables, white and light-green vegetables, seafood, and rice, was also
significantly associated with both hyperlipidemia (p-trend < 0.05) and MetS (p-trend = 0.01).

One of the interesting findings of our results was the relationship between RBC aggregation
and the consumption frequency of staple foods. Our study showed that noodles, but not rice, had
the highest impact on the RBC aggregation and iron-associated dietary patterns (highest percentage
of explained variation, 12.66%, and highest factor loading, 0.38). Both noodles and rice are refined
carbohydrates which also yield a high glycemic index [33]. A recent study from the Chinese Nutrition
and Health survey showed that, compared to rice, increased consumption of noodles produced a
higher risk of developing type 2 diabetes [34]. Another study also showed negative effects of noodles
on serum lipid levels and glucose metabolism [35]. Our dietary patterns showed that an increased
intake of noodles was associated with deep-fried food consumption but decreased consumption of
rice, steamed, boiled, and raw food, dairy products, orange, red, and purple vegetables, white and
light-green vegetables, and seafood. This suggests that individuals who prefer noodles as a staple
food are also less likely to eat steamed, boiled, and raw foods, vegetables, and seafood. Several
prospective studies have suggested that a low intake of dairy products and vegetables increases the
risks of dyslipidemia and MetS [35,36]. Our results also agree with previous studies indicating that
deep-fried foods increase RBC aggregability, dyslipidemia, and MetS [36].

In this study, RBC aggregation and the three independent RBC aggregation factors, i.e., the iron
biomarkers hepcidin, %TS, and sCD163, were selected as responses. The selected iron biomarkers
had different relationships with RBC aggregation. Using Pearson correlation coefficients (data not
shown), the r values of RBC aggregation and hepcidin, %TS, and sCD163 were 0.262 (p < 0.001),
−0.254 (p < 0.001), and 0.285 (p < 0.001), respectively. Also, hepcidin was significantly correlated
with %TS (r = 0.258, p < 0.001). However, correlations of sCD163 with hepcidin and %TS were not
statistically significant. We further analyzed the relationship between the selected responses (RBC
aggregation, hepcidin, %TS, and sCD163) and the selected food groups to clarify which kind of foods
affected each response (data not shown). Using a linear regression, only steamed, boiled, and raw
foods were negatively correlated with RBC aggregation (β: −0.030 (−0.056–0.003), p < 0.05). Hepcidin
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was positively correlated with deep-fried foods (β: 23.508 (3.717–43.298), p < 0.05), and sCD163 was
negatively correlated with white and light-green vegetables (β: −0.064 (−0.125–0.003), p < 0.05).
Noodles and steamed, boiled, and raw foods may also affect sCD163 as their p-value were close to
significance (both p = 0.51). The %TS was not statistically significantly correlated with any of the
selected food groups. Taken together, our data suggests that RBC aggregation-associated dietary
pattern is largely influenced by RBC aggregation or the iron biomarkers hepcidin and sCD163.

Another interesting finding was that, although there was a statistically significant p-trend for the
relationship between dietary pattern scores and hyperlipidemia (p-trend < 0.05), the PRRs between
dietary pattern scores and hyperlipidemia did not consistently increase. Individuals with dietary
pattern scores Q2 (PRR = 1.904 (0.921–3.934)) and Q4 (PRR = 1.889 (0.882–4.043)) had a higher risk of
developing hyperlipidemia compared to Q1 (Figure 4). From the analysis between dietary pattern
scores and variables (data not shown), only total C exhibited a significant difference between dietary
pattern scores Q2 and Q3 (p < 0.05). Since total C was significantly higher in dietary pattern scores
Q2 (208.38 ± 40.86) than in Q3 (193.57 ± 37.66), and one of the criteria for hyperlipidemia is elevated
total C, high total C could be a possible reason for the Q2 dietary pattern scores having a higher rate of
developing hyperlipidemia than Q3. Another possible explanation could be due to the gender element.
Studies already showed that there are gender differences in eating behaviors [37–39]. Therefore, the
phenomenon of Q2 having higher a risk of developing hyperlipidemia than Q3 may be due to the bias
caused by different food preferences between sexes.

In the current study, hepcidin, %TS, and sCD163 were identified as independent factors which
predicted RBC aggregation, with hepcidin and log-transformed sCD163 being positively correlated,
and %TS being negatively correlated. However, the pathways through which iron biomarkers regulate
RBC aggregation are still unknown. Hepcidin is regulated through a complex interplay of signals,
mainly inflammation, the iron status, and RBC production. During obesity-induced inflammation,
anemia of inflammation (AI) may occur as hepcidin increases. Inflammatory cytokines, predominately
interleukin (IL)-6, promote the secretion of hepcidin through the Janus kinase (JAK)/signal transducer
and activator of transcription 3 (STAT3) pathway. Therefore, the characteristics of AI include a
decreased availability of circulating iron for the production of RBCs, despite adequate iron stores [40].

CD163 is the macrophage scavenger receptor which takes up Hp–Hb complexes, but sCD163
levels increase with obesity and metabolic disorders. Studies showed that the shedding of CD163
from macrophages during chronic inflammation is more robust than during acute inflammation [41].
Increases in sCD163 under inflammatory conditions are due to activation of TACE/ADAM17 [42].
TACE/ADAM17 is located in cell membranes and quickly responds to various physiological stimuli.
Activation of the enzyme can be stimulated by Toll-like receptor (TLR) [43], which is activated
by lipopolysaccharides [44], cross-linking oxidative stress [45], and thrombin [46]. Several studies
indicated that sCD163 is a predictor of obesity-related diseases. sCD163 has strong correlations with
MetS and inflammatory serum markers [22]. CD163+ macrophages can be found in vessel walls, and
increased expressions of heme oxygenase (HO)-1 and CD163 were positively correlated with tissue
iron content and symptomatic plaques [47]. However, how sCD163 affects RBCs and RBC aggregability
is still unclear.

This study has several limitations. First, the sample size was relatively small. Second, the FFQ
only represents the frequency of participants’ food intake, while the actual amount of food consumed
by participants remains unknown. Thus, the precise amounts of nutrients could not be determined.
Third, the RRR is a method that requires in-depth knowledge of the relationships between diet and
disease in order to select the response variables. Using different variables for the RRR analysis will
yield different results. Since different variables have different relationships with each other and with
the food groups, choosing different biomarkers as response variables will affect the outcome of the
RRR analysis.
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5. Conclusions

The study results suggest that individuals with the highest consumption frequencies of noodles
and deep-fried foods and the lowest intake of steamed, boiled, and raw food, dairy products, orange,
red, and purple vegetables, white and light-green vegetables, seafood, and rice were more likely to
develop RBC aggregation, dyslipidemia, and MetS. Our findings may help clinicians and dieticians
develop dietary strategies for preventing dyslipidemia and MetS particularly in those individuals with
RBC and iron dysfunctions.
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