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Abstract: Microencapsulation of polyherbal formulation (PHF) extract was carried out by freeze
drying method, by employing gum arabic (GA), gelatin (GE), and maltodextrin (MD) with their
designated different combinations as encapsulating wall materials. Antioxidant components
(i.e., total phenolic contents (TPC), total flavonoids contents (TFC), and total condensed tannins
(TCT)), antioxidant activity (i.e., DPPH, -carotene & ABTS" assays), moisture contents, water
activity (aw), solubility, hygroscopicity, glass transition temperature (Ty), particle size, morphology,
in vitroa-amylase and «-glucosidase inhibition and bioavailability ratios of the powders were
investigated. Amongst all encapsulated products, Tg (5% GA & 5% MD) and T¢ (10% GA)
have proven to be the best treatments with respect to the highest preservation of antioxidant
components. These treatments also exhibited higher antioxidant potential by DPPH and (3-carotene
assays and noteworthy for an ABTS" assays. Moreover, the aforesaid treatments also demonstrated
lower moisture content, ay,, particle size and higher solubility, hygroscopicity and glass transition
temperature (Tg). All freeze dried samples showed irregular (asymmetrical) microcrystalline
structures. Furthermore, Tp and Tc also illustrated the highest in vitro anti-diabetic potential
due to great potency for inhibiting a-amylase and o-glucosidase activities. In the perspective
of bioavailability, T4, Tp and Tc demonstrated the excellent bioavailability ratios (%). Furthermore,
the photochemical profiling of ethanolic extract of PHF was also revealed to find out the
bioactive compounds.

Keywords: microencapsulation; polyphenols; freeze-drying; antioxidant activity; in vitro dialyzability;
in vitro anti-diabetic potential

1. Introduction

In the past decade, research has been focused in exploring naturally occurring antioxidants to
circumvent the multifaceted health related complexities arising due to overproduction of reactive
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oxygen species (ROSs) in body [1,2]. The excess production of these ROSs are considered serious
issue for human health as their surplus generation can lead to different patho-physiological conditions
like fast aging process via damaging the nucleic acids and changing in the conformation of proteins,
heart-related disorders (i.e., cardiovascular disorders (CVDs)), diverse types of cancers, immunity
related dysfunctions, inflammation, membranous lipid oxidation, decline of hydroperoxide synthesis,
neurodegenerative disorders, lungs and kidney illness, UV-irradiation, and osteoporosis/bone-related
diseases and health-related disease called “oxidative stress” [3]. In addition, direct correlation between
oxidative stress and insulin resistance (key factor for type-II DM) has also been elaborated in mini
review by Hurrle et al. [4].

Amongst naturally-occurring antioxidants, polyphenols and their derivative compounds
represented a diverse class of ubiquitous material i.e., from simple molecules to complex configuration
such as phenolic acids; hydroxybenzoic and hydroxycinnamic acids, hydrolyzable and condensed
tannins, and flavonoids, these are most important compounds for nutraceutical, therapeutics and
pharmacological point of view [5,6] and revealed various health endorsing activities: antioxidant
activity (i.e., free radicals scavenging, declining of hydroperoxide development, hampering the lipid
oxidation), anti-diabetic, anti-malarial, and anticancer activity etc. [5,7].

In the prospective of natural polyphenols, polyherbal formulations are considered as a great
source all over the globe due to their dynamic medicinal and therapeutic claims. Moreover, previous
investigations illustrated that selected individual plants contained abundant quantity of polyphenols
and their herbal combinations were found to produce best antioxidant activity among all individual
extracts due to synergistic effect. Synergism played a vital role via two different kind of mechanism
in context of interaction i.e., pharmacokinetic (PK) and pharmacodynamics (PD) [8,9]. Owing to
synergism, polyherbal formulation demonstrated vast advantages over single herbal formulation (SHF)
likewise: superior restorative effect can be attained with a PHF; to acquire enviable pharmacological
accomplishment low dosage would be required, consequently lessening the risk of harmful side effects.
Additionally, PHF facilitate the patient’s convenience by eradicating the need of taking more than
one formulation at a time, which ultimately leads to better compliance and therapeutic effect. All the
aforesaid advantages have outcome in the attractiveness of PHF in the marketplace when compare to
SHF [10].

Polyphenols are incredibly sensitive in diverse range of circumstances, during food processing
and storage practice likewise; high temperature of surrounding, incidence of oxygen and light, pH,
existence of oxidative enzymes, moisture contents [11]. The degradation of natural antioxidants
may hamper the possible effectiveness of application of these antioxidants in food /nutraceutical
and pharmaceutical applications and commercially available anti-diabetic drugs also produce
unconstructive effects on other metabolisms [12], so supplementation of anti-hyperglycemic substances,
which also possess antioxidant properties, might be an alternative therapy to overcome this
critical condition [13,14]. To address these shortcomings and to augment the antioxidant stability
and preserve their diverse bioactivities including anti-inflammatory, anti-cancer, anti-microbial,
anti-diabetic capabilities, the microencapsulation has been employed successfully as a reliable
technique to circumvent the unwanted degradation of bioactive compounds, shielding them from
adverse environmental circumstances. Furthermore, various type of wall material has been used for
microencapsulation procedure, but cost effectiveness and physico-chemical distinctiveness must
be considered, including: hygroscopicity, biodegradability, emulsifying feature, adaptability to
gastrointestinal tract (GT), viscosity, solids content [15].

At present, the preferred wall materials for microencapsulation for various fruit juices
and plant/herbs extracts are maltodextrins (MD), gum arabic (GA) and gelatin (GE) [16].
Maltodextrin of various dextrose equivalents (DE) are generally used as wall material owing to
their distinct characteristics likewise; low viscosity, high solubility in water and their solutions are
monochromic in appearances. These features made them frequently used carrier/wall materials in
the micro-encapsulation procedure. Gum arabic (exudates of acacia), owing to its unique features
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i.e., naturally colorless, low viscosity, high retention of volatiles and ability to make stable emulsion
is ultimately considered as excellent encapsulating agent whereas its high economic cost provoked
researcher for full or partial replacement of the encapsulation agent [16-18]. In addition, gelatin is
also a better option for microencapsulation because of its superior characteristics for emulsification,
film-formation, water solubility, last but not least ability to form finer dense complex. According to
Fang and Bhandari [19], a sole microencapsulating agent has limitation over all required attributes to
improve microencapsulation effectiveness, eventually has been resolved by using different combination
of polymers due to their diverse features. The selection for polymer’s combinations which possibly
consequence in superior microencapsulating efficiency and regarded economically suitable than the
single biopolymers has been becoming the point of emerging interest [19,20].

