Supplementary Material

'Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies' by Biljana Pokimica and María-Teresa García-Conesa

Table S1. Characteristics of the human trials included in this review: study design, type of participants, control and intervention description, dose and duration of treatment, analyses and related bioavailability studies.

	Study Experimental Characteristics						
Reference	Clinical trial design (RCT, crossover, parallel)	Participants (health status, gender)	C (Control description)	T (Treatment with bioactive compounds, products or diet)	Total daily dose, duration (d or h) ¹	Bioavailability studies: type of sample, compounds and (or) metabolites analysed, main results ²	
Mix meals and diets							
Persson I et al., 2000 [1]	Single arm	Healthy, men	C: not included	T: mix Veg	T: 250 g, 21 d	NR	
Møller P et al., 2003 [2]	RCT, parallel, double blinded (regarding C1 and C2)	Healthy, mix	C1: placebo tablet + energy drink (same amount of sugars as T) C2: tablet with antioxidants + minerals (same amount as T) + energy drink (same amount of sugars as T)	T: mix FruVeg	T: 600 g, 24 d	Plasma: (NS [↑]) β -car, T, C ₂ (post- vs pre-) (NC) VitC, T, C ₂ (post- vs pre-) (NS↓, 69%) VitC, β -car, C ₁ (post- vs pre-)	
Almendingen K et al., 2005 [3]	Randomized, crossover, single blinded	Healthy, mix	C: no proper control included (comparison between doses)	T1,2: mix FruVeg	T1: 300 g, T2: 750 g, 14 d	Plasma: $\uparrow \alpha$ -car, β -car, $T_2 vs T_1$ (post-) (NS \uparrow) Lyc, Lut, $T_2 vs T_1$ (post-) [4] Urine: \uparrow Quer, Isor, Nar, Hes, Total flavonoids $T_2 vs T_1$ (post-), T_1 (post- vs pre-), T_2 (post- vs pre-) \uparrow Kaem, Tam, Eri, $T_2 vs T_1$ (post-), T_2 (post- vs pre-); (NC) Phlo [5]	
Dragsted LO et al., 2006 [6]	RCT, parallel, double blinded (regarding C1 and C2)	Healthy, mix	C1: placebo tablet + energy drink C2: tablet with vitamins + minerals (same amount as T) + energy drink	T: mix FruVeg	T: 600 g, 24 d	Plasma: \downarrow VitC, β -car, C1 (post- vs pre-), \downarrow Lyc C1, C2 (post- vs pre-), $\uparrow\beta$ -car, C2 vs T (post-),C2 vs C1 (post-), $\uparrow\alpha$ -toc C2 vs T (post-) (NC) VitC, folate C2 vs T (post-) [7]	
Di Renzo L et al., 2014 [8]	Randomized, crossover	Healthy, mix	C: baseline (includes comparison between the different groups)	T1: Red wine T2: Med meal T3: T $_1+T_2$ T4: McD meal T5: T4+T1	T1: 250 mL, T2: 1 meal, T3: 250 mL T1 + T2, T4: 1 meal, T5: 250 mL T1 + T4, 4 h	NR	
De Lorenzo A et	Randomized,	Healthy,	C: not included	T1: Toc-enriched Med meal	T _{1,2} : 1 meal,	NR	

al., 2017 [9]	crossover	mix	(includes comparison between T_1 and T_2)	T2: western H-F meal	3 h	
Marques-Rocha JL et al., 2016 [10]	Single arm (part of RESMENA study [11])	MetS, mix	C: not included	T: hypocaloric Med-based diet	T: seven meals per day, Menu plan, 56 d	NR
Foods and derive	d food products					
Broccoli		1	1 -			
Gasper AV et al., 2007 [12]	RCT, crossover	Healthy, mix	C: water	T1: high SFGluc broccoli drink (2295.9 ± 217.53 μmol/L), T2: standard SFGluc broccoli drink (682.6 ± 113.30 μmol/L)	T:: 150 mL, T2: 150 mL, 6 h	Plasma: 1SF metabolites, T ₁ <i>vs</i> T ₂ (post-), T ₁ (max at 2h), T ₂ (max at 1 h 30) Urine: 1SF metabolites, T ₁ <i>vs</i> T ₂ (post-) [13]
Riedl MA et al., 2009 [14]	RCT, Parallel, Single blinded	Healthy, non-smokers mix	C: alfalfa sprout	T1-s: broccoli sprout (SFGluc)	T1: 25 g(~13 μmol SF), T2: 50 g (~26 μmol SF), T3: 75 g(~38 μmol SF), T4: 100 g(~51 μmol SF), T5: 125 g (~64 μmol SF), T6: 150 g (~76 μmol SF), T7: 175 g (~89 μmol SF), T8: 200 g (~102 μmol SF) C: 200 g, 3 d	Serum: [↑] SF, T ₁₋₈ (post- <i>vs</i> pre-) Detected at 24 h after final dose ND at baseline
Yanaka A et al., 2009 [15]	RCT, parallel, double blinded	H. pylori infected, mix	C: alfalfa sprout	T: broccoli sprout (SFGluc)	T: 50 g, 24 h	Urine: ¹ DTH, T (post- <i>vs</i> pre-), T <i>vs</i> C (post-) after 28 d and 56 d of 70 g SFG intake
Riso P et al., 2010 [16]	RCT, crossover	Healthy, smokers men	C: control diet	T: broccoli (SFGluc, Lut, β -car, VitC)	T: 250 g, 10 d	Plasma: [↑] folate, [↑] Lut, T (post- <i>vs</i> pre-) (NC) β-car
Atwell LL et al., 2015 [17]	Randomized, parallel (2-phases)	Healthy, non-smokers mix	C: no proper control included (includes comparison between T1 and T2)	T1: broccoli sprout (SFGluc) T2: myrosinase-treated broccoli sprout extract (SFGluc)	Phase I (single dose): T1: 200 μmol SFGluc, T2: 200 μmol SFGluc, 2 d Phase II (two doses in 12 h): T1:2 x 100 μmol SFGluc, T2:2x 100 μmol SFGluc, 2 d	Plasma: [↑] SF metabolites, T ₁ , T ₂ (post-), T ₁ <i>vs</i> T ₂ Urine: [↑] SF metabolites, T ₁ , T ₂ (post-), T ₁ <i>vs</i> T ₂
Doss JF et al., 2016 [18]	Parallel, open-label, phase 1	Sickle cell disease, mix	C: not included	T1-3: broccoli (SFGluc)	T1: 50 g, T2: 100 g, T3: 150 g, 21 d	Urine and complete metabolic profile analysed at the baseline and at the end of the study but results NR
Oils		1		L	I	1
Camargo A et	Randomized,	MetS,	C: no proper control	T1: high polyphenol olive	T1,2: 40 mL,	NR

al., 2010 [19]	crossover, double blinded	mix	included (comparison between T1 and T2)	oil (398 ppm) T2: low polyphenol olive oil (70 ppm)	4 h	
Konstantinidou V et al., 2010 [20]	RCT, parallel	Healthy, mix	C: habitual diet (includes comparison between T1 and T2)	T1: Med diet + virgin olive oil (328 mg/kg polyphenols), T2: Med diet + washed virgin olive oil (55 mg/kg polyphenols)	T _{1,2} : no specific daily dose established, provided 15 L for participants and their families, 90 d	Urine: ↓Tyr, T₂ vs C (post-), (NC) HTyr, T₂ vs C (post-), ↑Tyr, HTyr, T₁ vs T₂ (post-)
Chan JM et al., 2011 [21]	RCT, parallel, double blinded	Prostate cancer, men	C: soy oil + olive oil + multivit	T1: lycopene in soy oil + olive oil + multivit T2: fish oil + soy oil + multivit	T1: 30 mg, T2: 3 g, 90 d	NR
Castañer O et al., 2012 [22]	Randomized, crossover	Healthy, men	C: no proper control included (comparison between T1 and T2)	T1: high polyphenol olive oil (366 mg/kg) T2: low polyphenol olive oil (2.7 mg/kg)	T1: 25 mL (8.4 mg polyphenols), T2: 25 mL (0.06 mg polyphenols), 21 d	Urine: ↑Tyr, HTyr, T ₁ vs T2 (post-)
Farràs M et al, 2013 [23]	Randomized, crossover, double blinded	Healthy with pre- or stage-I hypertension, mix	C: no proper control included (comparison between T1 and T2)	T1: high polyphenol olive oil (961 mg/kg) T2: moderate polyphenol olive oil (289 mg/kg)	T1: 30 mL (26.2 mg polyphenols), T2: 30 mL (8 mg polyphenols), 5 h	Plasma: [†] HTyr metabolites, T1 (post- <i>vs</i> pre-), T2 (post- <i>vs</i> pre-) Max at 2 h post
Perez-Herrera A et al., 2013 [24]	Randomized, crossover	Healthy obese, non-smokers, mix	C: no proper control included (comparison between different groups)	T1: heated virgin olive oil T2: heated sunflower oil T3: heated T2 + canola oil +dimethylpolysiloxane T4: heated T2 + canola oil + olive antioxidants	T1-4: 0.45 mL of oil/kg BW volunteer, 4 h	NR
Rangel-Zuñiga OA et al., 2014 [25]	Randomized, crossover	Healthy obese, non-smokers, mix	C: no proper control included (comparison between different groups)	T1: heated virgin olive oil T2: heated sunflower oil T3: heatedT2 + canola oil +dimethylpolysiloxane T4: heated T2 + canola oil + olive antioxidants	T1-4: 0.45 mL oil/kg BW volunteer, 4 h	NR
Hernáez Á et al., 2015 [26]	Randomized, crossover, double-blinded	Healthy, men (sub-sample from the EUROLIVE study [27])	C: no proper control included (comparison between T ₁ and T ₂)	T1: high polyphenol olive oil (366 mg/kg) T2: low polyphenol olive oil (2.7 mg/kg)	T1:25 mL (8.4 mg polyphenols) T2: 25 mL (0.06 mg polyphenols), 27 d	Urine: ↑Tyr, HTyr, T1 (post- vs pre-), T1 vs T2 (post-)

Martín-Peláez S et al ., 2015 [28]	Randomized, crossover, double blinded	Healthy, men (subsample from the EUROLIVE study[27])	C: no proper control included (comparison between T ₁ and T ₂)	T1: high polyphenol olive oil (366 mg/kg) T2: low polyphenol olive oil (2.7 mg/kg)	T1: 25 mL (8.4 mg polyphenols), T2: 25 mL (0.06 mg polyphenols), 21 d	Urine: [↑] Tyr, [↑] HTyr, ^T ¹ (post- <i>vs</i> pre-), T ¹ <i>vs</i> T ² (post-) 24 h
Kruse M et al., 2015 [29]	Randomized, parallel	Healthy obese, men	C: no proper control included (comparison between T1 and T2)	T1: rapeseed/canola oil (MUFA, PUFA) T2: Olive oil (MUFA)	T1: 50 g, T2: 50 g, 28 d, T1: 25 g, T2: 25 g, 4 h	Plasma: $n-3$ (ALA, EPA), T ₁ (post- vs pre-) \downarrow n-6/n-3 ratio, T ₁ (post- vs pre-) (NC) n-3, n-6, T ₂ (post- vs pre-), (NC) DHA, T ₁ , T ₂ , (post -vs pre-)
Nuts					-	
González- Sarrías A et al., 2010 [30]	Randomized, parallel	Benign prostate hyperplasia or cancer, men	C: not consuming T1 or T2	T1: walnuts (ETs), T2: pomegranate juice (ETs)	T1: 35 g (202 mg ETs + 8 mg free EA), T2: 200 mL (265 mg ETs + 14 mg free EA), 3 d	Urine, plasma: Uro-A-gluc main metabolite detected. High interindividual variation in Uro metabolites, T1, T2 (post-) Prostate tissue: Detection of Uro-A-gluc, Uro-B-gluc, DMEA, T1, T2 (post-)
Hernández- Alonso P et al., 2014 [31]	RCT, crossover	Pre-diabetes, mix	C: control diet	T: control diet + pistachio	T: 57 g pistachios, 120 d	Plasma: ↑LZ , ↑γT, T vs C (post-), T (post- vs pre-)
Donadio JLS et al., 2017 [32]	Single arm	Healthy, mix (from SU.BRA.NUT study [33])	C: not included	T: Brazil nut (Se)	T: 3-4 g (300 μg) 56 d	NR
Di Renzo L et al., 2017 [34]	RCT, crossover	Healthy, mix	C: no proper control included (includes comparison between T1 and T2)	T1: McD meal+ raw hazelnuts T2: McD meal	T1: 1 meal + 40 g T2: 1 meal, 3 h	NR
Beverages				•	-	
Guarrera S et al., 2007 [35]	Randomized, single arm (part of a RCT, parallel study)	Healthy smokers, men	C: not included	T: green tea, bilberry juice and soya products (flavonoids)	T: dose not reported (flavonoids intake estimated), 28 d	Urine: (NC) phenolics, T (post- vs pre-)
Volz N et al., 2012 [36]	Single arm	Healthy, men	C: not included	T: coffee (CGA, NMP)	T: 29.5 g, 28 d	NR
Boettler U et al., 2012 [37]	Single arm	Healthy, men	C: not included	T: coffee (CGA, NMP)	T: 29.5 g, 28 d	NR
Various						
de Pascual- Teresa S et al., 2003 [38]	RCT, crossover, single blinded	Healthy, mix	C: glucose + water	T1: white onion + maltodextrin (low in Quer), T2: yellow onion	T1: 368 g (11.2 mg of Quer aglycone content), T2: 368 g (306.9 mg of Quer aglycone content),	Plasma: [†] Quer metabolites (sulfated, glucuronide, methylated), T ₂ (max at ~1 h)

				(high in Quer)	C: 25 g + 400 mL 3 h, 6 h	
Marotta F et al., 2010 [39]	Single arm	Healthy, non-smokers mix	C: not included	T: fermented papaya	T: 6 g (sublingual) 28 d	NR
Bertuccelli G et al., 2016 [40]	RCT, parallel, double blinded	Healthy with aging skin, mix	C: antioxidant mix (<i>trans</i> -Res + selenium + VitE + VitC	T: fermented papaya	T: 9 g (sublingual) C: 10 mg+60 µg+10 mg+50 mg, 90 d	NR
Ishikawa H et al., 2012 [41]	RCT, parallel, double blinded	Adenoma polyps, mix	C: placebo	T: propolis (Atrepillin C, polyphenols)	T: 165 μmol Atrepillin C 150 μmol phenols, 90 d	NR
Extracts and mixe	ed compounds or su	pplements		•		
Fruit extracts	1	1	1	•	1	
Nguyen AV et al., 2009 [42]	Randomized, parallel, open label, phase I	Colon cancer, mix	C: not included	T1: Res + Quer T2: Res + Quer T3: grape powder* T4: grape powder* *(Res, flavanols, flavans, anthocyanins, catechin)	T1: 15.54 mg + 480 mg, T2: 3.886 mg + 120 mg, T3: 120 g (0.114 mg Res) T4: 80 g (0.073 mg Res) 14 d	NR
Weseler AR et al., 2011 [43]	RCT, parallel, double blinded	Healthy, non-obese, men	C: placebo	T: flavanols isolated from grape seeds	T: 200 mg, 56 d	NR
Barona J et al., 2012 [44]	RCT, crossover, double blinded	MetS, men	C: placebo	T: grape powder	T: 46 g (267 mg polyphenols), 28 d	NR
Tomé-Carneiro J et al., 2013 [45]	RCT, parallel triple blinded	Hypertensive with T2D, men	C: placebo	T1: grape extract T2: grape extract + Res	T1: 151 mg polyphenols T2: 139 mg polyphenols + 8 mg Res 183 d (×1), 365 d (×2)	NR
Mallery SR et al., 2008 [46]	Single arm	Premalignant oral lesions vs healthy, mix	C: not included	T: black raspberry gel	T: 2 g (lingual application) 42 d	NR
Kropat C et al., 2013 [47]	Parallel	lleostomy probands <i>vs.</i> healthy, women	C: not included	T: bilberry pomace extract (anthocyanins)	T: 10 g (2.5 g anthocyanins), 8 h	Ileostomy effluent: within 1-2 h detected 30 ± 6% of ingested anthocyanins (a large % was degraded during passage of the upper gastrointestinal tract)
Knobloch TJ et al., 2016 [48]	Single arm Phase 0	Oral squamous cell cancer, mix	C: not included	T: black raspberry dried powder (anthocyanins, EA, ET, Quer glycosides)	T: 4.3 g, ~14 d	Cancer tissue: C3R, C3X, C3G, C3S detected (post-)