In the current study, polyherbal formulation was firstly made with equal ratio of roots
of Chlorophytum borivilianum, roots of Astragalus membranaceus, roots of Eurycoma longifolia, and
seeds of Hygrophila spinosa T. Anders having previously proven diverse ethno-pharmacological
applications [21-24] as polyphenols enriched nutrient supplement, then PHF extract was further
microencapsulated by freeze drying method using different wall materials, subsequently antioxidant
components (i.e., TPC, TFC, and TCT), antioxidant activity (i.e., DPPH, p3-carotene & ABTS" assays),
anti-diabetic potential (i.e., in vitro x-amylase and «-glucosidase inhibition), physical properties
like; moisture contents, water activity (aw), solubility, hygroscopicity, glass transition temperature
(Tg), morphological characteristics (i.e., particle size, morphology), and bioavailability ratios of the
microencapsulated powders were investigated. In last, the chemo-profiling for ethanolic extract of
PHF was also studied.

2. Materials and Methods

2.1. Materials, Chemicals, Reagents and Encapsulating Agents

All different parts of herbs (detail in Section 2.2) were purchased from Faisalabad-Pakistan and
their identification and respective characteristics were authenticated by Prof. M. Jafar Jaskani from
Institute of Horticulture, University of Agriculture Faisalabad (UAF) Pakistan. All chemicals used were
of analytical grade or higher where suitable. DPPH (2,2-diphenyl-1-picryl-hydrazyl), Folin-Ciocalteu
(FC),3-carotene, Butylated hydroxyltoluene (BHT), TWEEN 20, quercetin, Sodium carbonate, ABTS
(2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid), a-tocopherol, Linoleic acid, (+)-catachin,
quercetin, AlCl3-6H,O, HCl, Vanilline, NaOH, Potassium persulfate, Trolox, gallic acid were purchased
from Sigma-Aldrich GmbH (Sternheim, Germany). x-amylase fromporcine pancreas,«-glucosidase
from Saccharomyces cerevisiae, paranitrophenyl-glucopyranoside, pepsin (porcine-7000), bile salts
pancreatin (p-1750), piperazine-NN-bis (2-ethane-sulfonic acid) di-sodium salt (PIPES), gelatin (GE),
HPLC-grade methanol, acetonitrile ethanol, acetone were supplied by Sigma-Aldrich (St. Louis, MO,
USA), soluble starch (extra pure) was obtained from J. T. Baker Inc. (Phillipsburg, NJ, USA). Ultra-pure
water (18 MQ cm~!) was acquired from Milli-Q purification device (Millipore Co., Billerica, MA,
USA). Sodium hydrogen carbonate was purchased from Merck (Darmstadt, Germany). Sea sand was
of 200-300 grain size from Scharlau (Barcelona, Spain). The encapsulating agents were: gum arabic
(Sangon Biotech Co., Shanghai, China), maltodextrin (Dextrose equivalent of 12) was purchased from
Corn Products (Cabo de Santo Agostinho, Pernambuco, Brazil).

2.2. Polyherbal Formulation

Polyherbal formulation was made by combining the root of Chlorophytum borivilianum, roots of
Astragalus membranaceus, roots of Eurycoma longifolia, and seeds of Hygrophila spinosa T. Anders, in a
ratio of 1:1:1:1 respectively.
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2.3. Preparation of Sample

Firstly, the roots and seeds of aforesaid herbs were cut into small pieces, followed by thorough
washing with deionized water in order to avoid any contamination. The PHF material was then
dried for 12 days in dark in well ventilated room at room temperature (23 =+ 8 °C), and subsequently
grounded with mortar and pestle to make crude powder with the help of liquid nitrogen, until a
uniform sieve size equivalent to (1.0 mm) was achieved. The resulting powder was stored at —80 °C
in inert vacuum bags until used for extraction as followed.

2.4. Pressurized Liquid Extraction (PLEx)

PLEx was executed in a Dionex ASE 350 system (Dionex, Sunnyvale, CA, USA) with the powder
of PHF obtained as mentioned above. Aliquot of 5.0 g of powder of PHF was mixed with diatomaceous
earth (1/1) and placed in a 34 mL stainless—steel cells. The extraction was performed via 3 consecutively
applied steps with absolute solvents of increasing polarity, in order to get the maximum possible
number and amount of secondary metabolites of various polarities and miscibilities, namely, acetone,
ethanol, methanol and their aqueous mixtures with water (1:10, 3:10), and pure water. Extraction time
was of 22 min; pressure 10.6 MPa; temperature 75 °C (for acetone, ethanol and methanol) and 135 °C
(for water). Organic solvents were removed in a rotary vacuum evaporator at 38 °C, while the residual
water was removed in a freeze drying unit. The extracts after solvent evaporation were placed under
nitrogen flow for 20 min and stored in dark glass bottles at —80 °C until analyzed.

2.5. Development of Microencapsulated Powder Products

In order to prepare the particular dispersions, 100 mL of water was mixed with aforesaid PHF
extract individually with different preselected combination of microencapsulating wall materials as
follow: A (5% GA & 5% GE) (hereafter referred and discussed as Tx); B (5% GA & 5% MD) (hereafter
referred and discussed as Tg), C (10% of GA)(hereafter referred and discussed as T¢), and D (10%
of MD) (hereafter referred and discussed as Tp),under constant shaking with 220 rpm, at 35 °C for
30 min by a shaking unit (CIMO instrument manufacturing Co., Shanghai, China). Afterward, these
dispersions were microencapsulated through lyophilization process for formulating four distinctive
treatments. i.e., Ta, Ty, Tc, Tp.

For microencapsulation by means of freeze-drying process, the above-mentioned dispersions/
emulsions were kept at —20 °C (freezer) for 48 h. Subsequently, the samples were placed in lyophilization
unit (Labconco, Kansas, MO, USA) for freeze drying at —56.5 °C, with vacuum pressure of 4.61 mmHg
for 60 h. After the completion of freeze drying process, the samples were crushed utilizing a mortar and
pestle assembly. Finally, the desirable final microencapsulated products were sealed in polyethylene
bags and aluminum pouches as well and stored in desiccator encompassing silica until further analysis.

2.6. Determination of Bioactive Compounds and Their Bioactivities after Microencapsulation

Bioactive components which were determined after the microencapsulation were total phenolic
compounds (TPC), total flavonoids compounds (TFC), total condensed tannins (TCT). While the
bioactivities of the microencapsulated powders were measured in terms of total antioxidant activity
determined by (-carotene bleaching assay (TOAA), ABTS" radical scavenging activity, and DPPH
scavenging capacity. All these spectrophotometric analysis were performed according to previously
developed methods with minor alteration [2,25,26]. The results for ABTS* radical scavenging activity
are deliberated as ECsy values (mg of extract/mL) for comparison. Effectiveness of antioxidant
properties is inversely correlated with ECsg value.
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2.7. Determination of the Physical Properties of the Microencapsulated Powders

2.7.1. Moisture Content

The moisture contents of the microencapsulated products were estimated by using the method
describes in manual AOAC [27], i.e., by calculating the loss of sample after weight after heat up
at 105 °C.

2.7.2. Water Activity (aw)

The water activity (aw) of all lyophilized samples was calculated through the direct analysis in
electronic meter (Aqualab 3TE-Decagon, Pullman, WA, USA), to gain the constant state the samples
were firstly placed at 25 °C for at least 15 min.