Xie, L et al., 2017 [49]	RCT, parallel, double blinded	Healthy former smokers, mix	C: 0.2% beet juice concentrate	T: aronia berry extract (polyphenols)	T: 500 mg, 84 d	Plasma, urine: (NC) anthocyanins, phenolic acids, T <i>vs</i> C (post-), T <i>vs</i> C (pre-)
Nuñez-Sanchez MA et al., 2017 [50]	RCT, parallel	CRC, mix	C: not consumed T	T1,2: pomegranate extract	T1: 900 mg (144 mg/g of punicalagin, 4 mg/g of punicalin, 588 mg/g of EA derivatives), T2: 900 mg (310 mg/g of punicalagin, 10.8 mg/g of punicalin, 56 mg/g of EA derivatives), ~14 d	Urine: High interindividual variability in Uro metabolites Colon: No relationship between detected Uro metabolites and gene expression
Knott A et al., 2008 [51]	RCT, parallel, single blinded	Healthy, women	C1: emulsion based on PEG-40-stearate C2: untreated area of skin	T: <i>Arctium lappa</i> fruit extract (0.25 % Arctiin) added to C (topical application)	T: 4 mg/cm ² (1 mg Arctiin) of skin, 84 d	NR
Plant extracts						
Shrestha S et al., 2007 [52]	RCT, crossover, double blinded	Healthy, mix (menopausal status mix)	C: placebo	T: <i>Psyllium</i> + plant sterols	T: 10 g <i>psyllium</i> + 2.6 g plant sterols, 28 d	NR
Ghanim H et al., 2010 [53]	RCT, parallel	Healthy, mix	C: placebo	T: Polygonum cuspidatum extract (Res)	T: 40 mg, 42 d	NR
Marini A et al., 2012 [54]	Single arm	Healthy, postmenopausal women	C: not included	T: pine bark extract Pycnogenol (procyanidins)	T: 75 mg , 84 d	NR
Carrera- Quintanar L et al., 2015 [55]	RCT, parallel, single blinded (+exercise training routine)	Healthy sport practising, men	C: placebo	T1: <i>Lippia citriodora</i> extract T2: Almond beverage (+VitE + VitC) T3: T1 +T2	T1: 1.2 g, T2: 250 mL (+ 25 mg+ 75 mg), T3: 0.55 g T1+250 mL T2 21 d	NR
Turowski JB et al., 2015 [56]	Single arm	Cystic fibrosis vs healthy, mix	C: not included	T: flaxseed (fiber + lignan phenolics + n-3 fatty acids)	T: 40 g, 28 d	Plasma: Classification based on high enterolignan and low enterolignan levels at 14 d ^ED, ^EL, in high-lignan group (post- <i>vs</i> pre-)
Oil derived product	s		1	1	1	
Plat J and Mensik RP, 2001 [57]	RCT, parallel, double blinded	Healthy, mix	C: rapeseed oil based margarine and shortening	T1: vegetable oil-based plant stanol esters mix added to C T2: wood-based plant stanol esters mix added to C	T1: ~3.8 g stanol esters, T2: ~4.0 g stanol esters C: < 0.1 g stanol esters 56 d	Serum: ↓Sit, Cam (reduced cholesterol absorption), T ₁₊₂ vs C (post-)
Crespo MC et	RCT,	Healthy,	C: placebo	T _{1,2} : Olive mill waste water	T1: 5 mg,	NR

al., 2015 [58]	crossover,	mix		extract Hytolive (enriched	T ₂ : 25 mg,	
Boss A et al., 2016 [59]	RCT, parallel, double blinded	Healthy, men	C: placebo (glycerol +sucrose, no polyphenols)	T: olive leaf extract (oleuropein, HTyr)	T: 20 mL (estimated to be ~17 mL, ~121.8 mg oleuropein, ~6.4 mg of HTyr),	NR
Daak AA et al., 2015 [60]	RCT, parallel, double blinded	Sickle cell disease patients, mix	C1: capsules containing high oleic acid (41%) blend C2: hydroxyurea	T: capsules containing n-3 PUFA (EPA, DHA)	T: 555.6-833.4 mg DHA + 78- 117 mg of EPA (doses according to age), C2: >20 mg/kg 365 d	Red blood cells: ↑EPA, ↑DHA, ↓n-6 PUFA, ↓AA, T (post- <i>vs</i> pre-) ↓EPA, ↑n-6 PUFA, C (post- <i>vs</i> pre-)
Labonté M-E et al., 2013 [61]	RCT, crossover double blinded	T2D, men	C: placebo (50/50 blend of corn and soybean oil)	T: fish oil (EPA + DHA)	T: 5 g of fish oil (3 g of EPA (64%= 1.92g) + DHA (36%=1.08g)) 56 d	Plasma phospholipid FA: ↑n-3 (EPA, DHA, DPA), ↓ n-6 (AA, DGLA), T <i>vs</i> C
Jamilian M et al., 2018 [62]	RCT, parallel, double blinded	GDM, women	C: placebo	T: fish oil (EPA + DHA)	T: 2000 mg (360 mg EPA + 240 mg DHA) , 42 d	NR
Mixed compounds	and products	·				•
Marini A et al., 2014 [63]	RCT, parallel, double blinded	Polymorphic light eruption photo- dermatosis, mix (+ UVA induced photo- dermatosis)	C: placebo (microcrystalline cellulose)	T: lycopene + β-car + probiotic (<i>Lactobacillus</i> <i>johnsonii</i>)	T: 1 capsule (2.5 mg + 4.7 mg + 5.10 ⁸ cfu), 84 d	NR
Farris P et al., 2014 [64]	Single arm	Healthy, women	C: not included	T: Res + Bai + vitE (topical application)	T: 2 mg/cm ² of skin, 84 d	Skin: Res, Bai detected in epidermis and dermis
Radler U et al. 2011 [65]	RCT, parallel, double blinded	Obese, hyperlipidemic, mix	C: low-fat yoghurt + vitC + vitE	T: low-fat yoghurt + grapeseed extract + fish oil + phospholipids + Carn + vitC + vitE	T: 250 g yoghurt +162 mg polyphenols + 200 mg n-3 PUFA + 800 mg phospholipids + 1 g Carn + 120 mg VitC + 20 mg VitE, 84 d	Urine: ↑Carn, ↑acyl-Carn T (post <i>vs</i> pre), T <i>vs</i> C (post-)
Single bioactive	compounds					
Frommel TO et al., 1994 [66]	Parallel	Prior history of CRC /polyps and healthy, mix	C1: placebo C2: (healthy, no T or C1)	T: β-car	T: 30 mg, 90 d	Serum, colon tissue: ↑ β-car, T (post- <i>vs</i> pre-)
Vors C et al., 2017 [67]	RCT, crossover, double blinded	Healthy with abdominal obesity,	C: corn oil (no EPA or DHA)	T1: EPA T2: DHA	T1: 2.7 g EPA, T2: 2.7 g DHA, C: 3 g	Plasma phospholipids: \uparrow EPA in T ₁ vs T ₂ or C, \uparrow DHA in T ₂ vs C or T ₁ [68]

	-					
		mix, (subsample of ComparED study [68])			70 d	
Yoshino J et al., 2012 [69]	RCT, parallel, double blinded	Healthy, non- obese (lean & overweight) women (post- menopausal)	C: placebo	T: Res	T: 75 mg, 84 d	Plasma: ↑Res , ↑dihydroRes, T (post- <i>vs</i> pre-) , max at ~2h
Poulsen MM et al., 2013 [70]	RCT, parallel, double blinded	Healthy obese, men	C: placebo	T: Res	T: 1500 mg, 28 d	Urine: ↑Res metabolites, T <i>vs</i> C (post-)
Olesen J et al., 2014 [71]	RCT, parallel, double blinded (+ exercise training in 2 of 4 groups)	Healthy physically inactive, men	C: placebo	T: Res	T: 250 mg, 56 d	NR
Chachay VS et al., 2014 [72]	RCT, parallel, double blinded	Overweight/ obese, non- alcoholic fatty liver disease, men	C: placebo	T: Res (from <i>Polygonium cuspidatum</i>)	T: 3000 mg, 56 d	Plasma pharmacokinetic study: [↑] Res after 60 min of oral dose (1.5 g). High interindividual variation (54%)
Yiu EM et al., 2015 [73]	Not randomized, parallel, open-label	Friedrich ataxia, mix	C: not included	T1,2: Res	T1: 1 g, T2: 5 g, 84 d	Plasma pharmacokinetic study: [↑] Res and Res metabolites (glucuronides, sulfates) after 45 min and 90 min of oral doses (0.5 and 2.5 g)
Mansur AP et al., 2017 [74]	Randomized, parallel	Healthy, overweight, mix	C: caloric restriction (1000 calories/d)	T: Res	T: 500 mg, 30 d	NR
Morrow DMP et al., 2001 [75]	Crossover (no wash-up period included)	Healthy, non-smokers, men	C: flavoured drink	T: Quer added to C	T: 30 mg, 14 d	NR
Nieman DC et al., 2007 [76]	RCT, parallel, double blinded, (+ exercise training)	Healthy trained cyclists, men	C: placebo (Tang powder)	T: Quer	T: 1000 mg, 24 d (21 d before+ 3 d of training)	Plasma: ↑Quer, T <i>vs</i> C (post, at 21 d)
Boesch- Saadatmandi C et al., 2009 [77]	RCT, crossover, double blinded	High CVD risk phenotype, mix	C: placebo	T: Quer	T: 150 mg, 42 d	Plasma : [↑] Quer after supplementation and in comparison to placebo
Nelson DM et al., 2011 [78]	Single arm	Acute myeloid leukaemia, mix	C: not included	T: flavopiridol	T: 50-100 mg/m ² (bolus infusion), 3 d	NR
Lazarevic B et	RCT,	Prostate cancer,	C: placebo	T: genistein	T: 30 mg,	NR

al., 2012 [79]	parallel, double blinded, phase-2	men			33 d	
Kerksick CM et al., 2013 [80]	RCT, parallel, double blinded, (+ exercise training)	Healthy non- resistance- trained, men	C: placebo (glucomannan)	T1: NAC T2: EGCG	T1: 1800 mg T2: 1800 mg, C: 1000 mg 14 d	NR
Most J et al, 2015 [81]	RCT, crossover, double blinded, (postprandial response)	Healthy, overweight, mix	C: placebo + liquid test meal (partially hydrolysed cellulose)	T: EGCG + liquid test meal	T: 282 mg 3 d	Plasma: [↑] EGCG (maximum concentration of EGCG 1 h after intake and then decline during 6 h)
Koosirat C et al., 2010 [82]	RCT, parallel	Chronic gastritis, mix	C: Omeprazole + Amoxicillin + Metronidazole	T: Turmeric tablet (containing 40 mg Cur)	T: 120 mg, 28 d, C: 40 mg + 2g + 1600 mg, 7 d	NR
Klickovic U et al., 2014 [83]	Single arm, phase-1 pilot study, open-label	Healthy, men	C: not included	T: Cur + Bioperine (black pepper extract containing the alkaloid piperine added to improve Cur bioavailability)	T: 12 g + 5 mg 2 d	Plasma: Cur ND (post-, pre-)

¹Unless otherwise indicated, dose and duration were the same for C and T; studies classified as acute (≤ 24 h); ²Bioavailability results presented as: sample where the compounds have been detected, \uparrow increase or \downarrow decrease, comparison where the change has been detected.

Table abbreviations (in alphabetical order): AA, arachidonic acid; ALA, alpha linolenic acid; *α*-car, *α*-carotene; *α*-toc, *α*-tocopherol; γ T, *γ*-tocopherol; β-car, β-carotene; Bai, baicalin; BW, body weight; C, control; C3G, cyanidin-3-glucoside; C3R, cyanidin-3-rutinoside; C3S, cyaniding-3-sambubioside; C3X, cyaniding-3-xylosylrutinoside; Cam, campesterol; Carn, carnitine; CGA, chlorogenic acid; cfu, colony-forming unit; CRC, colorectal cancer; Cur, curcumin; CVD, cardiovascular disease; d, days; DGLA, dihomo*γ*-linolenic acid; DHA, docosaxehaenoic acid; DMEA, dimethyl ellagic acid; DPA, docosapentanoic acid; DTH, dithiocarbamates; EA, ellagic acid; ED, enterodiol; EGCG, epigallocatechin gallate; EL, enterolactone; EPA, eicosapentaenoic acid; Eri, eriodictyol; ETs, ellagitannins; FruVeg, fruits and vegetables; GDM, gestational diabetes mellitus; h, hours; Hes, hesperetin; H-F, high-fat; HTyr, hydroxytyrosol; Isor, isorhamnetin; Kaem, kaempferol; Lut, lutein; Lyc, lycopene; LZ, lutein-zeaxantin; McD, Macdonald; Med, Mediterranean; MetS, metabolic syndrome; MUFA, monounsaturated fatty acids; multivit, multivitamin; NAC, N-acetyl-cysteine; Nar, naringenin; NC, no change; ND, not detected; NMP, *N*-methylpyridinum; NR, not reported; NS, not significant; n-3, omega-3; n-6, omega-6; PEG, polyethylene glycol; Phlo, phloretin; post-, after treatment; pre-, baseline or before treatment; PUFA, polyunsaturated fatty acids; Quer, quercetin; RCT, randomized control trial; Res, resveratrol; Se, selenium; SF, sulforaphane; SFGluc, sulforaphane glucosinolates; Sit, sitosterol; T, treatment; Tam, tamarixetin; T2D, type 2 diabetes; Tyr, tyrosol; Uro, urolithin; Uro-A-gluc, urolithin-A glucuronide; Uro-B-gluc, urolithin-B glucuronide; UVA, ultraviolet; Veg, vegetables; VitC, vitamin C; VitE, vitamin E. **Table S2.** Gene expression experimental features extracted from the articles collected in this review: type of sample, preparation and description; RNA extraction, quality/purity analysis and reporting; reference gene applied.