2.7.3. Solubility

The solubility of microencapsulated products was measured by the method described by
Cano-Chauca et al. [28], with minute alterations. The sample’s quantity of 1.0 g was mixed up
with 100 mL distilled water in beaker and stirred with magnetic stirrer (MS-H-510) for 20 min. After
that the centrifugation of solution carried out at 3000x g (Thermo Scientific, Waltham, MA, USA) for
10 min. The quantity of 25 mL of the supernatant was transferred to a petriplates (pre-weighted) and
dried in oven at 105 °C for 4.0 h. The solubility was measured as a result of weight difference and
demonstrated in the term of percentage (%).

2.7.4. Hygroscopicity

For the estimation of hygroscopicity, the microencapsulated powders of 1.0 g were placed in
dessicator with saturated NaCl solution (74.6%) at temperature of 25 °C. After 1 week, samples were
weighed and hygroscopicity were calculated in the term of percentage (%) [29].

2.7.5. Glass Transition Temperature (Tg)

The glass transition temperature (Tg) of the microencapsulated products was calculated by means
of differential scanning calorimetry (DSC) (DSC-2000-New Castle, DE, USA). The weight of 7-8 mg
of sample was placed in aluminum hermetic pots. For the reference purpose, an aluminum pan
without sample was used. Ultra-pure nitrogen N, was used as purge gas (flow rate 50 mL/min).
The temperature ranged from —80 °C to 120 °C at a heating rate of 40 °C/min. The glass transition
temperature was determined by utilizing software of TA Universal Analysis 2000.

2.8. Morphology and Size Distribution

The configuration of micro-particles obtained from diverse encapsulating wall material and
their combinations were examined by scanning electron microscope (Quanta 250 EFI). At first, very
minute was fixed on surface of double sided tape of carbon then finally evaluated the samples under
microscope with 400 x magnification. The analysis for particle size distribution average and particle
size was conducted by the means of Image]J (NIH, Bethesda, MD, USA).

2.9. In Vitro Assays

2.9.1. x-Amylase Inhibition Assay

The inhibition of x-amylase was determined using an assay modified from the Worthington
Enzyme Manual [30]. Aliquot 0-4 mg/mL in DMSO (v/v 1:1) of each encapsulated PHF samples
was prepared and 500 pL of each sample were mixed with 500 pL of 0.02 M sodium phosphate
buffer (pH 6.9) containing «-amylase solution (0.5 mg/mL) and incubated at 25 °C for 10 min. After
pre-incubation, 500 pL of a 1% starch solution in 0.02 M sodium phosphate buffer (pH 6.9) was
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added to each tube at timed intervals. The reaction mixtures were then incubated at 25 °C for 10 min.
The reaction was stopped with 1.0 mL of dinitrosalicylic acid color reagent. The test tubes were then
incubated in a boiling water bath for 5 min and cooled to room temperature. The reaction mixture was
then diluted by adding 15 mL of distilled water, and the absorbance was measured at 540 nm using
a micro-plate reader (Thermomax, Molecular Device Co., Sunnyvale, CA, USA). The experiments
were performed in duplicate and the absorbance of sample blanks (buffer instead of enzyme solution)
and a control (buffer in place of sample extract) were also recorded. The absorbance of the final
each encapsulated PHF sample was obtained by subtracting its corresponding sample blank reading.
Acarbose was prepared in distilled water and used as positive controls.
The percentage inhibition was calculated using the formula;

% Inhibition = {(Ac — Ae)/Ac} 100

where Ac and Ae are the absorbance of the control and extract, respectively.

ICsp values (inhibitor concentration at which 50% inhibition of the enzyme activity occurs) of
each encapsulated PHF samples were determined by plotting graph with varying concentrations of
the plant extracts against the percent inhibition.

2.9.2. a-Glucosidase Inhibition Assay

The a-glucosidase was assayed using a method modified by Apostolidis et al. [31]. Aliquot of
0—4 mg/mL in DMSO (v/v 1:1) of each encapsulated PHF samples were prepared. 50 pL of each
concentration sample was mixed well with 100 uL of 0.1 M phosphate buffer (pH 6.9) containing
a-glucosidase solution (1.0 U/mL) and the mixtures were then incubated in 96-well plates at 25 °C for
10 min. After pre-incubation, 50 pL of 5 mM p-nitrophenyl-«-D-glucopyranoside solution in 0.1 M
phosphate buffer (pH 6.9) was added to each well at timed intervals. The reaction mixtures were
incubated at 25 °C for 5 min. Before and after incubation absorbance readings were recorded at 405 nm
using a micro-plate reader (Thermomax, Molecular Device Co.) and compared to a control which
contained 50 pL of the buffer solution instead of the extracts. The experiments were performed in
triplicate and the x-glucosidase inhibitory activity was expressed as percentage inhibition. Acarbose
was prepared in distilled water and used as positive controls. The percentage inhibition was calculated
using the formula;

% Inhibition = {(Ac — Ae)/Ac} 100

where Ac and Ae are the absorbance of the control and extract respectively.

ICsp values (inhibitor concentration at which 50% inhibition of the enzyme activity occurs) of
each encapsulated PHF samples were determined by plotting graph with varying concentrations of
the plant extracts against the percent inhibition.

2.9.3. Determination of Bioavailability of Microencapsulated Products by In Vitro Dialyzability Assay

The estimation for bioavailability of all microencapsulated products was determined by the
method developed by Pineiro et al. [32].

2.10. Acute Toxicity

The acute oral toxicity study was carried out in compliance with Organization for Economic
Cooperation and Development (OECD) guideline 425 [33]. All mice (n = 5) for testing were fasted
for 12 h and weigh have been recorded and subsequently received the solution of microencapsulated
products of PHF at the final concentration of 2000 mg/kg by gavage. The animals were observed
individually at least once during the first 30 min after dosing, periodically for first 24 h and regularly
thereafter for 14-day of feeding period for gross behavioral changes, toxicity symptoms or mortality.



Nutrients 2018, 10, 843 7 of 25

2.11. LC-ESI-QTOF-MS Analyses

For LC-ESI-QTOF-MS analysis, firstly ethanolic extract was prepared using PLEx as described
in Section 2.4. Afterwards obtained ethanolic extract was used to for the metabolite profiling of
PHF using an Agilent 1100 Liquid Chromatography system (Agilent Technologies, Palo Alto, CA,
USA) furnished with a standard auto-sampler. The analytical column used was characterized as
Phenomenex Gemini C18 (3 um, 2 x 150 mm) operated at 25 °C with a gradient elution portfolio at a
flow rate of 0.2 mL/min. The mobile phases used were of acidified water (0.5% acetic acid) (A) and
acetonitrile (B). The following multi-step linear gradient applied in following fashion: 0 min, 5% B;
5 min, 15% B; 25 min, 30% B; 35 min, 95% B, 40 min, 5% B. The initial conditions were maintained
for 5 min. The injection volume of sample in system was 1pL. The LC-MS system was further
composed of a Dionex Ultimate 3000 Rapid Separation LC system coupled to a micrOTOF QII mass
spectrometer (Bruker Daltonics, Bremen, Germany) fitted with an electro-spray source operating
in positive mode. The LC system contained an SRD-3400 solvent rack/degasser, an HPR-3400RS
binary pump, a WPS-3000RS thermostated auto-sampler, and a TCC-3000RS thermostated column
compartment. The micrOTOF QII source parameters were as follows: temperature, 200 °C; drying N»
flow, 8 L/min; nebulizer Ny, 4.0 bar; end plate offset, —500 V; capillary voltage, —4000 V; mass range,
50—1500 Da, acquired at 2 scans/s. Post acquisition internal mass calibration used sodium formate
clusters with the sodium formate delivered by a syringe pump at the start of each chromatographic
analysis. Nitrogen was used as drying, nebulizing and collision gas. The precise mass data of the
molecular ions were processed using Data Analysis 4.0 software (Bruker Daltoniks, Bremen, Germany),
which delivered a list of potential elemental formulas via the Generate Molecular Formula Editor. The
generate molecular formula Editor uses a CHNO algorithm, which deals with standard practicalities
such as electron configuration, minimum/maximum elemental range and ring-plus double-bond
equivalents, as well as a sophisticated comparison of the theoretical with the measured isotope pattern
(Sigma Value, Bruker Daltonics, Bremen, Germany) for increased confidence in the recommended
molecular formula. The commonly acknowledged accuracy threshold for validation of elemental
compositions was established at 5 ppm [34]. It is significant to point out that even with very high
mass precision (<1 ppm) many chemically likely formulas may be found, subjected to the mass
regions considered and so high mass accuracy alone is not enough to discount enough candidates
with complex elemental compositions. The use of isotopic abundance patterns as a single further
constraint, however, eliminates >95% of the false candidates. This orthogonal filter can diminish
numerous thousand nominees down to only a small number of molecular formulas. During the
development of the HPLC method, the instrument was calibrated externally with a 74900-00-05 Cole
Palmer syringe pump (Vernon Hills, Chicago, IL, USA) directly linked to the interface and injected with
a sodium acetate cluster solution containing 5 mM sodium hydroxide and 0.2% acetic acid in water:
isopropanol (1:1, v/v). The calibration solution was injected at the beginning of each run and all the
spectra were calibrated prior to compound identification. By using this method, an exact calibration
curve based on several cluster masses, each differing by 82 Da (NaC,H30,) was obtained. Due to the
compensation of temperature drift in the micrOTOF-Q I, this external calibration provided accurate
mass values of better than 5 ppm for a complete run without the need for a dual sprayer setup for
internal mass calibration.

3. Statistical Analysis

All statistical analyses were conducted using a one-way analysis of variance using Dunnett’s
comparison tests or unpaired t-tests. All calculations were carried out using GraphPad Prism 5
(GraphPad Software, San Diego, CA, USA, www.graphpad.com). Significance was observed at p < 0.05.
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4. Results and Discussion

4.1. The Effect of Microencapsulation on the Contents of Antioxidant Components and Antioxidant Activity of PHF

The contents of antioxidant components of PHF extract treated with different encapsulating
wall materials were shown in Table 1. In comparison to untreated extract, all microencapsulated
treatments have less antioxidant components (i.e., TPC, TFC & TCT). The retention for all freeze-dried
treatments demonstrated in the term of percentages, ranged from 94.28% to 68.22% for TPC, 76.46% to
40.35% for TFC and 79.24% to 59.70% for TCT representing the effectiveness of microencapsulation
procedure. The wide-ranging powders produced from the microencapsulation process, especially
those obtained from T¢, retained higher contents of antioxidant components. In general, these results
may be associated with the type and concentrations of different wall materials. There were many
multifaceted factors which were responsible for hammering of polyphenol compounds during freeze
drying method, the crushing of lyophilized microencapsulated products after freeze-drying, were
considered one of the key factors which may cause the degradation of bioactive components in the
final products by boosting the product’s contact with environment. Our finding was in agreement
with previous work in which authors explored that lyophilized wine product contained almost 70%
of the original phenolics components [35,36]. Other factors which may responsible for declining the
concentration of active components include: formation of microspheres during the lyophilization due
to a scattering of the bioactive components inside the configuration of encapsulating wall materials i.e.,
consisting of one or more constant phase of encapsulating agents [19], development of micro-pores
in the aforesaid microspheres, mainly associated to sublimation process during lyophilization [37].
In the current study, lyophilized product encompassed a reduction of 5.72-31.78% for TPC, declined
trend of 23.54-59.65% and 20.76-40.30% was also observed for TFC and TCT respectively. Despite the
reduction of antioxidant components of microencapsulated products, a significant retentions were also
observed (described above in detail with percentages) comparable/higher to prior studies i.e., authors
found, that acai pulp microencapsulated with GA have phenolic retention of 94.1% [16].

The freeze dried product microencapsulated with 10% GA (T.) demonstrated the exceptional
conservation for antioxidant components (i.e., TPC, TFC & TCT). The order of effectiveness of
microencapsulation for other remaining treatments was as followed: Tg > Tp > Tp. The higher
competence of T¢ treatment was mainly attributed to the structure of GA, because it is a hetero-polymer
made up of dense branches of sugar, containing a minute quantity of protein which connected
to the carbohydrate skeleton via covalent bonds, proceeding as a tremendous microencapsulating
material [38]. Noteworthy results were also found for Tg and T4, which might be credited to presence
of 5% GA. In contrary, no significant difference was noticed for the lyophilized product having10%
MD as wall material (Tp).
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Table 1. Antioxidant components and antioxidant activities of PHF extracts microencapsulated with gum arabic (GA), gelatin (GE), maltodextrin (MD) and their
combinations by Freeze-drying method.

Treatments TPC! TFC 2 TCT3 DPPH 4 Beta-carotene ° ABTS
Control 26.72 +0.612 6.848 + 0.052 15.72 +£0.32 1333 +1.792 83.39 £ 0.792 3.687 £ 0.032
Ta 22.89 +0.41° 2.760 + 0.03 © 9.383 +0.164 74.73 + 4.6 4 64.71 + 0.64 e 3.197 +0.95P
Tg 24.26 + 0.085 2 4183 +0.07°¢ 10.10 £ 0.13 ¢ 85.0+0.5P 7834+ 0.51b 2.777 +0.125 ¢
Tc 25.26 + 0.222 5.233 + 0.15P 12.46 +0.021 b 7811+ 1.67°¢ 75.40 + 0.88 2.733 £0.06 ¢
b 18.27 £ 0.15¢ 3.817 +0.034 9.383 +0.074 5152 +0.72f 65.72 + 0.92 de 2.285 + 0.072 de