Reference	Sample/RT-PCR protocols								
	Sample description	Sample preparation, characterization, storage conditions	RNA isolation protocol, storage conditions	RNA quantity & quality analyses (Abs 260/280 or RIN values)	Reference gene(s)				
Blood		· ·		• •					
Almendingen K et al., 2005 [3]	Blood	Fasting blood samples collected at the baseline and the end of the study. Processed immediately after sampling.	RNA isolated from fresh blood using total RNA Chemistry and ABI Prism 6700t Automated Nucleic Acid Workstation. DNase step NR.	NR	GAPDH				
Guarrera S et al., 2007 [35]	Blood	Blood samples collected at the baseline and the end of the study, using PAXgene Blood RNA tubes.	Total RNA isolated using a column affinity procedure (PAXgene blood RNA kit). DNase step included.	NR	ACTB				
Doss JF et al., 2016 [18]	Blood	Blood samples collected at the baseline and the end of the study, using PAXgene Blood RNA tubes.	RNA isolated from blood using PAXgene Blood miRNA Kit. DNase step included.	NR	GAPDH				
Atwell LL et al., 2015 [17]	Blood	Blood samples collected in EDTA vacutainers before and at 3, 6, 12, 24, and 48 h after treatment. Samples preserved in PAXgene Blood RNA tubes.	Total RNA isolated using the PAXgene Blood miRNA kit. DNase step NR.	NR	GAPDH				
Di Renzo L et al., 2014 [8]	Blood	Fasting blood samples collected before and after each treatment using PAXgene Blood RNA tubes and stored at -80 °C until RNA extraction.	Total RNA isolated using PAXgene Blood miRNA Kit. DNase step NR.	Yes (quantity and quality assessed by spectrophotometer and agarose gel) (values NR)	<i>GAPDH, ACTB, HPRT1, B2M</i> (average value)				
Weseler AR et al., 2011 [43]	Blood	Blood collected at the baseline, in the middle (28 d) and at the end of the study, added to RNALater and stored at -80 °C.	Total RNA isolated from blood using RiboPure-Blood kit. DNase step included.	Yes (quantity and quality by spectrophotometer) (values NR)	GAPDH				
De Lorenzo A. et al., 2016 [9]	Blood	Fasting blood samples at baseline and 3-h postprandial samples. No further information.	No information regarding RNA isolation. DNase step NR.	NR	NR				
Vors C et al., 2017 [67]	Blood	Fasting blood samples collected after each treatment using PAXgene Blood RNA tubes.	Total RNA isolated from whole blood using the PAXgene RNA kit. DNase step NR.	NR	GAPDH (G6PD, HPRT1 also tested but not used due to higher variability)				
Donadio JLS et al., 2017 [32]	Blood	Blood samples collected at baseline, 28 d and 56 d of supplementation, and 28 d and 56 d after the end of supplementation. No further description.	Total RNA extracted from whole blood using Ribopure Blood Kit. DNase step NR.	Yes (quantity and quality by NanoDrop) (values NR)	GAPDH				

	1				
Di Renzo L et al.,	Blood	Fasting blood samples at baseline and 3-h	RNA isolated using PAX gene Blood miRNA	Yes (quantity and	АСТВ, В2М,
2017 [34]		postprandial collected using PAX gene Blood	Kit.	quality assessed by	GAPDH, HPRT1,
		RNA Tubes, and stored at -80 °C.	DNase step NR.	spectrophotometer and	RPLP0, included
			Ĩ	agarose gel)	in the PCR-array
				(values NR)	(no further
				(() () () () () () () () () () () () ()	specification)
Peripheral blood isola	ted immune cells	1			specification
Møller P et al., 2003	White blood	Fasting blood samples collected at baseline	Total RNA isolated from full blood using the	NR	18S rRNA
[2]	cells	and at days 9 16 and 24 during study and 28	PAXgene blood RNA isolation kit but gene	(low in some samples	100 /1001
[-]	cens	d after treatment using EDTA tubes. No clear	avprossion results in laukogytos	values NR)	
		information about louks gates isolation	DNaca stor NR	values (Vity)	
			Divase step ink.		
D. I.I.O. I.	X471 · 1 1 1	(method based on [84])			400 DIA
Dragsted LO et al.,	White blood	Fasting blood samples collected before, during	No information regarding RNA isolation	NK	185 rKNA
2006 [6]	cells	and after treatment. No clear information	from leukocytes in the article.		
		about leukocytes isolation (method based on	DNase step NR		
		[84])			
Farràs M et al, 2013	White blood	Blood samples collected before and 5 h after	Total RNA isolated from leukocytes using	Yes (quality assessed by	NR
[23]	cells	treatment using PAXgene tubes, kept for 2 h at	PAXgene extraction kit by a liquid–liquid	Agilent technology)	
		room temperature then stored at -80 °C. No	method.	(values NR)	
		information on isolation of leukocytes from	DNase step NR		
		blood or further characterization.	_		
Daak AA et al., 2015	White blood	Fasting blood samples collected at the baseline	RNA isolated from peripheral blood cells	Yes (quality by 2%	GAPDH
[60]	cells	and the end of the study using EDTA tubes.	using RNAqueous Kit.	agarose gel)	
		Unclear description of cells isolation.	DNase step NR.	(values NR)	
Margues-Rocha JL et	White blood	Fasting blood samples collected in EDTA tubes	Total RNA extracted using the Trizol	Yes (quantity and	GAPDH
al., 2016 [10]	cells	at the baseline and at the end of the study.	method.	guality by NanoDrop)	
. , [.]		Cells isolated by centrifugation and frozen at	DNase step NR	(values NR)	
		-80 °C (WBC in buffy coat).		()	
Mansur AP et al.,	White blood	Blood collected at the baseline and at the end	Total RNA isolated from peripheral	NR	GAPDH
2017 [74]	cells	of the study. No description of sample	leukocytes using the Trizol reagent.		
		preparation or characterization indicated.	DNase step NR.		
Plat J and Mensik RP,	Mononuclear	Fasting whole blood samples collected at the	RNA isolated within 7 d of storage by	Yes (quantity by	AW109
2001 [57]	cells	end of study using EDTA tubes. PBMC	chloroform extraction and isopropanol	spectrophotometer at	(competitive RT-
		isolated using Histopague-1077, washed with	precipitation, and stored in DEPC ethanol at	260 nm; guality by 0.8%	PCR in the
		a sterile. DEPC-treated 0.9% NaCl solution.	-80°C.	agarose gel)	presence of this
		resuspended in DEPC-treated solution stored	DNase step NR	(values NR)	RNA competitor)
		at -20 °C until RNA isolation.	Divise step ivit.	(values ivity)	ia ar competitor)
Konstantinidou V et	Mononuclear	Fasting blood samples collected at the baseline	Total RNA isolated from PBMC using a	Yes (quantity and	GAPDH
al., 2010 [20]	cells	and the end of the study. Protocols based on	liquid-liquid method. Protocol based on	quality assessed but	
		previous work and not included here	previous work and not included here	methods not indicated)	
		r	DNase step NR.	(values NR)	
Riso P et al., 2010 [16]	Mononuclear	Fasting whole blood samples collected at the	Liquid-liquid method. No information about	NR	18S rRNA
	cells	baseline and the end of the study using	RNA isolation.		
		microtubes with heparin. PBMC isolated from	DNase step NR.		

Shrestha S et al., 2007 [52]	Mononuclear cells	whole blood using Histopaque -1077. Cells resuspended in a solution containing 50% foetal bovine serum, 40% culture medium and 10% dimethyl sulphoxide and stored at -80 °C. Whole blood samples collected after treatment. PBMC isolated from whole blood by the method of Böyum [85] using Histopaque-1077. Cells re-suspended in TRIS buffer and frozen	Total RNA extracted from PBMC by the method of Chomczynski and Sacchi [86], slightly modified by using isopropyl alcohol for RNA precipitation (Trizol method).	NR	GAPDH
		at -80 °C.	DNase step included.		
Boss A et al., 2016 [59]	Mononuclear cells	Fasting whole blood samples collected at the baseline and the end of the study. PBMC extracted from blood samples by Ficoll–Paque density gradient centrifugation and stored until RNA extraction.	RNA extracted using the RNeasy Plus Mini Kit. DNase step NR.	Yes (quantitation by NanoDrop; quality by Bioanalyzer) (RIN > 8)	GAPDH, ACTB (combined values)
Klickovic U et al., 2014 [83]	Mononuclear cells	Blood samples collected before and at 2.5, 5, 7.5, 10, 24, and 48 h after treatment, using EDTA tubes. PBMC isolated from blood using Ficoll-Plaque prefilled tubes.	RNA isolated from cell pellets using lysis buffer. No further description of extraction method. DNase step NR.	NR	185 rRNA
Hernáez Á et al., 2015 [26]	Mononuclear cells	Fasting blood samples collected before and after treatment. Cell isolation protocol not indicated.	Total RNA isolated by means of a liquid- liquid method. DNase step NR.	Yes (quantity and quality checked but method not indicated) (values NR)	GAPDH (CV=0.98% in C)
Barona J et al., 2012 [44]	Mononuclear cells	Fasting blood samples collected before and after treatment using EDTA tubes. PBMC isolated from blood using Histopaque-1077 according to method of Böyum [85]. Total and relative numbers of PBMC analyzed but not reported.	Total RNA isolated from PBMC. Solution in phosphate buffer followed by extraction with Trizol [87]. DNase step included.	NR	GAPDH
Ghanim H et al., 2010 [53]	Mononuclear cells	Fasting blood samples collected in Na-EDTA tubes, at baseline and at 7, 21 and 42 d of treatment. Cells isolation by centrifugation in Lympholyte medium. It indicates the separation between MNC suspensions and polymorphonuclear cells (>95% purity).	Total RNA isolated using the RNAqueous4PCR Kit. DNase step NR.	NR	ACTB, UBC, PPIA (three genes used)
Martín-Peláez S et al., 2015 [28]	Mononuclear cells	Fasting blood samples collected at baseline and at the end of the study, stored at -80 °C until analysis. Protocol based on previous work.	RNA extraction based on a previous reference. Not explained in the article. DNase step NR.	Yes (based on previous work) (values NR)	GAPDH
Camargo A et al., 2010 [19]	Mononuclear cells	Blood samples collected in EDTA tubes 4 h after treatment. Stored in ice water in the dark. PBMC isolated within 2 h using Ficoll gradient centrifugation, harvested in PBS buffer and stored in liquid N ₂ at -80 °C prior to RNA	Total RNA extracted from PBMC using TRI Reagent. RNeasy MiniElute Cleanup Kit included. DNase step NR.	Yes (quantitation by NanoDrop; quality assessed by 1.6% agarose gel) (intact bands for 18S and	RPL13A

		extraction.		28S rRNA on agarose gel)	
Rangel-Zuñiga OA et al., 2014 [25]	Mononuclear cells	Blood samples collected before , 2 h and 4 h after treatment. PBMC isolated from blood. Protocol based on previous work.	RNA isolated from cells based on previous work. DNase step NR.	NR	GAPDH
Castañer O et al., 2012 [22]	Mononuclear cells	Blood samples collected before and after treatment. No information about cells isolation protocol.	Total RNA isolated from PBMC by a liquid- liquid method. DNase step NR.	Yes (methods not indicated) (values NR)	NR
Crespo MC et al., 2015 [58]	Mononuclear cells	Fasting blood samples collected before and after treatment using heparinized tubes, PBMC isolated within 2 h by centrifugation using Histopaque-1077. PBMC stored in Qiazol at -80 °C prior to RNA extraction.	Total RNA extracted and purified from homogenized PBMC using miRNeasy minikit DNase step included.	Yes (quantitation by NanoDrop; quality by Bioanalyzer) (values NR)	ACTB (stability tested for GAPDH, ACTB, RPLPO by Normfinder)
Kropat C et al., 2013 [47]	Mononuclear cells	Blood samples collected before and 1, 2, 4 and 8 h after treatment using EDTA tubes. PBMC isolated using Hystopaque-1119, and stored in RNAlater at -80 °C.	RNA isolated using RNeasy Mini Kit. DNase step NR.	NR	GAPDH (ACTB also tested)
Perez-Herrera A et al., 2013 [24]	Mononuclear cells	Blood samples collected using EDTA tubes before and 2 and 4 h after treatment. PBMC isolated from blood by centrifugation using Ficoll gradient, stored as a dry pellet prior to RNA isolation.	RNA isolated using Tri Reagent. Stored at -80 °C. DNase step included.	Yes (quantity by spectrophotometer; quality by agarose gel) (values NR)	GAPDH
Chachay VS et al., 2014 [72]	Mononuclear cells	Blood collected in heparin tubes at baseline, at week 1 and at the end of study. PBMC isolated by centrifugation using Ficoll gradient. Cells quantified and stored at -80 °C.	Total RNA isolated from PBMC using RNeasy kit. DNase step NR.	Yes (quantity and quality determined by Nanodrop) (values NR)	ACTB
Yiu EM et al., 2015 [73]	Mononuclear cells	Methods as described in previous work. Not explained in the article.	RNA isolation not described, based on previous work. DNase step NR.	NR	NR
Xie, L et al., 2017 [49]	Mononuclear cells	Whole blood samples collected in EDTA tubes at the baseline and at the end of study. PBMC isolated from whole blood cells using Ficoll- Paque premium and density gradient centrifugation. Cells collected in PBS, then in ice-cold fetal bovine serum and finally in cryopreservation media before storage at -80 °C in a cryotank. Cell quantitation but no further characterization of the composition.	RNA isolated from pelleted PBMC with Trizol reagent. DNAse step included.	NR	GAPDH
Radler U et al., 2011 [65]	Mononuclear cells	Fasted venous blood sample. PBMC enriched directly from blood by density gradient centrifugation (Ficoll-Hypaque). No description of cell composition. Cells stored at -80 °C	Stabilization reagent added to samples after thawing. Total RNA extracted and mRNA isolated using a kit for blood/bone marrow. DNase step NR.	NR	<i>B2M, ACTB</i> (both genes used)
Tomé-Carneiro J et	Mononuclear	Fasted blood collected in heparinized tubes. At	Total RNA extracted using the All-Prep	Yes (quantity and	GAPDH

al., 2013 [45]	cells	baseline, 6 and 12 months of treatment. Cells isolated by density gradient (Histopaque- 1077), lysed in RLT buffer and stored -80 °C. Protocol performed during the same time gap (morning and within 1 h). Cells counts provided: lymphocytes ($84.4 \pm 2.9\%$), monocytes ($13.0 \pm 3.2\%$), granulocytes ($2.2 \pm$ 1.4%)	DNA/RNA/proteins Mini kit DNase step NR.	quality by NanoDrop and Bioanalyzer) (Abs 260/280 1.8-2.1, RIN >8.5)	
Jamilian M et al., 2018 [62]	Mononuclear cells	Fasting blood samples collected at baseline and at the end of the study (42 d). PBMC isolated from blood using 50% Percoll. Cells counted and viability tested by Trypan blue but no information provided.	RNA extracted using RNX-plus kit. RNA kept at -20 °C. DNase step NR.	Yes (quantiy and purity by spectrophotometer) (Abs _{260/280} 1.7-2.1)	GAPDH
Nelson DM et al., 2011 [78]	Leukemic blasts	Blood samples collected before and 2 h after the infusion. Blasts enrichment (≥70%) by Ficoll-Paque density gradient separation.	Total RNA isolated from the blasts using RNeasy Mini Kit. DNase step NR	Yes (quantity and quality by NanoDrop) (some samples had degraded RNA or low quantity)	RPLP0, ACTB, B2M (different reference genes used for the analysis of different genes)
Persson I et al., 2000 [1]	Lymphocytes	Blood samples collected before and after treatment. Lymphocytes isolated from blood by centrifugation. No further description or characterization.	Total RNA isolated from lymphocytes using Trizol LS reagent Kit. DNase step NR.	NR	ACTB
Morrow DMP et al., 2001 [75]	Lymphocytes	Fasting blood samples collected at baseline, after placebo, after treatment, and 35 d after the end of study. Peripheral lymphocytes isolated from blood using density gradient centrifugation, then stored in DNA–RNA stablisation reagent for blood/bone marrow at -70 °C.	Total RNA isolated from lymphocytes using GlassMax RNA Microisolation Spin Cartridge System. DNase step NR.	Yes (quantity and quality by GeneQuant II RNA DNA calculator and gel analysis) (values NR)	GAPDH
de Pascual-Teresa S et al., 2003 [38]	Lymphocytes	Blood samples collected before and 3 h and 6 h after treatment. Lymphocytes immediately isolated from blood samples by centrifugation, cells re-suspended and counted.	Total RNA inmediately isolated from cells using RNeasy mini kit. RNase-free water and RNase inhibitor included. RNA stored at -70 °C. DNase step NR.	Yes (quantity determined by Ribogreen) (values NR)	GAPDH
Boettler U et al., 2012 [37]	Lymphocytes	Venous blood samples collected at 4 time points (28 d before baseline, at baseline, at the end of the study and 28 d after the end of the study) in EDTA tubes and stored at room temperature until the individual sampling period was completed. Lymphocytes isolated from blood (protocol referenced).	Total RNA isolated from lymphocytes using Rneasy Mini Kit. DNase step NR.	NR	ACTB
Volz N et al., 2012 [36]	Lymphocytes	Blood samples collected at baseline and at at 4 time points (28 d before baseline, at baseline,	Total RNA extracted using RNeasyMini Kit. DNase step NR.	NR	ACTB