Note: Results displayed are a representation of triplicate quantifications per extract. T : Freeze-dried, with 5% GA and 5% GE; Tg: Freeze-dried, with 5% GA and 5% MD; T¢: Freeze-dried,
with 10% GA; Tp: Freeze-dried, with 10%. ! Total phenolic contents (TPC) expressed as mg gallic acid equivalents (GAE) per g of dry extract; 2 Flavonoid content expressed as mg
quercetin equivalents (QE) per g of dry extract; 3 Total condensed tannin content based on calibration curve of (+)-catechin, expressed as mg catechin equivalents (CE) per g of dry
extract. * DPPH expressed as pmol/g sample on dry basis; 3 B-carotene of extracts (5 mg/mL) based on percent bleaching inhibition. ¢ ECsy (mg/mL) is representative of the effective
concentration at which 50% of ABTS* radicals were scavenged. The Dunnett’s test was to evaluate the significance with confidence level was set to 95%; different letters within the same
column indicate significant differences (p < 0.05).
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The antioxidant activity for microencapsulated powders determined by DPPH, 3-carotene and
ABTS* assay were illustrated in Table 1. All microencapsulated products had showed decrease
antioxidant by DPPH assay in relation to original extract (control) and their retention ranged from
38.84-64.50%. Tp (5% GA & 5% MD) and T, (10% GA) illustrated the highest antioxidant activity; these
results were agreement with previously found values by Souza et al. [39]. The order for effectiveness
was noticed as: Tg > Tc > Ta > Tp. In the case of 3-carotene bleaching assay, the antioxidant retention
for all microencapsulated products were explored from 77.59% to 93.93% in comparison to original
extract, Tg (5% GA & 5% MD) showed maximum value for antioxidant activity in a similar way
as in DPPH assay. Remaining treatments have been categorized in context of efficacy as followed:
Tc >Tp > Ta. Referring to antioxidant assay by ABTS™ radical scavenging activity, the range of
retention was from 62.2% to 86.68%. The noteworthy consequence was revealed for Tp (5% GA &
5% GE), while Tp (5% GA & 5% MD) and T (10% GA) also illustrated the significant results with
retention of 75.27% and 74.18% respectively. The above discussion suggested the worthiness of diverse
antioxidant assay for secure and overwhelming conclusion, because each assay comprised its own
preciseness and proceeds at a challenging site of action. Amongst the all lyophilized encapsulated
products, the antioxidant activity was higher in Tg and T, being related to the presence of high
antioxidant components (i.e., TPC, TFC & TCT) (Table 1), which provided an excellent defense system
against unrestrained oxidation, owing to its high reducing power. Furthermore, there is no report yet
on microencapsulation of aforesaid polyphenol enriched extract from PHF and their characterization
related to analysis for antioxidant.

4.2. Physical Characteristics of Microencapsulated Powder Products

Physical factors i.e., water activity; moisture contents and hygroscopicity are indispensable for
encapsulating products steadiness and storage, whilst aqueous solubility is correlated with ability of
powder products for reconstitution [18].

The moisture contents for four different lyophilized encapsulated products were demonstrated in
Figure 1A. The moisture content of said powders were ranged from 7.07% to 9.04%; on the contrary,
no significant difference was found between Tg and Tp (7.41% and 7.21%, respectively). Our findings
was validated by earlier investigation which elaborated the moisture contents for blackberry fruit
drink encapsulated by means of MD and trehalose dehydrate were of 2.44-6.11% [40]. Lower freezing
temperature i.e., less than —40 °C consequences in quick freezing, eventually caused tiny pores
in the superficial coatings, which might encumber the mass transfer and regarded as an obstacle
for sublimation process, causing the higher retention of moisture contents in microencapsulated
products [41].

The water activity (aw) of all microencapsulated products (Figure 1B) was ranged from 0.310 to
0.450, and all final encapsulated products were noticeably dissimilar from one another, apart from
T (5% GA & 5% MD). Tp (10% MD) demonstrated the maximum ay, value of 0.450 which was
corroborating with previous study carried out by Gurak et al. [42] who found that a,, of grape fruit
drink microencapsulated by the means of maltodextrin utilizing lyophilization technique was 0.430.

Various factors that determine the solubility of the microencapsulated powdered products
includes: the feed composition and particle size. The selection of the wall material is very important,
not only for the solubility itself but also to the crystalline state that ultimately bestowed to the dried
powders [43]. The aqueous solubility for all lyophilized treatments was ranged from 84.06% to
92.31% as illustrated in Figure 1C. The solubility of the final product possibly not only associated with
solubility prospective of microencapsulating wall material but also on attainted particle size in final
desirable product; if particle size would be minute, it would ultimately provide the better surface
area’s availability for the hydration process [44,45]. The highest solubility value was obtained for
treatment Tp (10% MD) that was consistent with previous work. Moreira et al. [20] elaborated the
solubility percentage for acerola pomace extract ranged from 90.97 to 96.92%, using MD and tree’s
gum of cashew apple as microencapsulating wall materials.
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The hygroscopicity values for all microencapsulated powder products by the means of
freeze-dying method were depicted in Figure 1D. These were ranging from 11.92% to 14.35%,
representing a lesser amount of hygroscopicity values for powder products; hence assisted the
protection of antioxidant components. The findings of current work have much resemblance
with preceding work, utilizing related sort of microencapsulating wall materials. Some renowned
investigators reported the hygroscopicity of microencapsulated products made up from bark extract
of jaboticaba tree using MD and GA as wall material of 17.75%. The lyophilized powdered products
demonstrated the lesser hygroscopic values, regardless the presence of higher contents of moisture [15].
The aforesaid behavior was also reported by Khazaei, et al. [46]. The lower values of hygroscopicity for
the all lyophilized products mainly attributed to the bigger particle size, since the bigger the particle
size, the lesser the uncovered surface area, therefore low down the water absorption [16,47].

The stability of microencapsulated powdered products for the period of storage was principally
determined by glass transition temperatures (Tg), the lower the Tg resulting in lower the stability of final
product and vice versa. The glass transition temperatures of all lyophilized products were of 15.86 to
45.0 °C in range (Figure 1E). Amongst all lyophilized microencapsulated products, the T represented
the highest glass transition temperature (45.0 °C), proving maximum stability. Furthermore, other
treatments also showed significant values for Ty except Tp. The glass transition temperature has been
influenced by diverse factors, including moisture contents, chemical configuration and molecular
mass of subjected matter [48]. Adhikari et al., 2004 found the lower transition temperatures of fruit
drinks/extract were mainly due to the existence of elevated quantity of low molecular weight organic
acids and polysaccharides [49]. Additionally, integration of microencapsulating agents in extracts has
much predisposed on glass transition temperatures which varied according to molecular weight of
encapsulating material; increase in molecular weight of wall material resulting the increase in final
Tg of the product. The results of our current work were corroborated with earlier findings [50-52].
The lyophilized microencapsulated product obtained from treatment D (Tp) represented the lower
T because of lower molecular weight of MD. Moreover, this behavior was not noticed in Tc (10%
GA), Ta (10% GA & 5% GE) and Tg (10% GA & 5% MD) due to the existence of uppermost molecular
weight of GA in the term of quality and quality of wall material.

4.3. Bioavailable TP Contents

TP bioavailability ratios, articulated in the term of percentage, were computed by using the
equation as followed:
[TP]Dialyzable
[TP] Total

where, Bav (%) represented the percentage (%) for TP bioavailability, whereas [TP] Total and [TP]
Dialyzable demonstrated TP concentrations after the PLE extraction method and in vitro digestion
procedure respectively.