Hernández-Alonso P et al., 2014 [31]	Lymphocytes	at the end of the study and 28 d after the end of the study) using sodium heparin tubes. Immediately after, lymphocytes were isolated by centrifugation using Histopaque-1077 and stored in RNAlater stabilization reagent. Fasting blood samples collected at the baseline and the end of the study.	Total RNA isolated from blood using Tempus Spin RNA Isolation Kit but gene	Yes (quantity and purity by NanoDrop)	HPRT1, YWHAZ (selected and used
		Cell isolation (unclear) in heparin tubes. Process and characterization not described.	expression in lymphocytes. DNase step NR.	(values NR)	based on Genevestigator)
Carrera-Quintanar L et al., 2015 [55]	Lymphocytes, neutrophils	Fasting blood samples collected in EDTA tubes, at baseline and at the end of the study. Lymphocytes and neutrophils isolated using an adaptation of the method by Böyum [88]. No further description of the samples.	Total RNA isolated from lymphocytes and neutrophils using Tripure extraction kit. DNase step NR.	NR	RPLP0 (36B4 rRNA)
Marotta F et al, 2010 [39]	Neutrophils	Fasting blood samples collected in heparine tubes at the baseline, in the middle (14 d) and, at end of the study. Immediately after, neutrophiles were extracted using Ficoll– Paque centrifugation. Enrichment and viability of cells tested (>90% neutrophils 90% viable).	Total RNA extracted by Trizol. DNase step included.	Yes (quantity and quality by spectrophotometer and agarose gel) (values NR)	GAPDH, HMBS (different reference genes used for the analysis of different genes)
Yanaka A et al., 2009 [15]	Polymorpho- nuclear granulocytes	Blood samples collected before and 24 h after treatment. Polymorphonuclear granulocytes purified from blood samples using Polymorphprep (protocol based on previous work). No other detail included.	RNA isolation not described. DNase step NR.	NR	NR
Boesch-Saadatmandi C et al., 2009 [77]	CD14+ monocytes	Fasting venous blood samples collected at baseline and at the end of the study using EDTA tubes. Monocytes (CD14 positive) isolated by density centrifugation with LymphoPrep, then positively selected with magnetic beads, protocol referenced.	RNA isolated from monocytes using the RNeasy Kit. DNase step NR.	Yes (quantitation by spectrophotometer; quality not indicated) (values NR)	ACTB
Nieman DC et al., 2007 [76]	White blood cells, skeletal muscle	Whole blood collected in EDTA tubes at at d 22, 23, 24 (before and after exercise, but all time use of quercetin). Leukocytes isolated by centrifugation. Skeletal muscle biopsy samples obtained at d 22 and 24 (before and after exercise, but all time use of quercetin) from the leg using the percutaneous needle biopsy procedure modified to include suction, under local anesthesia. Biopsy samples divided, immediately frozen and homogenized with a polytron in liquid N ² and stored at -80 °C prior to analysis.	Leukocytes RNA isolated using QIAampRNA Blood Mini Kit Protocol. Contaminants were washed away and then, RNA eluted in RNase-free water. Total RNA extracted from biopsies using the guanidine thiocynate method with Trizol Reagent , then dissolved in diethylpyrocarbonate-treated water. DNase step NR.	Yes (quantity by spectrophotometer at 260 nm) (values NR)	185 rRNA

Gastrointestinal tissue	e samples				
Mallery SR et al., 2008 [46]	Oral intra- epithelial neoplasia and normal ventral-lateral tongue	Excisional biopsies obtained at the beggining (from subjects with neoplasia) and at the end of the study (from both neoplasia and normal tissues), snap frozen.	Total RNA isolated using Absolutely RNA Miniprep Kit DNase step NR	Yes (quantity by NanoDrop, quality by Bioanalyzer) (values NR)	GUSB
Turowski JB et al., 2015 [56]	Buccal swabs	Buccal samples collected using a MasterAmp Buccal Swab Brush and deposited into RNAlater, stored at 4 °C first and then to -80 °C prior analysis (under one month). No further description or characterization.	Cells lysed, then RNA isolated using a QIAprep Spin Miniprep Kit. DNase step NR	Yes (quantity by NanoDrop) (values NR)	185 rRNA
Knobloch TJ et al., 2016 [48]	Oral cancer and distal normal high risk oral mucosa	Incisional biopsies obtained during surgical resection, collected into Ambio RNAlater reagent.	Total RNA isolated using Rneasy Fibrous Tissue Kit. Dnase step included	Yes (quantity by NanoDrop and quality by Bionalayzer) (RIN values=6-9)	DUSP1
Gasper AV et al., 2007 [12]	Gastric antrum	Gastric antral biopsies (fasted endoscopy) obtained 1 d before and 6 h after treatment, kept into RNAlater, held at 4 °C overnight, then snap frozen in liquid N2 and stored at -80 °C prior to RNA extraction. No further information or characterization of the samples.	Total RNA isolated using RNeasy mini kit. DNase step NR.	Yes (quantity by NanoDrop, quality by Bioanalyzer) (values NR)	18S rRNA
Koosirat C et al., 2010 [82]	Gastric antrum	Biopsies obtained at baseline and at the end of the study (42 d), kept in RNAstabilization solution at 4 °C. Biopsies homogenized using QIAshredder. No details of biopsies extraction or tissue characterization.	RNA isolated using RNeasy mini spin column. DNase step NR.	NR	GAPDH
Labonté M-E et al., 2013 [61]	Duodenal tissue	Gastro-duodenoscopy from the second portion of duodenum with multiple sample single-use biopsy forceps. Flash frozen in liquid N ₂ . Stored at -80 °C.	Biopsy samples homogenized using Qiazol, then RNA isolated using RNeasy mini kit. RNA stored at -80 °C. DNase step included.	Yes (quality assessed by Bioanalyzer) (values NR)	ATP5O (selected from HPRT1, ATP5O, G6PD, 18SrRNA based on the literature)
Frommel TO et al., 1994 [66]	Colon tissue	Colon tissue samples obtained at the baseline and at the end of study, using biopsy forceps, placed in RPMI medium at 4 °C and transported to the lab microfuge for RNA extraction.	Total RNA isolated using the method of Chomczynski and Sacchi [86]. DNase step NR.	Yes (quantity and purity based on Abs 260/280 nm) (values NR)	B2M
Nguyen AV et al., 2009 [42]	Colon tissue (cancer, normal)	Tissue cancer and normal biopsies obtained at colonoscopy (pre-treatment). Samples taken for pathologist revision and placed in RNAlater. Biopsies taken at surgical resection (post-treatment). No further details of the tissue characterization.	Total RNA isolated using a Trizol reagent. DNase step NR.	NR	ACTB

Ishikawa H et al., 2012 [41]	Colon mucosa	Biopsies from normal tissue taken at baseline (afternoon) and after intervention (morning) by endoscopy (20 cm from the anal verge). Samples were immersed in RNAlater and kept in ice in the dark prior to analysis.	RNA isolation not described. DNase step NR.	NR	HMBS
Nuñez-Sanchez MA et al., 2017 [50]	Colon tissue (cancer, normal)	Biopsies taken at colonoscopy (pre-treatment) and surgical samples (post-treatment) from normal and malignant tissue. Samples taken to the pathologist for analysis and into RNAlater. Stored at -80 °C. All colon tissue samples homogenized with lysis buffer using an IKA T10 Ultra-Turrax Equipment.	Total RNA isolation not described. Based on previous work. DNase step NR.	Yes (quantity and quality by Nanodrop and Bioanalyzer) (Abs 260/280 1.8-2.1, RIN values> 6)	GAPDH (stability tested by Normfinder/ GeNorm for HPRT1, GUSB, GAPDH)
Other tissue samples					
González-Sarrías A et al., 2010 [30]	Prostate tissue (benign hyperplasia and cancer tissues)	Surgical prostate tissue biopsies obtained either by prostatectomy, transurethral resection or adenomectomy, examined by pathologists, then stored in RNAlater at -80 °C, prior to RNA extraction.	RNA extracted using RNeasy mini kit. DNase step NR.	Yes (quantity and quality by NanoDrop and 1% agarose gel) (Abs 260/280 1.8-2.1)	GAPDH
Chan JM et al., 2011 [21]	Prostate tissue (normal)	Ultrasound-guided four-core needle research biopsies were taken at baseline and after intervention. Tissues were reviewed by the pathologist. No further description.	Total RNA extracted from areas of normal prostate peripheral zone tissue containing both stroma and epithelial cells. Method NR. DNase step NR.	Yes (quality and quantity adequate for the samples analyzed, values NR)	GUSB
Lazarevic B et al., 2012 [79]	Prostate tissue (cancer, normal)	Surgical specimen (post-treatment) from normal and cancer tissues, examined by the pathologist and frozen at -80 °C. At least 10,000 cells from histologically benign and cancer glands from each patient selected and captured using laser capture microdissection, stored at -80 °C, prior to RNA extraction.	Total RNA isolated using the Arcturus PicoPure RNA Isolation Kit. DNase step NR.	Yes (quantity by NanoDrop) (values NR)	ALAS1
Most J et al., 2015 [81]	Adipose tissue	At the end of post-prandial period (6 h), 1 g abdominal subcutaneous adipose tissue collected under local anaesthesia using a needle biopsy technique. Snap frozen in liquid N ₂ . Stored at -80 °C	Total RNA extracted using total RNA stabilization and purification kit for human samples DNase step NR.	NR	18S †RNA
Kruse M et al., 2015 [29]	Adipose tissue	Periumbilical adipose tissue (1 g) taken at baseline and at the end of acute study (4 h) and chronic study (28 d), rinsed and snap frozen in liquid N ₂ . Stored at -80 °C. No other information described.	RNA isolation not described (based on previous work). DNase step NR.	NR	RPL32
Poulsen MM et al., 2013 [70]	Skeletal muscle and adipose tissue	Tissue biopsies obtained at the end of the basal period and 20 min into the clamp period , (both at the baseline and at the end of the	Total RNA isolated from muscle and adipose tissue using Trizol . DNase step NR.	Yes (quantity by NanoDrop; quality by agarose gel)	B2M

		study) under sterile conditions and anesthesia (lidocaine). The muscle biopsy was taken from the <i>vastus lateralis</i> muscle (Bergström needle). Tissue dissected from fat and connective tissue and frozen in liquid N ₂ . Periumbilical subcutaneous abdominal fat was taken by liposuction 15 cm lateral to the umbilicus, cleaned and frozen in liquid N ₂ . No further description of the tissues.		(Abs 260/280 ≥1.8)	
Yoshino Let al 2012	Skeletal	Anesthetized (lidocaine) A ~ 0.5 cm skin	Total RNA isolation protocol not described	NR	GAPDH
[69]	muscle and	incision made with a scalpel: subcutaneous	DNase step NR		
[07]	adipose tissue	abdominal adipose tissue aspirated	Divide diep ivit.		
	umpose assue	(liposuction) and muscle skeletal (Vastus			
		<i>lateralis</i>) tissue obtained by Tilley-Henkel			
		forceps during the basal period of the clamp.			
		Samples were rinsed, frozen in liquid N ₂ and			
		stored at -80 °C.			
Kerksick CM et al., 2013 [80]	Skeletal muscle	At the end of intervention, muscle samples were taken immediately prior to and 6 and 24	Tissue samples homogenized and RNA isolated using TRI reagent phase method.	Yes (quantity and guality by	АСТВ
		h post-exercise under anesthesia (lidocaine),	Samples were washed, diluted in RNAase-	spectrophotometer and	
		using a 16-gauge microbiopsy needle, from the	free water, then stored at -80 °C until	optical density at 260	
		middle portion of the vastus lateralis at a depth	analyses.	nm)	
		of 4-5 cm. Tissue trimmed of adipose	DNase step NR.	(values NR)	
		contamination, frozen in liquid N2 and stored			
		at -80 °C.			
Olesen J et al., 2014	Skeletal	On the second day (48 h after the first	Total RNA isolated from muscle tissue by a	Yes (quantity and	ssDNA
[71]	muscle	experimental day), and at the end of	modified guanidinium thiocyanate-phenol-	quality by	
		intervention, samples of the vastus lateralis	chloroform extraction method by	spectrophotometer)	
		muscle were obtained under local anaesthesia	Chomczynski and Sacchi [86], modified in	(Abs 260/280 >1.8)	
		(lidocaine) using the percutaneous needle	the step of the tissue homogenization.		
		biopsy technique with suction. Samples were	DNase step NR.		
		then quick-frozen in liquid N ₂ and stored at			
Riedl MA et al., 2009	Cells from	Nasal lavage collection at baseline and at the	RNA extracted using RNeasy Mini Kit and	Yes (quantity measured	18S rRNA
[14]	nasal lavage	end of study, procedure referred in the	stored at -80 °C until RT-PCR analysis.	but method not	
		Supplementary material. Cells were collected	DNase step NR.	indicated)	
		using sterile saline lavage. The cells were then	1	(RNA yield: 0.3-1.0 µg	
		pelleted and re-suspended in lysis buffer and		per sample)	
		stored at -80 °C. No information on cell			
		composition or characterization.			
Knott A et al., 2008	Suction blister	After 12 weeks of treatment, suction blister	Suction blister epidermis samples	NR	18S rRNA
[51]	epidermis	epidermis isolated (protocol referenced). No	homogenized in RNAzol and Ultra Turrax T8		
		further details of the sample characteristics.	for RNA extraction.		
			DNase step NR		

Marini A et al., 2014	Skin	4 mm punch biopsies taken before and after	RNA extraction based on previous work.	NR	NR
[63]		supplementation from unexposed and exposed	DNase step NR.		
		skin areas. No other detail included. Based on			
		previous references.			
Marini A et al., 2012	Buttock skin	4 mm punch biopsies from buttock skin taken	RNA extracted from frozen samples using	NR	18S rRNA
[54]		before and after supplementation. Samples	Peq-Gold Total RNA Kit.		
		snap-frozen in liquid N2 and stored at -80 °C	DNase step NR.		
		prior to RNA isolation.			
Farris P et al., 2014	Photo-	2 mm punch biopsies collected on the facial	RNA isolated using RNA micro kits.	NR	NR
[64]	damaged face	area at the baseline and at the end of the study.	DNase step NR.		
	skin	Quick frozen in liquid N2. Stored at -80 °C.			
Bertuccelli G. et al.,	Forearm skin	3-ml punch biopsies obtained from the	Cells lysed using Ambion lysis buffer.	Yes (quantity by optical	ACTB or GAPDH
2016 [40]		extensor side of forearms using Corneofix®	Lysates mixed with ethanol and centrifuged,	density at 260 nm;	(unclear)
		foils, at the beginning and at the end of the	washed, eluted using buffers. RNA retrieved	quality in 1.5% agarose	
		study.	by centrifugation.	gel)	
			DNase step included.	(values NR)	

¹ White blood cells or leukocytes: mononuclear cells agranulocytes (lymphocytes and monocytes) and polymorphonuclear granulocytes (neutrophils, eosinophils, basophils, mast cells); lymphocytes (mostly T cells, B cells and NK cells, also some dendritic cells); leukemic blasts (myeloblasts or immature white blood-forming cells).