Figure 1F depicted the bioavailability ratio (%) for all freeze-dried microencapsulated products.
Treatment Tp and Tc demonstrated the excellent bioavailability ratios (%) i.e., 57.25 and 54.64%
respectively; there was no significant difference in Tg and Tp. Furthermore, no research has yet been
conducted on in vitro dialyzability analysis of aforesaid microencapsulated PHF products.

Bav(%) = x 100

4.4. a-Amylase & a-Glucosidase Inhibition

Type-II DM an outcome of insulin resistance is a metabolic disease that, according to the latest
data for the World Health Organization in 2014, impinges on 9% of the world’s population, both in
developed and developing countries, and directly caused 1.5 million deaths in that single year [53,54].
In order to hamper the side effects of type-II DM, insulin injection and usage of anti-hyperglycaemic
substances are two key conventional approaches. The management of the blood sugar level is effective
and novel approach to overcome the diabetes mellitus and related complications. Inhibitors of
carbohydrate hydrolyzing enzymes (i.e., a-amylase and «-glycosidase) have been practically valuable
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as oral hypoglycemic drugs and regarded as a reliable indicator for the efficacy of therapeutic
agents [55,56]. Several x-amylase inhibitors including acarbose, miglitol and voglibose are clinically
useful to treat diabetes but these are expensive and have considerable clinical side effects. Medicinal
plants have great potential to retard the absorption of glucose by inhibiting the saccharides hydrolyzing
enzymes [57-60].

There was an attempt to explore the remarkable drugs from medicinal plants featured with
elevated potency and less adverse effects than existing drugs [61,62]. Therefore, screening and isolation
of inhibitors from plants for these enzymes are escalating.

In the aforementioned context, our microencapsulated polyphenolic enriched powders were
investigated for x-amylase and x-glycosidase inhibition as shown in Figure 2A,B. Diverse classes
of polyphenolic compounds in the current PHF extract were detected likewise: flavonoids,
alkaloids, terpenoids, lignans, glycerophospholipid, prenol lipids and their derivatives (detailed
in Section 4.7), which eventually may be considered for anti-diabetic potential of microencapsulated
powders of current study. The treatment Tc (10% GA) demonstrated the highest inhibition at
concentration of 4 mg/mL, for c-amylase (93.33 £ 2.65, with ICsy value 1.47 mg/mL £ 0.57) and
a-glucosidase (73.39 & 1.66 with ICsg value 2.03 + 0.45 mg/mL), representing highest anti-diabetic
potential. Previously, none of investigation has yet been carried out on lyophilized aforementioned
microencapsulated PHF products. Additionally, there is no report on microencapsulation of polyphenol
enriched extract from PHF and their characterization for anti-diabetic potential purposes, which
eventually facilitate to take decision for commercialization of microencapsulated products i.e.,
polyphenols enriched nutrient supplement.
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Figure 2. (A,B) a-amylase and «-glucosidase inhibition activities of PHF extract microencapsulated
with GA, GE, MD and their combinations by freeze-drying method. Control: Acarbose; Treatment
A (Tp): Freeze-dried, with 5% GA & 5% GE; Treatment B (Tg): Freeze-dried, with 5% GA & 5% MD;
Treatment C (T¢): Freeze-dried, with 10% GA; Treatment D (Tp): Freeze-dried, with 10% MD.

4.5. Size Distribution and Morphology of Microencapsulated Powders

Different polymers exhibited particular protection capacity, so the evaluation of microencapsulated
products is very crucial. This aforesaid capacity elaborated the extent of micro-pores and reliability
of encapsulated micro-particles [63]. The structural analysis of the encapsulated products from the
lyophilization methodology was conducted by the means of scanning electron microscope (Quanta
250 EFI). Comparison of the images illustrated the noticeable variation in term of particle structure
and size allocation amongst the different microencapsulated products and their combination attained
after lyophilization. Figure 3A-D demonstrated the morphology of all freeze-dried microencapsulated
products. As can be seen all lyophilized products presented the irregular shape like broken glass
with appreciable proportion of pores on surface. The outcome of current investigation has agreement
with the recent work explored by Kuch and Norena [64]. These authors studied on morphological
aspects of lyophilized products, made up from the peel of grapes and pomace of Averrhoa carambola
and presented the final product as porous, uneven and brittle conformation; furthermore they also
described the reason behind the high porosity of lyophilized products as development of ice crystals
had happen in material which as a result retarded the breakdown of final configuration and hence less
change in volume occurred.

There was a direct association between span value and dispersal of particle size, the lesser span
value demonstrating a uniform distribution of micro-particles [65]. The size of micro-particles from
the final products was in the range of 18.08 to 391.30 um. T4 explored the higher particle size (more
than 287 um), whereas Tp showed the lowest one (Table 2). Our current work is consistent with prior
investigation, examined by other authors [57] who found that the particle size of microencapsulated
product via freeze-dying method reached up to 300 um. The bigger particle dimension of lyophilized
products was mainly attributed to rapid freezing and less availability of force to crush the freeze drop
during lyophilization [66,67]. Moreover, particle size was also influenced by crushing procedure which
was generally accustomed for size reduction after lyophilization.
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(C) Treatment-Tc (D) Treatment-Tp

Figure 3. (A-D) Micrographs of PHF extract microencapsulated with GA, GE, MD and their
combinations by freeze-drying method. (A) Treatment-Tp: Freeze-dried, with 5% GA & 5% GE;
(B) Treatment-Tg: Freeze-dried, with 5% GA & 5% MD; (C) Treatment-T¢: Freeze-dried, with 10% GA;
(D) Treatment-Tp: Freeze-dried, with 10% MD.

Table 2. Average diameter and particle size distribution (Span) of the PHF extract microencapsulated
with GA, GE, MD and their combinations by freeze-drying method.

Treatments Average Diameter (um) Span
Ta 151.13 1.74
Tp 76.15 1.21
Tc 92.79 2.88
Tp 18.95 1.52

Treatment A (T4 ): Freeze-dried, with 5% GA and 5% GE; Treatment B (Tg): Freeze-dried, with 5% GA and 5%
MD; Treatment C (T¢): Freeze-dried, with 10% GA; Treatment D (Tp): Freeze-dried, with 10% MD.

4.6. Acute Toxicity

No toxic effects and mortality were observed at a dose of 2000 mg/kg by gavage. Consequently,
microencapsulated products of PHF extract were regarded as safe for consumption.

4.7. Bioactive Compounds from LC-ESI-QTOF-MS Analysis

The ethanolic extract of freeze dried fine powder of PHF was a multifaceted mixture of compounds.
Figure 4 characterized the chromatogram of said ethanolic extract. The bioactive compounds were
recognized by means of the comparing retention times (RT) and MS/MS spectra granted by QTOF-MS
with those of valid standards wherever obtainable and via elucidation of MS and MS/MS spectra
from QTOF-MS merged with data available in literature. MS data of identified compounds has been
recapitulated in the Table 3 including calculated m/z for molecular formulas provided, main fragment
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obtained by MS/MS, error and proposed compound for each peak. Diverse classes of polyphenolic
compounds have been discovered in the ethanolic extract of PHE. Annotated compounds represented
the diverse classes includes flavonoids, alkaloids, terpenoids, lignans, glycerophospholipid and
prenol lipids.

x10 7 |+ESI TIC Scan Frag=175.0V Ali.d
1 1
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Counts vs. Acquisition Time (min)

Figure 4. Chromatogram of the Ethanolic extract derived from freeze dried powder of PHF.

Peaks 4, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 28, 32, 36, 39, 41, 44 and 45 represented different
flavonoid compounds and their derivatives which possess diverse previously proven biological
activities i.e., anti-inflammatory, anti-nociceptive, anti-oxidative, anti-dengue, anti-malarial [68—74].
Among them 3 bioactive compounds (peak 9, 18 and 39) were classified as 6-prenylated flavones
(i.e., flavones that features a C5-isoprenoid substituent at the 6-position). These bioactive compounds
are insoluble in aqueous solution and designated as a faintly acidic compound. These compounds
previously found in fruits, peas and pulses and considered to be flavonoid lipid molecules. While some
compounds (peak 17, 41, 44 and 45) belong to sub class flavonoids glycosides likewise; quercetagetin
7-glucoside (compound 17, m/z 481.2572 [M + H]) and quercetin 3-(6”-malonylglucoside)-7-glucoside
(Compound 41, m/z713.5121 [M + H]) were recognized as flavonoid-7-o-glycosides. These are phenolic
compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at
the C 7-position. These derivatives of flavonoids have priory proved strong antioxidative, anticancer,
neuro-protective, anti-inflammatory, diuretic, hypoglycemic and anti-hepatitis activities [75,76].
Moreover, catalpol m/z 363.195 [M + H] (compound 15) demonstrated a variety of biological activities
including anti-cancer, neuro-protective, anti-inflammatory, diuretic, hypoglycemic and anti-hepatitis
virus effects. Previous studies have also provided some clues that catalpol can affect energy metabolism
through increasing mitochondrial biogenesis, enhancing endogenous antioxidant enzymatic activities
and inhibiting free radical generation ultimately attenuates oxidative stress [77].
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Table 3. Bioactive Compounds identified in Ethanolic Extract of PHF.

Peak No. RT (min) Assigned Compound Name Elemental Composition m/z [M + HI* Difference (mDa)
1 8.773 Caffeic acid 4-sulfate CoHgO7S 261.128 0.71
2 9.458 Steviol CyoH3003 319.1329 —-0.92
3 9.708 Antherospermidine C18H11NOy 305.1541 0.15
4 9.904 Eriodictyol C15H120¢ 289.1231 —0.14
5 9.95 Phloretin C15H1405 275.1077 1.04
6 10.177 Zanthobisquinolone Cp1H1gN>Oy 363.1589 0.57
7 10.384 Murrayazolinol Cp3H5NO, 349.1795 0.72
8 10.639 Patuletin C1H120g 333.1488 0.34
9 10.746 Albanin d Cy5Hp605 407.1849 0.84
10 10.834 3,5,8,3' 4’ 5'-Hexahydroxyflavone C15H19O0g 319.1329 0.31
11 10.918 Myricetin C15H190g 319.1692 0.3
12 10.936 Dehydroneotenone C19H1504 393.2055 0.77
13 11.219 Carissanol CpoHp40O7 377.1746 0.86
14 114 Epigallocatechin 3-O-cinnamate Cp4Hp0Og 437.2313 —0.13
15 11.479 Catalpol C15H2Oq9 363.195 0.8
16 11.528 Secoisolariciresinol CooH606 363.1589 0.46
17 11.805 Quercetagetin 7-glucoside Cy1Hp9O13 481.2572 —0.02
18 11.945 Cajaflavanone Co5Hp05 407.2208 —-0.17
19 12.163 Barbatoflavan Cp4HpgOq3 525.2828 0.9

20 12.348 Celastrol Cy9H3504 451.2469 0.04
21 12.484 6-Gingerol C17H604 296.1487 ~1.92
22 12.77 Euphorbia diterpenoid 3 C33Hy0011 613.3348 0.89
23 13.017 2-Hexaprenyl-6-methoxyphenol Cs7H560; 534.3435 0.67
24 13.278 PE(P-16:0/18:2(9Z,127)) Cs9oH74NO,P 701.3867 -11
25 13.569 Buddliedin A C17Hp403 277.1385 —0.24
26 16.104 Phytosphingosine C18H39NO; 318.2974 —0.04
27 17.059 1-Eicosenee CyoHyg 282.2015 0.84
28 19.53 Tectorigenin C16H1204 301.1391 0.18
29 20.643 3-O-cis-Coumaroylmaslinic acid C39H540¢ 619.3973 —-04
30 20.884 PA(18:3(6Z,92,127)/20:3(82,11Z,147)) C41HgoOgP 721.4644 0.32
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Peak No. RT (min) Assigned Compound Name Elemental Composition m/z [M + HI* Difference (mDa)
31 21.141 Eurysterol A sulfonic acid CoyHyO7S 515.3518 0.33
32 21.548 Citflavanone CaoHi505 338.3391 1.25
33 21.698 Mesaconitine C33Hy5NOq 1 631.4345 —0.17
34 22.01 Xanthoangelol CosHpg0y 393.294 0.44
35 22.385 PA(15:0/22:4(7Z,10Z,13Z,16Z)) CyoHy;OgP 711.4757 0.56
36 22.589 2/ 5,6-trimethoxyflavone C18H1405 312.3236 1.42
37 22.613 Ubiquinol-8 Cy9H704 729.5073 0.38
38 22.646 Epicalyxin ] CypH3509 686.4852 0.14
39 22.967 Luteone CyoH180¢ 354.37 1.64
40 23.177 Luteolin 4’-sulfate Ci5H1909S 366.3702 143
41 23.524 Quercetin 3-(6”-malonylglucoside)-7-glucoside C30H3,090 713.5121 0.64
42 24.348 Phytoene CaoHes 545.1143 0.39
43 26.083 Epigallocatechin 3,3’ ,-di-O-gallate Co9H», 015 610.1796 0.62
44 26.819 Kaempferol 3-(2" 3" -diacetyl-4"-p-coumaroylrhamnoside) C34H30014 663.4496 0.47
45 29.446 Delphinidin 3-(6"-malonyl-glucoside) Cp4H»3015 684.1982 0.21
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Mesaconitine (peak 33, m/z 631.4345 [M + H]) and antherospermidine (peak 3, m/z 305.1541
[M + HJ*) were the member of group named alkaloids, later have a structure that contains an
aminoethylphenanthrene moiety. Atherosperminine has been cited to be in fruits and bark of
Cryptocarya nigra (Lauraceae) and have strong antioxidant, anti-mlarial and anti-microbial activities [67].
Steviol, m/z 31 9.1329 [M + H] designated as (peak 2) in our list of metabolites, is diterpene alkaloids
with a structure that is based on the kaurane skeleton. It possesses a [3, 2, 1]-bicyclic ring system with
C15-C16 bridge connected to C13, forming the five-member ring D. This compound was excessively
found in different sorts of fruits and primarily responsible for the sweet taste of stevia leaves. This
compound is considered safe for human consumption and was approved as a food additive by the
Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) and helped to
reduce the oxidative stress [78]. In addition, the peak 6 is of zanthobisquinolone, m/z 363.1589 [M + H]
and peak 7 is of murrayazolinol, m/z 349.1795 [M + H] belongs to the class quionlines and their
derivatives, also alkaloid in nature. These are usually present in herbs, spices and some fruits [79-81].
Various anti-malarial, anti-parasitic, anti-bacterial and anti-viral drugs do contain a major constitute of
aforesaid bioactive compound [82].