Table abbreviations (in alphabetical order): DEPC, diethyl pyrocarbonate; DNA, deoxyribonucleic acid; DNase, *deoxyribonuclease;* EDTA, ethylenediaminetetraacetic acid; miRNA, microRNA; MNC, mononuclear cells; NR, not reported; PBMC, peripheral blood mononuclear cells; RIN, RNA integrity number; RNA, ribonucleic acid; *RPMI*, Roswell park memorial institute medium; rRNA, ribosomal RNA; RT-PCR, real time polymerase chain reaction; ssDNA, *single-stranded DNA; WBC, white blood cells*.

Genes nomenclature from GeneCards [89] (in alphabetical order): *ACTB*, actin beta; *ALAS1*, 5'-aminolevulinate synthase 1; *ATP5O*, ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit; *AW109*, competitor RNA (cRNA); *B2M*, beta-2-microglobulin; *DUSP1*, dual specificity phosphatase 1; *GAPDH*, glyceraldehyde-3-phosphate dehydrogenase; *G6PD*, glucose-6-phosphate dehydrogenase; *GUSB*, glucuronidase beta; *HMBS*, hydroxymethylbilane synthase (alias: *PBGD*, porphobilinogen deaminase); *HPRT1*, hypoxanthine phosphoribosyltransferase 1; *PPIA*, peptidylprolyl isomerase A; *RPLP0*, ribosomal protein lateral stalk subunit P0; *RPL13A*, ribosomal protein L13a; *RPL32*, ribosomal protein L32; *18S rRNA*, 18S ribosomal RNA; *UBC*, ubiquitin C; *YWHAZ*, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta.

Table S3. Reported changes in gene expression levels in human tissues (as analyzed by RT-PCR) following intervention with diets, foods or products rich in bioactive compounds or with single compounds (\downarrow green color, significant downregulation; \uparrow red color, significant upregulation, attributed to treatment either in comparison with baseline or with control; *p*-values are indicated, *p*<0.05 are accepted as significant). The type of comparisons performed in the study, the way data are presented and whether there were any association(s) with bioactive metabolites and (or) with protein quantity/activity are also included.

				Gene Exp	ression Results					
Reference	Treatment	Type of	Gene(s) Comparisons (number of		uber of samples)	Data presentation	n		Association with	
	description (T) (major bioactive compound(s))	sample	Change associated with T (\downarrow, \uparrow) (<i>p</i> -value)	Post- <i>vs</i> pre-	Post-	Type of data: expression levels, change (ratio, FC, %)	Type of values: mean, median, individual data	Variability information: SD, SEM, range, IQR, 95% CI, % of individuals with a change	Metabolites	Protein levels, activity
Blood						<u>.</u>	-	· · ·		<u>.</u>
Almendingen K et al., 2005 [3]	Mix FruVeg T1: 300g T2: 750g	Blood	(NC) PTGS2	T ₁ (39) T ₂ (39) (different doses)	T ₂ (39) vs T ₁ (39)	Expression levels	Mean	SEM	NR	NR
Guarrera S et al., 2007 [35]	Green tea, bilberry juice and soya (flavonoids)	Blood	↓ <i>AHR</i> (<i>p</i> =0.038) ↑ <i>XRCC3</i> (<i>p</i> =0.038) (NC) <i>APEX1</i> , <i>ERCC1</i> , <i>ERCC2</i> , <i>ERCC4</i> , <i>MGMT</i> , <i>OGG1</i> , <i>XPA</i> , <i>XPC</i> , <i>XRCC1</i> , <i>CYP1A1</i>	Т (9)	NR	Change (FC)	Mean	SD	NR	NR
Doss JF et al., 2016 [18]	Broccoli (SFGluc) T1: 50g T2: 100g T3: 150g	Blood	↑HBG1 (+130.8%, <i>p</i> =0.025, T ₂) ↑HMOX1 (+53.5%, <i>p</i> =0.045, T ₃) (NS↑) <i>NQO1</i> (T ₁ , T ₂)	T ₁ (5) T ₂ (5) T ₃ (4) (different doses)	NR	Relative mRNA expression, change (%) in text	Mean (values only in figure)	Unclear (values only in figure)	NR	(NC) Hbg or HbF (some individual values in Figure)
Atwell LL et al., 2015 [17]	T1: Broccoli sprout (SFGluc) T2: Myrosinase- treated broccoli sprout extract (SFGluc)	Blood	(NC) CDKN1A, HMOX1	T ₁ (10) T ₂ (10) (myrosinase increases the levels of SF vs untreated)	T1 (10) vs T2 (10)	Change (FC)	Mean and geometric mean (values only in figure)	SEM, SD (values only in figure)	NR	(NC) plasma levels of HMOX1 (HO-1)
Di Renzo L et al., 2014 [8]	T1: Red wine T2: Med meal T3: T1+T2 T4: McD meal T5: T4+T1	Blood	↓ <i>CAT</i> ($p \le 0.05$, T ₄) ↑ <i>CAT</i> ($p \le 0.05$, C vs T ₁ , T ₄ vs T ₅) ↑ <i>GPX1</i> ($p \le 0.05$, C vs T ₁ , C vs T ₃ , C vs T ₅) ↑ <i>SIRT2</i> ($p \le 0.05$, T ₁ vs T ₃) ↑ <i>CCL5</i> ($p \le 0.05$, C vs T ₂ , C vs T ₃ , C vs T ₄ , C vs T ₅ , T ₁ vs T ₅) ↓ <i>CCL5</i> ($p \le 0.05$, T ₂ vs T ₃) (NC) <i>SOD1</i>	C (24), T_1 (24), T_2 (24), T_3 (24), T_4 (24), T_5 (24),	$\begin{array}{c} C \ (24) \ vs \ T_1 \ (24), \\ C \ (24) \ vs \ T_2 \ (24), \\ C \ (24) \ vs \ T_3 \ (24), \\ C \ (24) \ vs \ T_4 \ (24), \\ C \ (24) \ vs \ T_5 \ (24), \\ T_1 \ (24) \ vs \ T_5 \ (24), \\ T_2 \ (24) \ vs \ T_3 \ (24) \end{array}$	Change (unclear, ΔCt in figure, FC in methods)	Unclear (values only in figure)	95% CI (values only in figure)	NR	NR

Weseler AR et al., 2011 [43]	Grape seed extract (Flavanols)	Blood	↓ <i>IL</i> -6 (-18%, <i>p</i> <0.05, T, 28 d) ↓ <i>TNF</i> , $↓$ <i>IL</i> 10 (-12%, -27%, <i>p</i> <0.05, T, 56 d) (NS↓) <i>CAT</i> , <i>GSR</i> , <i>HMOX</i> 1 (T, 56 d) (NC) <i>IL</i> 1β, <i>CXCL8</i> , <i>NOS</i> 2, <i>NFKBIA</i> , <i>ICAM</i> 1, <i>VCAM</i> 1, <i>GPX</i> 1, <i>GPX</i> 4, <i>SOD</i> 2	T (15) , C (13) (2 time points)	T(15) vs C (13)	% Change (in text)	Unclear (values only in figures)	Unclear (values only in figure)	NR	Plasma:↓TNF T (post- vs pre-) T vs C (post-) (NC) IL10
De Lorenzo A et al., 2016 [9]	T1: Tocopherol- enriched Med meal T2: Western high -fat meal	Blood	↑ <i>IRAK1, CCL5, DUOX2, UCP2</i> (p <0.05, post- vs pre-, T ₂) ↓ <i>BCL2,</i> ↑ <i>CCL5</i> (p <0.05, post- vs pre-, T ₁) ↓ <i>BCL2, IRAK1, DUOX2, UCP2</i> (p <0.05, T ₂ vs T ₁)	T ₁ (25), T ₂ (25)	T ₁ (25) vs T ₂ (25)	Change (FC)	Unclear (values only in figure)	Unclear (values only in figure)	NR	NR
Vors C et al., 2017 [67]	T1: EPA T2: DHA	Blood	↓ CD14 (p=0.008, T ₁ vs C, p=0.02 T ₂ vs C) ↑ PPARA (p=0.003 T ₁ vs C, p=0.01, T ₂ vs C) ↑ TNF (p=0.06, T ₁ vs C, p=0.01 T ₂ vs C) ↑ TRAF3 (p=0.002, T ₁ vs C p=0.07, T ₂ vs C) (NC) CCL2, IL10, IL1B, IL1RN, NFKB1, PPARG, TNFRSF1A	NR	T1 (44) vs C (44) T2 (44) vs C (44) T1 (44) vs T2 (44)	№ copies mRNA	Mean	SEM	[↑] % of EPA and DHA in plasma phospholipids, but no relation with gene expression	No correlation between <i>TNF</i> and plasma levels of TNF
Donadio JLS et al., 2017 [32]	Brazil nuts (Se)	Blood	↑ <i>GPX1</i> (<i>p</i> =0.026, T, just for the CC genotype) (NC) <i>SELENOP, SELENOS, SELENOF</i>	T (130) (different genotypes)	NR	Relative expression levels	Unclear (values only in figure)	Unclear (values only in figure)	NR	NR *Different responses to supplementati on according to genotype
Di Renzo L et el., 2017 [34]	T1: McD meal+ raw hazelnuts T2: McD meal	Blood	53 genes up- or downregulated (<i>p</i> >0.05, FC>1.5 or<-1.5, T₂ <i>vs</i> T₁) Examples: ↑ <i>TNF</i> , <i>TNFSF4</i> , <i>GPX1</i> , <i>GPX3</i> , <i>GPX4</i> ↓ <i>NQO1</i> , <i>GPX7</i> , <i>UCP2</i>	T ₁ (22), T ₂ (22),	T ₁ (22) vs T ₂ (22),	Change (FC)	Unclear (values only in figure)	NR	NR	NR
Peripheral blood	l isolated immune c	ells1		•		·		• •		
Møller P et al., 2003 [2]	Mix FruVeg	White blood cells	(NC) OGG1, ERCC1	T (11-15), C1 (9-15), C2 (9-12) (variable number of samples depending on RNA quality) (5 time points)	T (11-15) <i>vs</i> C ₁ (9- 15) <i>vs</i> C ₂ (9-12)	Expression levels	Mean	SD	NR	OGG1 responsible for the excision of 8- oxoguanine. No association with urinary

										-
Dragsted LO et al., 2006 [6]	Mix FruVeg (C1, C2, different controls)	White blood cells	(NS [↑]) <i>GPX1</i> in T (post- <i>vs</i> pre-, in 2 subjects) , (NC) <i>GCLC</i> , <i>FOSL1</i> , <i>AHRR</i>	T, C1, C2 (n=43 divided in the three groups, unclear)	T vs C1 T vs C2, C1 vs C2(post-)	Change (FC)	Mean (values only in figures)	SEM (values only in figures)	NR	8-oxodG (mutagenic byproduct of exposure to reactive oxygen). Erythrocytes: ^GPX1 activity in T (post- vs pre)
Farràs M et al, 2013 [23]	Olive oil (polyphenols) (T1: high T2: moderate levels)	White blood cells	^ ABCA1, SCARB1, PPARG, PPARA, PPARD, MED1, CD36 (p=0.017, T ₁ vs T ₂) ^ PTGS1 (p= 0.024, T ₁ vs T ₂) (NC) ABCG1, PTGS2	NR	T ₁ (13) <i>vs</i> T ₂ (13) (different doses)	Change (ratio)	Geometric mean (values only in figure)	95 % CI (values only in figure)	[↑] of 1 µmol/L of HTyr acetate and †43.2% of <i>ABCA1</i> in T ₁	[7] NR
Daak AA et al., 2015 [60]	n-3 PUFA (EPA, DHA) (C1, C2, different controls)	White blood cells	$\downarrow NFKB1 (p<0.05, T vs C_1)$ (NS \downarrow , T vs C2)	NR	T (24) vs C1 (21), T (24) vs C2 (18), C1 (21) vs C2 (18)	Change (FC)	Unclear (values only in figure)	Unclear (values only in figure)	NR	NR
Marques-Rocha JL et al., 2016 [10]	Med diet	White blood cells	(NC) IL6, TNF, ICAM1, IL18, SERPINE1, VCAM1	T (40)	NR	Change (FC)	Mean	SD	NR	NR
Mansur AP et al., 2017 [74]	Res	White blood cells	(NC) SIRT1	T (24), C (24)	T (24), C (24)	Arbitrary units	Mean	SD	NR	↑ Serum hSIRT1 in both T (post- <i>vs</i> pre-) and C (post- <i>vs</i> pre-)
Plat J and Mensik RP, 2001 [57]	Plant stanol esters mix	Mononuclear cells	↑LDLR (+43%, <i>p</i> =0.003) T ₁₊₂ <i>vs</i> C (NC) <i>HMGCR</i>	T ₁₊₂ (29), C (15)	T ₁₊₂ (29) <i>v</i> s C (15)	Change (%), Nº copies/µg RNA	Mean	95% CI, SEM	Negative correlation with changes in Cam, Positive correlation with changes in Lath, Negative correlation with LDL cholesterol	TLDL receptor protein in monocytes (+37%, p=0.003) and in T- lymphocytes (+25%, p=0.013) in T ₁₊₂ vs C.
Konstantinidou V et al., 2010 [20]	Med diet+ olive oil (polyphenols)	Mononuclear cells	↓ <i>ADRB2, ARHGAP15, IL7</i> R, <i>POLK, IFNG</i> (<i>p</i> <0.05, T1+T2 <i>vs</i> C)	T1+T2 (36), C (20), T1(20), T2 (16)	T ₁ +T ₂ (36) vs C(20) T ₁ (20) vs T ₂ (16), T ₁ (20) vs C (20),	Change (ratio)	Mean	SEM	\downarrow <i>IFNG</i> with \uparrow Tyr in T ₁	\downarrow IFN γ in plasma (T ₁ +T ₂ post-

	(T1: high, T2: low polyphenols)		↓ <i>ADRB2, ARHGAP15, IFNG</i> ($p < 0.05, T_1 v_S C$) (NS↓) <i>IL7R</i> ($p = 0.052, T_1 v_S C$, post-)		T ₂ (16) vs C (20)					vs pre-; T1, post- vs pre-) NC vs C
Riso P et al., 2010 [16]	Broccoli (SFGluc, lutein, β-carotene, vitC)	Mononuclear cells	(NC) OGG1, NUDT1, HMOX1	C (17), T (17)	NR	Expression levels	Mean	SD	NR	NR
Shrestha S et al., 2007 [52]	Psyllium + plant sterols	Mononuclear cells	^LDLR (+26%, <i>p</i> <0.03) (NC) <i>HMGCR</i>	NR	T (17) vs C (17)	Expression levels, change (%)	Mean (individual data in figure)	SD (individual data in figure)	NR	↓ plasma cholesterol concentration in LDL subfractions in T vs C (post-)
Boss A et al., 2016 [59]	Olive leaf extract (oleuropein, HTyr)	Mononuclear cells	↓ <i>EGR1</i> (p =0.025) ↓ <i>PTGS2</i> (p =0.016) ↑ <i>ID3</i> (p =0.023)	NR	T (15) vs C (14)	Change (FC)	Mean	SD	NR	NR
Klickovic U et al., 2014 [83]	Cur	Mononuclear cells	(NC) HMOX1	T (10)	NR	Baseline expression levels (ΔCt) in table and change (FC) in figure	Mean	SD (stratification of results by genotype)	No Cur detected in plasma at any time point (48 h)	(NC) HMOX1 in PBMC
Hernáez Á et al., 2015 [26]	Olive oil (polyphenols) (T1: high T2: low content)	Mononuclear cells	(NS↑) <i>LPL</i> (<i>p</i> =0.08, T ₁)	T1 (18), T2 (18) (different doses)	T1 (18) vs T2 (18)	Change (%)	Mean (values only in figure)	SEM (values only in figure)	NR	NR
Barona J et al., 2012 [44]	Grape powder	Mononuclear cells	† NOS2 (p<0.001, individuals without dyslipidemia, T <i>vs</i> C (NC) <i>CYBB</i> , SOD1, SOD2, GPX1, GPX4	T(24), C(24)	T (24) vs C (24) (dyslipidemia 11), (non-dyslipidemia, 13)	Arbitrary units	Mean	SD (stratification of results by dyslipidemia status)	NR	NR
Ghanim H et al., 2010 [53]	Polygonum cuspidatum extract (Res)	Mononuclear cells	↓ MAPK8, IKBKB, PTPN1, SOCS3 ↑IRS1 (all comparisons p<0.05, T post- vs pre-, T vs C) (NC) TLR4, SIRT1	T (10) , C (10) (several time points)	T (10) vs C (10)	Change (%)	Mean	SEM	NR	\downarrow MAPK8, \downarrow PTPN1 in MNC, T (post- vs pre-), T vs C (post-)
Martín-Peláez S et al ., 2015 [28]	Olive oil (polyphenols) (T1: high T2: low content)	Mononuclear cells	↓ <i>ACE</i> (p =0.014 T ₁) ↓ <i>NR1H2</i> (p =0.022, T ₁), ↓ <i>CXCR2</i> (, p =0.02, T ₁ vs T ₂) (NS↓) <i>CXCR1</i> , <i>ADRB2</i> (T ₁) (NS↓) <i>MPO</i> (T ₁ , T ₂) (NS↓) <i>ADRB2</i> , <i>ACE</i> (T ₁ vs T ₂)	T ₁ (18) , T ₂ (18) (different doses)	T ₁ (18) <i>vs</i> T ₂ (18)	Change (log2 ratio)	Mean (values only in figure)	SD (values only in figure)	NR	NR

			(NC) ECE2, OLR1							
Camargo A et	Olive oil	Mononuclear	$\downarrow EGR1 (p=0.014)$	NR	T1 (20) vs T2 (20)	Expression	Mean	SEM	NR	NR
al., 2010 [19]	(polyphenols)	cells	$\downarrow IL1B (p=0.006)$		(different doses)	levels	(values only in	(values only in		
	(T1: high		(NS↓) <i>JUN, PTGS2</i> (<i>p</i> =0.083,				figure)	figure)		
	T2: low content)		<i>p</i> =0.118)							
Rangel-Zuñiga	T1: Virgin olive	Mononuclear	\\$\$\$ XBP1 (p=0.04, 4h vs pre-, T ₂)	T ₁ (20), T ₂ (20),	T1 (20) vs T2 (20)	Expression	Mean	SEM	NR	NR
OA et al., 2014	oil	cells	↑HSPA5 (<i>p</i> =0.035, 4h <i>vs</i> pre-, T ₂)	T ₃ (20), T ₄ (20)	vs T3 (20) vs T4	levels	(values only in	(values only in		
[25]	T2: Sunflower oil		↑ <i>CALR</i> (<i>p</i> =0.023, 4h <i>vs</i> pre-, T ₂)	(0, 2h, 4h)	(20)		figure)	figure)		
	T3: Sunflower +									
	canola oil+									
	dimethylpolysilo									
	xane									
	T4: olive									
	antioxidants									
Castañer O et	Olive oil	Mononuclear	↓ <i>CD40LG, IL23A, IL7R, CXCR2,</i>	T1 (18), T2 (18)	T1 (18) vs T2 (18)	Change (%)	Mean	SEM	Inverse	\downarrow CCL2 T ₁ vs
al., 2012 [22]	(polyphenols)	cells	OLR1 (p<0.05, T ₁ , T ₁ vs T ₂)	(different doses)			(values only in	(values only in	correlation	T2
	(T1: high		$\downarrow ADRB2$ (p< 0.05, T ₁ vs T ₂)				figure)	figure)	between ↓OLR1	(NC) ICAM1,
	T2: low		\downarrow <i>CCL2</i> (<i>p</i> < 0.05, T ₁ , T ₂)						(-2.6) and	IFNG
	polyphenol		(NS↓) IFNG, VEGFB, ICAM1 (T1)						<i>↓ICAM1</i> (-2.8)	
	content)		(NC) ALOX5AP, TNFSF10						and the 10%	
									Tyr and	
									HTyr in urine	
Crespo MC et	Olive waste	Mononuclear	(NC) Phase II enzymes: <i>NQO1,2;</i>	T ₁ (21), T ₂ (21),	$T_1 (21) vs T_2 (21)$	Change (FC)	Mean	SEM	NR	NR
al., 2015 [58]	water extract	cells	GSTA1,4; GSTK1, GSTM1-5;	C (21)	vs C (21)					
	(enriched in		GS101,2; GS1P1; GS1M1,2;	(different doses)						
	HTyr)		HNM1; INM1; MGS11-3	T (5 1 1) 5	ND			075	ND	
Kropat C et al.,	Bilberry pomace	Mononuclear	NQ01 (p<0.05 at 1h, 2h, 4h,	T (5 healthy, 5	NK	Expression	Mean	SD	NK	NK
2013 [47]	extract	cells	p < 0.01 at 8h, healthy)	ileostomy)		levels (%)				
	(anthocyanins)		+HMOX1 (p<0.001, at 1h, 2h, 4h, 0.05 + 0.01)	(different time						
			p < 0.05 at 8h, healthy)	points: pre-, and						
			\downarrow NFE2L2 (<i>p</i> <0.001, at 2h, 4h,	1h, 2h, 4h, 8h						
			p < 0.01 at 8h, healthy; $p < 0.001$ at	post-)						
DI	TT X7' ' 1'		2n, p < 0.05 at 4n, 8n lieostomy	T (10) T (10)	T (10) T (10)		M	CEM	NID	
Perez-Herrera	11: Virgin olive	iviononuciear	NADEH-OXIDASE SUDUNITS:	$11(12), 12(12), T_{12}(12), T_{12}(12)$	11(12) vs 12(12), T ₁ (12) vs T ₂ (12),	Expression	Iviean	SEM (ll	INK	IN PBMC:
A et al., 2013	011 T. Comflorence at1	cells	$(p=0.013, 4n, 12, \dots, 0.020, 4h, T, m, T)$	13 (12), 14 (12)	$1_2(1_2) v_{S} 1_3(1_2),$ $T_2(1_2) v_{S} T_2(1_2)$	levels	(values only in	(values only in		(NC) NFE2L2
[24]	12: Sunflower off		p = 0.030, 4n, 12.05 11),		12(12) 0S 14(12)		figure; difficult to	ngure)		
	13: Sunflower +		(p=0.021, 2n,, 0.022, 4h, T)				discern significant			levels with 1,
	dimathulnalu-il-		$p=0.035, 4\pi 12)$				between			NUCLEAR
	vana		$(p=0.020, 4n, 12, m=0.000, 4h, T_{2})$				between			INFEZLZ
	xane Tu aliwa		$p=0.009, 4\pi, 13$				hetween 1			T. T. T
	14: Olive		n = 0.05 (<i>p</i> =0.015, 2n,				perween pre- and			11, 13, 14 (m=0.016
	antioxidants		$p < 0.00, 4\pi, 12$				post-samples)			$\psi = 0.016,$
			150D1 (p=0.040, 2h, 10.05, 4h, T)							0.027, 0.023
			$p < 0.05 4 h, 1_2$							but NC with

			$ \begin{array}{l} \label{eq:carbon} \begin{tabular}{l} \hline \textbf{CAT} (p = 0.034, 4 \ h, \ T_2 \ vs \ T_1 \\ p = 0.015, \ 4h, \ T_2 \ vs \ T_3, \\ p < 0.05, \ 4h, \ T_2) \\ \hline \begin{tabular}{l} \hline \textbf{GSR} (p = 0.026, \ 2h, \ T_2, \\ p < 0.05, \ 4h, \ T_2) \\ \hline \end{tabular} \end{tabular} \end{tabular} $							T ₂ SOD activity \downarrow after T ₁ (p=0.041)
Chachay VS et al., 2014 [72]	Res	Mononuclear cells	(NC) NQO1, PTP1B, IL6, HMOX1	T (9) (different time points)	NR	Expression levels	Median (values only in figure for <i>PTP1B</i> and <i>NQO1</i>). Table with <i>p</i> -values	Inter-quartiles ranges (values only in figure)	NR	↓plasma IL6 in T (post- <i>vs</i> pre-)
Yiu EM et al., 2015 [73]	Res (T1, T2, two doses)	Mononuclear cells	(NC) FXN (T ₁) (NS \downarrow) FXN (p =0.08, T ₂)	T ₁ (12) , T ₂ (12)	T ₁ (12) vs T ₂ (12)	Change (%)	Mean	SD, 95% CI	NR	(NC) FXN levels in PBMC
Xie, L et al., 2017 [49]	Aronia berry extract (polyphenols)	Mononuclear cells	(NC) LDLR, HMGR	T (25), C (24)	T (25) vs C (24)	Expression levels	Mean	SEM	No association between plasma/urine aronia metabolites and gene expression	↓LDL receptor in PBMC by 56% in the T (post- vs pre), (p = 0.0036) T vs C (post-)
Radler U et al., 2011 [65]	Low-fat yoghurt containing grapeseed extract + fish oil + phospholipids +L- Carn + VitC + VitE	Mononuclear cells	↑ <i>PPARG, CPT1A, CPT1B,</i> <i>CRAT, SLC22A5</i> (<i>p</i> <0.05, T)	T (22) C (20; results NC but data not included)	NR	Change (FC)	Mean	SD (values only in figure)	↑ <i>CRAT</i> and ↑urine acetyl- Carn in T	NR
Tomé-Carneiro J et al., 2013 [45]	Grape extract + Res (T1: polyphenols T2: polyphenols +Res)	Mononuclear cells	↓ IL1 β (T ₂ , p<0.001; T ₁ , p<0.01; T ₁ or T ₂ vs C, p<0.05) ↓ TNF (T ₂ , p<0.01; T ₂ vs C, p=0.059) ↓ CCL3 (T ₂ , p<0.01) ↑ LRRFIP1 (T ₂ , p<0.01) ↓ NFKBIA (T ₁ , p<0.01) (NC) NFKB1	T1 (13), T2 (13), C (9) (different time points)	T1 (13) vs C (9), T2 (13) vs C (9), T2 (13) vs T1 (13)	Change (ratio)	Median	25 th -75 th interquartile range	NR	NC in TNF levels in PBMC or serum
Jamilian M et al., 2018 [62]	Fish oil (EPA + DHA)	Mononuclear cells	↑ <i>PPARG</i> (p = 0.04, T vs C) ↓ <i>LDLR</i> (p < 0.001, T vs C) ↓ <i>IL1B</i> (p = 0.007, T vs C) ↓ <i>TNF</i> (p = 0.01, T vs C) (NC) CXCL8	NR	T (20) vs C (20)	Change (FC)	Mean (values only in figure)	SD (values only in figure)	NR	NR
Nelson DM et al., 2011 [78]	Flavopiridol	Leukemic blasts	↑BCL2 (p=0.0005) (NS↑) CCDN1 (p=0.104) ↓HMGA1 (p=0.0005)	T (16)	NR	Expression levels in text , change (%) in	Mean (data stratification by responders	SD, range, % of individuals exhibiting the	NR	NR

			↓ <i>STAT3</i> (p =0.041) ↓ <i>E2F1</i> (p =0.009) ↓ <i>POLR2A</i> (p =0.034) (NC) <i>MCL-1</i> , <i>VEGFA</i>			figure	and non- responders)	change		
Persson I et al., 2000 [1]	Mix Veg	Lymphocytes	↓ <i>GSTP1</i> (<i>p</i> < 0.05)	T (6)	NR	Change (ratio) % change	Median	Range (%), individual values	NR	↓ GSTP1 in lymphocytes
Morrow DMP et al., 2001 [75]	Quer	Lymphocytes	↓ <i>TIMP1</i> (-75 and -85%, T vs C, T post- vs pre-, T vs washout, in the 4 individuals) (NC) <i>TIMP2</i> , <i>MMP2</i>	T (4), C (4)	T (4) vs C (4)	Change (%)	Individual values (only in figure)	NR	NR	\downarrow TIMP-1 in plasma in T vs C, T $vsbaseline, T vsafter 35 daysof the end ofT$
de Pascual- Teresa S et al., 2003 [38]	Quer (onions) T1: low Quer T2: high Quer	Lymphocytes	(NC) PTGS2	T ₁ (8), T ₂ (8) (different doses) C (8)	NR	Expression levels	NR	NR	No association with plasma Quer metabolites	NR
Boettler U et al., 2012 [37]	Coffee (CGA, NMP)	Lymphocytes	^ NFE2L2 (<i>p</i> <0.05, T post- <i>vs</i> pre-, post- <i>vs</i> after study washout) (NS [↑]) <i>NFE2L2</i> in T (post- <i>vs</i> before baseline)	T (18) (different time points)	NR	Change (FC)	Median (most values only in figure) Mean (values in figure and table)	Box plots with quartiles (most values only in figure; stratification in responders and not responders and effect of genotype)	NR	NR
Volz N et al., 2012 [36]	Coffee (CGA, NMP)	Lymphocytes	^ NFE2L2 (p < 0.05, T, post- vs study washout) \downarrow HMOX1, SOD1 (p < 0.05, T, post- vs study washout) (NC) GCLC, NQO1, GSTT1, CAT, GPX1, GSTM5, GSR	T (22-29)	NR	Change (FC)	Mean (most values only in figure)	Box plots with quartiles (most values only in figure) (stratification in responders and not responders and effect of genotype)	NR	NR
Hernández- Alonso P et al., 2014 [31]	Pistachio	Lymphocytes	↓IL6, RETN, SLC2A4 (-9%, p= 0.004, -6%, p= 0.04, (+69%, p =0.03, T vs C) (NC) SLC2A3, TLR2, TLR4	T (49), C (49)	T (49) vs C (49)	Change (%) in text for T <i>vs</i> C, change (ratio) T, C (post- <i>vs</i> pre-)	Unclear (values only in figure)	Unclear (values only in figure)	NR	(NC) plasma IL-6 and resistin T, C (post- vs pre-), T vs C (post-)
Carrera- Quintanar L et	T ₁ : <i>Lippia</i> <i>citriodora</i> extract	Lymphocytes neutrophils	Neutrophils \downarrow SOD2, SOD1, GSR (p <0.05, T ₃),	C (8), T ₁ (8), T ₂ (9), T ₃ (8)	NR	Expression levels	Mean (values in figure)	SEM (values in	NR	↑SOD activity in