Besides flavonoid and alkaloids, these are also some compounds which have appreciable
share, belong to class prenol lipids (peak 20, 23, 37 and 42). Amongst, ubiquinol 8 (peak 37, m/z
729.5073 [M + H]* belongs to organic compounds known as polyprenyl quinols. It is the reduced
configuration of ubiquinone-8. It plays a function as an electron transporter in mitochondrial
membrane, where it carries two electrons from either complex I (i.e., NADH dehydrogenase) or
complex II (i.e., succinate-ubiquinone reductase) to complex III, whilst, compound 42, named phytoene
fragmented at m/z 545.1143 [M + H] is member of class regarded as carotenes and further belongs
to family carotenoids. These are unsaturated hydrocarbons comprising of eight repeated isoprene
units. They have also previously proven antioxidant, anti-cancer activity and facilitate to reduce the
complications [83].

Amongst the known natural bioactive compounds, terpenoids are considered to be of
approximately 60%. Plant terpenoids are extensively used for their aromatic qualities and play
a role in traditional herbal remedies, for instance; Euphorbia diterpenoids 3 (peak 22) possesses a
variety of different core frameworks and exhibit a diverse array of beneficial activities, including
anti-tumor, anti-inflammation, and immune-modulatory features and regarded as excellent source in
term of scientific attraction [84]. On the other hand, Buddledin A (peak 25) a sesquiterpenoid based
on a humulane skeleton, displaying selective anti-fungal activity against dermatophytes [85], while
3-O-cis-coumaroylmaslinic acid (peak 29) have ability to attenuate oxidative stress.

Lignans were usually found in fruits and have proved strong anti-cancer and antioxidant activities.
Among them, compound 16 (secoisolariciresinol) and compound 13 belong to class dibenzylbutane
lignans and furanoid lignans respectively. It was present in a number of food items such as American
butterfish, Brazil nut, fireweed, and oriental wheat [86,87]. Besides these, peak 5 and 34 represented
phloretin and xanthoangelol respectively. These compounds showed various biological activities i.e.,
anti-tumor and anti-metastatic features [88,89].

Other detected compounds which were not discussed in detailed such as peak 21, 24, 26, 27, 30, 31
35, are intermediate products of either metabolism or biosynthesis of amino acids, (phosphor or/and
sphingo) lipids or others. For instance, metabolite 24th represented a phosphatidylethanolamine,
is an anchor protein, produced as an intermediate in gycosylphosphatidylinositol (GPI) anchor
biosynthesis pathway, while compound 30 and compound 35 are the phosphatidic acids, produced
in glycerolipid biosynthesis. The existences of such compounds are mainly attributed to the seeds
of Hygrophila spinosa T. Anders [90]. The 26th peak recognized as phytosphingosine, m/z 318.2974
[M + H], is an intermediate compound synthesized between dihrdro-shingosine and phyto-ceramide in
shingophospholipid metabolism. Phospholipids have diverse functions in varied processes of cell i.e.,
apoptosis, cell propagation, cell to cell interaction, differentiation etc. Furthermore, phytosphingosine
is naturally occurring sphingoid bases, fungi and plants are the rich source of phytosphingosine.
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It is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the
sphingoid long-chain base. Phyto-sphingosine induces apoptotic cell death in human cancer cells
by direct activation of caspase 8, and by mitochondrial translocation of Bax and subsequent release
of cytochrome C into cytoplasm, providing a potential mechanism for the anti-cancer activity of
phytosphingosine. The metabolite 01, m/z 261.128 [M + H] have been referred to caffeic acid 4-sulfate
(polyphenol) belongs to a class cinnamic acids and their derivatives. Hydroxycinnamic acids are
compounds containing a cinnamic acid where the benzene ring is hydroxylated. It is one of the most
representative phenolic acids in fruits and vegetables which have excellent antioxidative potential and
anti-carcinogenic activity [90-93].

As can been concluded that the current PHF is the mixture of previously proven [21-24]
health promoting herbs’ parts, so diversity and abundance of such detected antioxidant substances/
metabolites not only made sense but also verify the outcomes. Taking together, this is the first study
which exploited the metabolite profiling of said PHF enriched with antioxidants and their evaluation
for bioavailability and anti-diabetic potential after encapsulation.

5. Conclusions

In the current study, PHF polyphenolic extract was microencapsulated by utilizing GA, GE,
and MD as encapsulating wall materials, due to which resulting microcapsules found to have
withholding capacity of TPC more than 85% except Tp (68.22%), while conserving range of TFC
and TCT were found near to 60% except Ta. Elevated antioxidant activity was also revealed for Tg
and T¢ and reasonable for T4 and Tp, representing noteworthy and positive correlation of antioxidant
assays to all aforementioned antioxidant components. Taking all results into consideration, Tp
(5% GA & 5% MD) and Tc¢ (10% GA) showed the best performance attributable with respect to
the higher preservation of antioxidant components and antioxidant activity by means of DPPH and
-carotene assays and significant for an ABTS* radical scavenging activity, augmented by low contents
of moisture, water activity (aw), particle dimension and elevated solubility, hygroscopicity and Tg.
Additionally, the aforementioned treatments also demonstrated the excellent morphological features
with asymmetrical (irregular) micro-particle structures, depicted lower prevalence of coarseness and
crankiness. Moreover, T, Tc and T4 also characterized the highest anti-diabetic potential by reason
of their significant inhibition rate for x-amylase and x-glucosidase. In the context of bioavailability,
Tp and T¢ also demonstrated the excellent bioavailability ratios (%) (i.e., more than 50% & 40%
respectively). The bioavailability data revealed that microencapsulation of PHF (especially with T¢
and Tg) can improve the bioavailability of pH and thermo-labile bioactive compounds at intestinal
level which is a major site for absorption of bioactive compounds. In addition, no mice proved
any toxicity sign at a dose of 2000 mg/kg by gavage for any treatment. In the conclusive manner,
we recommended the Tg and T¢ as result of their incredible capability for preserving antioxidant
components to its usage in nutraceutical and functional products while masking the undesirable flavor
distinctiveness of herbs/herbal extracts.
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