al., 2015 [55]	T2: Almond beverage (+ vitC + vitE) T3: T1 + T2		† SOD2 (p <0.05, C) ↓ GSR (p <0.05, C) (NC) GPX1 Lymphocytes (NC) in any of the genes studied					figure)		neutrophils in T ₁ (post- vs pre- and compared to C). NS \downarrow SOD with T ₃ NS \downarrow GSR in C or T ₃
Marotta F et al, 2010 [39]	Fermented papaya	Neutrophils	↑ <i>SOD1, CAT, GPX1, OGG1</i> (all <i>p</i> <0.05, post- <i>vs</i> pre-)	T (11)	NR	Arbitrary units (relative expression levels)	Unclear (values only in figures; no association between <i>GSTM1</i> and <i>OGG1</i> genotype and changes in gene expression)	NR	NR	NR
Yanaka A et al., 2009 [15]	Broccoli sprout (SFGluc)	Polymorpho- nuclear granulocytes	[†]HMOX1 (FC= 2 to 3)	T (few volunteers)	NR	Change (FC)	NR	NR	NR	NR
Boesch- Saadatmandi C et al., 2009 [77]	Quer	CD14 + monocytes	(NC) PON2	T (20)	NR	Relative expression levels	Mean (values only in figure)	SEM (values only in figure)	No association with plasma quercetin	NR
Nieman DC et al., 2007 [76]	Quer	White blood cells, skeletal muscle	Leukocyte: \downarrow CXCL8 (-33%, p = 0.019, T vs C post- exercise) \downarrow IL10 (p = 0.012, T vs C post- exercise) (NC) IL1RN Muscle: (NC) PTGS2, IL6, CXCL8, IL1B, TNF (T vs C, post-exercise)	T (20), C (20)	T (20) <i>vs</i> C (20) (post-exercise: 3h cycling)	Change (FC)	Mean (values only in figures) Change % (in text)	SEM (values only in figures)	NR	(NS↓) IL-8 and TNF in plasma in T vs C (day 1 post-exercise
Gastrointestinal	tissue samples	1	-	1						-
Mallery SR et al., 2008 [46]	Freeze-dried black raspberry gel (10% w/w)	Oral intra- epithelial neoplasia and normal ventral- lateral tongue	Several genes examined: <i>KRT76</i> , <i>DSC1</i> , <i>UGT2B28</i> , <i>KSR1</i> , <i>PPP2CA</i> , <i>TMPRSS11E</i> , <i>SPRR3</i> , <i>UBD</i> , <i>TGM1</i> , <i>LOR</i> , <i>KRT13</i> , <i>SPRR2C</i> (high heterogeneity in the results). Examples: <i>PTGS2</i> (\downarrow n=11, \uparrow n=9) <i>NOS2</i> (\downarrow n=12, \uparrow n=8) <i>VEGFA</i> (\downarrow n=14, \uparrow n=6)	T (20 with neoplasia, 10 healthy)	NR	Change (FC)	Individual values (attempt to stratify in high and low responders)	NR	NR	High inter- individual variability \downarrow PTGS2 (p <0.005, 17/20 patients) \downarrow NOS2 (12/20 patients)

Turowski JB et al., 2015 [56]	Flaxseed (subgroups population: healthy; cystic fibrosis patients)	Buccal swabs	↓ HMOX1 (p=0.026, healthy, post- vs pre-) (NS↑) HMOX1 (cystic fibrosis, post- vs pre-) (NC) NQO1 (healthy, post- vs pre-) (NS↑) NQO1(cystic fibrosis, post- vs pre-)	T (5 healthy, 10 with cystic fibrosis)	NR	Change (FC)	Unclear (values only in figures)	Unclear (values only in figures)	Stratification of cystic fibrosis patients in low plasma lignans and high plasma lignans: NS differences associated to the levels of lignans	NR
Knobloch TJ et al., 2016 [48]	Black raspberry powder (in topically applicable troches)	Oral cancer and distal normal high risk oral mucosa	↓AURKA, BIRC5, EGFR, NFKB1, PTGS1 (p<0.05 in tumour samples post- vs pre- after multiple comparison adjustment by disease stage, BMI, smoking, age)	T (33)	NR	Change (FC)	NR	Individual data for some genes, 90 % CI	NR	NR
Gasper AV et al., 2007 [12]	Broccoli drink (SFGluc) (T1: high SFGluc T2: standard SFGluc)	Gastric antrum	↑GCLM ($p \le 0.05$, T ₁) ↑TXNRD1 ($p \le 0.001$ T ₁ , $p \le 0.05$ T ₂) (NC) CDKN1A	T1 (6-10), T2 (6-10), C (6-10)	NR	Change (log2 FC)	Mean (values only in figures)	SEM (values only in figures)	NR	NR
Koosirat C et al., 2010 [82]	Turmeric (containing Cur)	Gastric antrum	(NC) <i>CXCL8, IL1B, TNF, PTGS2</i> (T, post- <i>vs</i> pre-) ↓ <i>CXCL8</i> (C, post- <i>vs</i> pre-) ↓ <i>CXCL8, PTGS2</i> (<i>p</i> =0.0008, <i>p</i> =0.04, T <i>vs</i> C post-)	C (19), T (17)	C (19) vs T (17)	Expression levels (fold-decrease values)	Mean (some values in text and figures, plots of individual values and changes).	SD (values in text) 95% CI (values in figures) (% individuals with a change in text)	NR	NR
Labonté M-E et al., 2013 [61]	Fish oil (EPA + DHA)	Duodenal tissue	(NC) IL6, TNF, IL18, STAT3	NR	C (12) vs T (12)	Nº copies/10 ⁵ copies of the ref gene	Median	IQR	NR	NR
Frommel TO et al., 1994 [66]	β-carotene	Colon tissue	(NS [↑]) <i>GJA1</i> (in 4 individuals after T but only in 1 after C ₁ / C ₂)	T (6) , C ₁₊₂ (8)	NR	Scoring system of intensity	NR	NR	No correlation between tissue β -carotene and <i>GJA1</i> but some association in some subjects	NR
Nguyen AV et al., 2009 [42]	Res, Quer, grape powder T1: high Res + Quer T2: low Res + Quer T3: high grape	Colon tissue (cancer, normal)	Normal tissue $MYC (p = 0.01, T_4)$ $CCND1 (p < 0.005, T_4)$ $AXIN2 (p < 0.05, T_4)$ Cancer tissue $MYC (p < 0.01, T_4)$ $CCND1 (p < 0.05, T_4)$	T ₁ (1), T ₂ (2), T ₃ (2), T ₄ (3)	NR	Expression levels	Unclear (values only in figures)	Unclear (values only in figures)	NR	NR

	powder T4: low grape powder									
Ishikawa H et al., 2012 [41]	Propolis (Atrepillin C, polyphenols)	Colon mucosa	† <i>CCND1</i> (<i>p</i> =0.018, T) (NC) <i>PCNA</i> , <i>BAX</i>	T (15), C (15)	T (15) vs C (15)	Expression levels (also fold of control, unclear)	Mean (individual values in figures)	95% CI	NR	NR
Nuñez-Sanchez MA et al., 2017 [50]	Pomegranate extract (ETs) (T1,T2, different doses of ETs components analysed as one T)	Colon tissue (cancer, normal)	↓ <i>CD44, CTNNB1, CDKN1A</i> <i>EGFR, TYMS</i> (different comparisons and different <i>p</i> -values; counterbalance effect in normal and cancer tissue) (NC) <i>MYC, CASP3, KRAS</i>	T ₁₊₂ (35) , C (10)	T ₁₊₂ (35) <i>v</i> s C (10)	Expression levels, change (FC)	Median	Range (inter- individual variability study)	No association found with levels of metabolites (urolithins) in colon tissues or in urine (metabotypes)	NR
Other tissue sam	ples				-		1	-		
González- Sarrías A et al., 2010 [30]	Walnuts and pomegranate juice (ETs) T1: walnuts (ETs), T2: pomegranate juice (ETs)	Prostate tissue (benign hyperplasia and cancer tissues)	(NC) CDKN1A, MKI67, MYC	NR	C (30) vs T ₁ (14)+T ₂ (19),	Expression levels	Mean	SD, Range (box-plots representation of variability)	No association with prostate tissue metabolites (urolithins derivatives)	NR
Chan JM et al., 2011 [21]	T1: lycopene in soy oil + olive oil T2: fish oil + soy oil + olive oil	Prostate tissue (normal)	(NC) IGF1, IGF1R, PTGS2	C (26), T ₁ (22), T ₂ (21)	C (26) vs T1 (22), C (26) vs T2 (21)	Change (FC)	Mean	SD	NR	NR
Lazarevic B et al., 2012 [79]	Genistein	Prostate tissue (cancer, normal)	↓ <i>KLK4</i> (p =0.033 in cancer tissue, p=0.087 in normal tissue, T vs C, p=0.041 in T normal vs cancer) (NS↓) <i>CDKN1A</i> (cancer tissue, T vs C, p =0.184) (NC) <i>AR</i> , <i>NKX3-1</i> , <i>CDKN1B</i> , <i>TP53</i>	NR	T (10) <i>vs</i> C (12) T (normal <i>vs</i> cancer), C (normal <i>vs</i> cancer)	Expression levels	Mean (values only in figures)	SEM (values only in figures)	NR	NR
Most J et al., 2015 [81]	EGCG	Adipose tissue	↑LEP (<i>p</i> =0.05) (NS↑) CD36 (NC) CPT1A, PNPLA2, LIPE, ACACA	NR	T (24) vs C (24) (6 h post-prandial)	Expression levels	Mean	SEM	NR	NR
Kruse M et al., 2015 [29]	T1: rapeseed/canola oil (MUFA, PUFA) T2: Olive oil (MUFA) and two	Adipose tissue	Chronic: \downarrow IL6 (p=0.001, T ₁ vs T ₂) (NC) IL1B, CCL2, ADGRE1, CXCL8, IL10, SERPINE1, TNF (T ₁ vs T ₂) Acute:	T ₁ (9), T ₂ (9)	T ₁ (9) vs T ₂ (9)	Arbitrary units, change (%, FC)	Mean (values only in figure)	SEM (values only in figure)	NR	Chronic: (NC) serum IL6, CCL2 Acute: ↑serum IL6 in T1, T2 (NS)

	periods/doses (chronic, acute)		↑ <i>IL6 (p</i> = 0.032, T ₁) ↑ <i>IL1B (p</i> = 0.030 T ₁) ↑ <i>ADGRE1 (p</i> =0.049, T ₁) ↑ <i>CCL2 (p</i> =0.009, T ₁ , <i>p</i> =0.043, T ₂) (NC) <i>IL1B, IL6, CCL2, ADGRE1,</i> <i>CXCL8, IL10, SERPINE1, TNF</i> (T ₁ <i>vs</i> T ₂)							(NC) CCL2
Poulsen MM et al., 2013 [70]	Res	Skeletal muscle and adipose tissue	Muscle \downarrow <i>SLC2A4</i> (p<0.05, T) (NC) <i>PPARGC1A</i> Adipose (NC) <i>TNF</i> , <i>NFKB1</i>	T (12), C (12)	T (12) vs C (12)	Expression levels	Mean (values only in figure)	SEM (values only in figure)	NR	NR
Yoshino J et al., 2012 [69]	Res	Skeletal muscle and adipose tissue	(NC) SIRT1, NAMPT, PPARGC1A, UCP3	T (8-12), C (8-12)	T(8-12) vs C (8-12)	Expression levels	Mean (values only in figure)	SEM (values only in figure)	NR	NR
Kerksick CM et al., 2013 [80]	T1: NAC T2: EGCG	Skeletal muscle	(NC) TRIM63, FBXO32, PSMA1, PSMA2, UBE3B, CAPN2, CAPN1	C (10), T ₁ (10), T ₂ (10) (different time points)	C (10) vs T ₁ or T ₂ (10)	Change (FC)	Mean	SEM	NR	NR
Olesen J et al., 2014 [71]	Res (+physical exercise in 2 of 4 groups)	Skeletal muscle	(NC) PPARGC1A, TNF, NOS2	T (9) , C (7) Texercise (14), Cexercise (13)	T (9) vs C (7), Texercise (14) vs Cexercise (13)	Change (FC)	Mean (values only in figure)	SEM (values only in figure)	NR	(NC) TNF, NOS2 in muscle and plasma in T
Riedl MA et al., 2009 [14]	Broccoli sprout (SFGluc) (different doses)	Cells from nasal lavage	↑ <i>GSTM1, GSTP1, NQO1,</i> <i>HMOX1</i> (dose-response from T ₄ - T ₈ , $p \le 0.001$; $p \le 0.004$, T ₈ vs C)	T (3-10)	T ₈ (8) vs C (5)	Change (%)	Mean	SD	NR	NR
Knott A et al., 2008 [51]	Arctium lappa fruit extract (Arctiin) topical application)	Suction blister epidermis	↑ <i>HAS2</i> (<i>p</i> =0.018)	NR	T (6) vs C1 (6)	Expression levels	Mean	SD	NR	↑27.1% hyaluronan levels T <i>vs</i> C (post-)
Marini A et al., 2014 [63]	Lycopene + β- carotene + probiotic (<i>Lactobacillus</i> <i>johnsonii</i>)	Skin	Unclear effects on <i>ICAM-1</i> (T <i>vs</i> C, post-)	T (29-30), C (29-30)	T (29-30) vs C (29- 30)	NR	Unclear (values only in figure)	Unclear (values only in figure)	NR	NR
Marini A et al., 2012 [54]	Pine bark extract Pycnogenol (procyanidins)	Buttock skin	↑ <i>HAS1</i> (<i>p</i> <0.001) (NS↑) <i>COL1A1, COL1A2</i>	T (20)	NR	Change (%)	Mean (values only in figure)	SEM (values only in figure)	NR	NR
Farris P et al., 2014 [64]	Res + baicalin + vitE (topical application)	Photo- damaged face skin	↑ HMOX1, COL3A1 ↓ VEGFA, (NC) COL1A1, PRKAA1, SOD1	T (10)	NR	Change (FC)	NR	NR	NR	NR

Bertuccelli G. et	Fermented	Forearm skin	AQP3 (<i>p</i> <0.05, T post- <i>vs</i> pre-,	C (30), T (30)	C (30) vs T (30)	Expression	Unclear	Unclear	NR	NR
al., 2016 [40]	papaya		T vs C)			levels	(values only in	(values only in		
	(sublingual dose)		↓ <i>PPIA, CD</i> 47 (<i>p</i> <0.05, T post- <i>vs</i>				figure)	figure)		
			pre-, T vs C)							
			(NS \downarrow) LMNA (p= 0.068, T)							

¹ White blood cells or leukocytes: mononuclear cells agranulocytes (lymphocytes and monocytes) and polymorphonuclear granulocytes (neutrophils, eosinophils, basophils, mast cells); lymphocytes (mostly T cells, B cells and NK cells, also some dendritic cells); leukemic blasts (myeloblasts or immature white blood-forming cells).

Table abbreviations (in alphabetical order): BMI, body mass index; C, control; Cam, campesterol; Carn, carnitine; CGA: chlorogenic acid; CI, confidence interval; Cur, curcumin; DHA, docosaxehaenoic acid; EGCG, epigallocatechin gallate; EPA, eicosapentaenoic acid; ETs, ellagitannins; FC, fold-change; FruVeg, fruits and vegetables; HbF, fetal hemoglobin; Hbg, hemoglobin; HTyr, hydroxytyrosol; IQR, interquartile range; Lath, Lathosterol; LDL, low-density lipoprotein; McD, Macdonald; Med, Mediterranean; MNC, mononuclear cells; MUFA, monounsaturated fatty acids; NAC, N-acetyl-cysteine; NC, no change; NMP, *N*-methylpyridinum; NR, not reported; NS, not significant; post-, after treatment; pre-, baseline or before treatment; PUFA, polyunsaturated fatty acids; Quer, quercetin; Res, resveratrol; SD, standard deviation; Se, selenium; SEM, standard error of the mean; SFGluc, sulforaphane glucosinolates; T, treatment; Tyr, tyrosol; UVA, ultraviolet A; Veg, vegetables; VitC, vitamin C; VitE, vitamin E; *8-oxodG*, 8-oxo-7,8-dihydro-2'–deoxyguanosine.

Genes nomenclature from GeneCards [89] (in alphabetical order): ABCA1, ATP binding cassette subfamily A member 1; ABCG1, ATP binding cassette subfamily G member 1; ACACA, acetyl-CoA carboxylase alpha (alias: ACC1); ACE, angiotensin I converting enzyme; ADGRE1, adhesion G protein-coupled receptor E1 (alias:EMR1); ADRB2, adrenoceptor beta 2; AHR, aryl hydrocarbon receptor; AHRR, aryl-hydrocarbon receptor repressor; ALOX5AP, arachidonate 5-lipoxygenase activating protein; APEX1, apurinic/apyrimidinic endodeoxyribonuclease 1; AQP3, aquaporin 3 (Gill blood group); AR, androgen receptor; ARHGAP15, rho GTPase activating protein 15; AURKA, aurora kinase A; AXIN2, axin 2; BAX, BCL2 associated X, apoptosis regulator; BCL2, BCL2, apoptosis regulator; BIRC5, baculoviral IAP repeat containing 5; CALR, calreticulin (alias: CRT); CAPN1, calpain 1; CAPN2, calpain 2; CASP3, caspase 3; CAT, catalase; CCL2, C-C Motif Chemokine Ligand 2 (alias: MCP-1, monocyte chemotactic protein 1); CCL3, C-C motif chemokine ligand 3; CCL5, C-C motif chemokine ligand 5; CCND1, cyclin D1; CD14, CD14 molecule; CD36, CD36 molecule; CD40LG, CD40 ligand; CD44, CD44 molecule (Indian blood group); CD47, CD47 molecule; CDKN1A, cyclin dependent kinase inhibitor 1A (alias: p21); CDKN1B, cyclin dependent kinase inhibitor 1B (alias: p27); COL1A1, collagen type I alpha 1 chain; COL1A2, collagen type I alpha 2 chain; COL3A1, collagen type III alpha 1 chain; CPT1A, carnitine palmitovltransferase 1A; CPT1B, carnitine palmitoyltransferase 1B; CRAT, carnitine O-acetyltransferase; CTNNB1, catenin beta 1; CXCL8, C-X-C motif chemokine ligand 8 (alias: IL8); CXCR1, C-X-C motif chemokine receptor 1; CXCR2, C-X-C motif chemokine receptor 2 (alias: IL8RA); CYBA, cytochrome B-245 alpha chain (alias: P22-Phox); CYBB, cytochrome B-245 beta chain (alias: NOX2, GP91-Phox); CYP1A1, cytochrome P450 family 1 subfamily A member 1; DSC1, desmocollin 1; DUOX2, dual oxidase 2; ECE2, endothelin converting enzyme 2; EGFR, epidermal growth factor receptor; EGR1, early growth response 1; E2F1, E2F transcription factor 1; ERCC1, ERCC excision repair 1, endonuclease non-catalytic subunit; ERCC2, ERCC excision repair 2, TFIIH core complex helicase subunit; ERCC4, ERCC excision repair 4, endonuclease catalytic subunit; FBXO32, F-box protein 32 (alias: Atrogin1); FOSL1, FOS like 1, AP-1 transcription factor subunit (alias: FRA-1); FXN, frataxin, Friedreich ataxia protein; GCLC, glutamate-cysteine ligase catalytic subunit (alias: yGCL); GCLM, glutamate-cysteine ligase modifier subunit; GJA1, gap junction protein alpha 1; GPX1, glutathione peroxidase 1; GPX4, glutathione peroxidase 4; GPX7, glutathione peroxidase 7; GSTA1, glutathione S-transferase alpha 1; GSTA4, glutathione S-transferase alpha 4; GSTK1, glutathione S-transferase kappa 1; GSTM1, glutathione S-transferase Mu 1; GSTM2, glutathione S-transferase Mu 2; GSTM3, glutathione S-transferase Mu 3; GSTM4, glutathione S-transferase Mu 4; GSTM5, glutathione Stransferase Mu 5; GSTO1, glutathione S-transferase omega 1; GSTO2, glutathione S-transferase omega 2; GSTP1, glutathione S-transferase Pi 1 (alias: GSTP1-1); GSR, glutathione-disulfide reductase (alias: GRD1); GSTT1, glutathione S-transferase theta 1; HAS1, hyaluronan synthase 1; HAS2, hyaluronan synthase 2; HBG1, hemoglobin subunit gamma 1; HMGA1, high mobility group at-hook 1; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMOX1, heme oxygenase 1 (alias:HO-1); HNMT, histamine N-methyltransferase; HSPA5, heat shock protein family A (Hsp70) member 5 (alias: BIP); ICAM1, intercellular adhesion molecule 1; ID3, inhibitor of DNA binding 3, HLH protein; IGF1, insulin like growth factor 1; IGF1R, insulin like growth factor 1 receptor; IFNG, interferon gamma; IKBKB, inhibitor of nuclear factor kappa B kinase subunit

beta (alias: *IKKβ*); *IL1B*, interleukin 1 beta; *IL1RN*, interleukin 1 receptor antagonist; *IL6*, interleukin 6; *IL7R*, interleukin 7 receptor; *IL10*, interleukin 10; *IL18*, interleukin 18; IL23A, interleukin 23 subunit alpha; INMT, indolethylamine N-methyltransferase; IRAK1, interleukin 1 receptor associated kinase 1; IRS1, insulin receptor substrate 1; JUN, jun proto-oncogene, AP-1 transcription factor subunit; KLK-L1, kallikrein-like protein 1; KLK4, kallikrein related peptidase 4; KRAS, KRAS proto-oncogene, GTPase; KRT13, keratin 13; KRT76, keratin 76; KSR1, kinase suppressor of Ras 1; LDLR, low density lipoprotein receptor; LEP, leptin; LIPE, lipase E, hormone sensitive type (alias: HSL); LMNA, lamin A/C (truncated LMNA: Progerine); LOR, loricrin; LPL, lipoprotein lipase; LRRFIP1, LRR binding FLII interacting protein 1; MAPK8, mitogen-activated protein kinase 8 (alias: JKN1); MCL1, MCL1, BCL2 family apoptosis regulator; MED1, mediator complex subunit 1 (alias: PPARBP); MGMT, O-6-methylguanine-DNA methyltransferase; MGST1, microsomal glutathione S-transferase 1; MGST2, microsomal glutathione S-transferase 2; MGST3, microsomal glutathione S-transferase 3; MKI67, marker of proliferation Ki-67; MMP2, matrix metallopeptidase 2; MPO, myeloperoxidase; MYC, MYC proto-oncogene, BHLH transcription factor; NAMPT, nicotinamide phosphoribosyltransferase; NCF1, neutrophil cytosolic factor 1 (alias: p47-Phox); NFE2L2, nuclear factor, erythroid 2 like 2 (alias: NRF2); NFKB1, nuclear factor kappa B subunit 1; NFKBIA, NFKB inhibitor alpha; NKX3-1, NK3 homeobox 1 (alias: NK3X1); NQO1, NAD(P)H quinone dehydrogenase 1; NQO2, Nribosyldihydronicotinamide:quinone reductase 2; NOS2, nitric oxide synthase 2 (alias: iNOS); NR1H2, nuclear receptor subfamily 1 group H member 2; NUDT1, nudix hydrolase 1; OGG1, 8-oxoguanine DNA glycosylase; OLR1, oxidized low density lipoprotein receptor 1; PCNA, proliferating cell nuclear antigen; PNPLA2, patatin like phospholipase domain containing 2 (alias: ATGL); POLK, DNA polymerase kappa; POLR2A, RNA polymerase II subunit A; PON2, paraoxonase 2; PPARA, peroxisome proliferator activated receptor alpha; PPARD, peroxisome proliferator activated receptor delta; PPARG, peroxisome proliferator activated receptor gamma; PPARGC1A, PPARG coactivator 1 alpha (alias: PGC1α); PPIA, peptidylprolyl isomerase A; PPP2CA, protein phosphatase 2 catalytic subunit alpha; PRKAA1, protein kinase AMP-activated catalytic subunit alpha 1; PSMA1, proteasome subunit alpha 1 (alias: HC2); PSMA2, proteasome subunit alpha 2 (alias: HC3); PTGS1, prostaglandin-endoperoxide synthase 1 (alias: COX1); PTGS2, prostaglandin-endoperoxide synthase 2 (alias: COX2); PTPN1, protein tyrosine phosphatase, non-receptor type 1 (alias: PTP1B); RETN, resistin; SCARB1, scavenger receptor class B member 1 (alias: SRB1); SELENOF, selenoprotein F; SELENOP, selenoprotein P; SELENOS, selenoprotein S; SERPINE1, serpin family E member 1; SIRT1, sirtuin 1; SIRT2, sirtuin 2; SLC2A3, solute carrier family 2 member 3; SLC2A4, solute carrier family 2 member 4 (alias: GLUT4); SLC22A5, solute carrier family 22 member 5 (alias: OCTN2); SOCS3, suppressor of cytokine signaling 3; SOD1, superoxide dismutase 1 (alias: Cu/ZnSOD); SOD2, superoxide dismutase 2 (alias: MnSOD); SPRR2C, small proline rich protein 2C (pseudogene); SPRR3, small proline rich protein 3; STAT3, signal transducer and activator of transcription 3; TGM1, transglutaminase 1; TIMP1, TIMP metallopeptidase inhibitor 1; TIMP2, TIMP metallopeptidase inhibitor 2; TLR2, toll like receptor 2; TLR4, toll like receptor 4; TMPRSS11E, transmembrane protease, serine 11E; TNF, tumor necrosis factor (alias: TNFα); TNFRSF1A, TNF receptor superfamily member 1A; TNFSF4, TNF Superfamily Member 4; TNFSF10, TNF superfamily member 10; TP53, tumor protein P53 (alias: p53); TRAF3, TNF receptor associated factor 3; TRIM63, tripartite motif containing 63 (alias: MURF1); TXN, thioredoxin; TXNRD1, thioredoxin reductase 1 (alias: TR1); TYMS, thymidylate synthetase; UBD, ubiquitin D; UBE3B, ubiquitin protein ligase E3B; UCP2, uncoupling protein 2; UCP3, uncoupling protein 3; UGT2B28, UDP glucuronosyltransferase family 2 member B28; VCAM1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A (alias: VEGF); VEGFB, vascular endothelial growth factor B; XBP1, X-box binding protein 1; XPA, XPA DNA damage recognition and repair factor; XPC, XPC complex subunit, DNA damage recognition and repair factor; XRCC1, X-ray repair cross complementing 1; XRCC3, X-ray repair cross complementing 3.

Table S4. Summary of the expression changes in *TNF* as determined in human cell or tissue samples following intervention with diets, foods or derived products rich in bioactive compounds or with single bioactive compounds. The type and quality of the data presented in the study, estimation of or information about the variability as well as information about the association between the observed effects with the presence of bioactive metabolites and (or) with the corresponding protein quantity/activity are indicated.

Reference	Intervention	Effect	TNF expression results in human clin		Association with		
	(daily dose,	potentially	Data presentation	Data	Variability information ³	Compounds/	Protein levels
	duration)	associated to the		quality ²	-	Metabolites	and (or)
		intervention				(urine,	activity, tissue
		with the				plasma,	
		bioactive source,				tissue)	
		(cells ¹ , tissue,					
		sample size)					
Diets rich in bio	active compoun	ds					
Marques-	Hypocaloric	No effect	C: not included	Poor	Calculated CV	NR	(NC) TNF in
Rocha JL et	Med-based	(white blood	• T: data presented as FC (mean ± SD)	(control	post- T: CV=81.7%		plasma
al., 2016 [10]	diet (56 d)	cells, n=40)	- Post-: 1.53 ± 1.25, pre: 1.01 ± 0.86; FC (post- <i>vs</i> pre-): NS (<i>p</i> -	group not	pre- T: CV= 85.1%		
			value=0.08)	included)			
Di Renzo L et	T1: McD	↓TNF	C: not included	Poor	No information	NR	NR
al., 2017 [34]	meal+	(blood, n=22)	 Comparisons between treatments T1 or T2 and no dietary 	(data only in	available		
	hazelnuts		treatment (pre- vs post-) and between T1 and T2 (post-)	figures;			
	(40 g)		- T ₂ (pre- <i>vs</i> post-): FC<-1.5 (<i>p</i> <0.05)	unclear data			
	T2: McD		- T1 (pre- vs post-): NC	reporting)			
	meal		- T ₂ vs T ₁ : FC>+1.5 (p<0.05)				
	3 h						
Grapes and deri	ived products co	ontaining bioactive c	ompounds				-
Weseler AR et	Grape seeds	↓TNF	C: not included	Poor	No information	NR	Inhibition of
al., 2011 [43]	(flavanols)	(blood, n=15)	 T: data presented as % of change 	(control not	available		ex vivo LPS-
	(200 mg/d,		- (post- <i>vs</i> pre-) Change=-12%; <i>p</i> -value<0.05	included;			induced TNF
	56 d)			data in			in blood
				figures)			
Tomé-	T1: Grape	No effect	• C: data presented as Ratio (median, IQR)	High	IQR	NR	(NC) TNF in
Carneiro J et	extract (151	(mononuclear	- Ratio (post- <i>vs</i> pre-): 0.83 (0.57-1.25) (<i>p</i> -value=0.239)				serum or
al., 2013 [45]	mg/d, 183 d)	cells, n=9-13)	• T: data presented as Ratio (median, IQR)				plasma
			- Ratio (post- vs pre-): 0.78 (0.58-1.59) (p-value=0.775)				
	T1: Grape		• C: data presented as Ratio (median, IQR)				
	extract (302		- Ratio (post- <i>vs</i> pre-): 0.80 (0.70-1.35) (<i>p</i> -value=0.890)				
	mg/d, 365 d)		• T: data presented as Ratio (median, IQR)				
			- Ratio (post- <i>vs</i> pre-): 0.86 (0.37-1.31) (<i>p</i> -value=0.083)				
	T2: Grape	↓TNF	• C: data presented as Ratio (median, IQR)				
	extract (151	(mononuclear	- Ratio (post- vs pre-): 0.83 (0.57-1.25) (p-value=0.239)				
	mg + 8 mg	cells, n=9-13)	• T: data presented as Ratio (median, IQR)				

	Res/d, 183 d)		Ratio (post- vs pre-): 0.39 (0.25-1.23) (p-value=0.016)				
	T ₂ : Grape		• C: data presented as FC (median, IOR)	-			
	extract (302		- Ratio (post- vs pre-): 0.80 (0.70-1.35) (n-value=0.890)				
	mg + 16 mg		• T: data presented as Ratio (median, IOR)				
	$Res/d_{365}d$		- Ratio (post- vs pre-): 0.65 (0.22-1.02) (n-value=0.019)				
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		• T vs C: data presented as Ratio (median): 0.54 (-46%) (n-value=0.06)				
Poulsen MM	Res (1500	No effect	C: data presented as expression levels (mean SEM)	Medium	Calculated CV	NR	(NC) TNF
et al 2013	$mg/d_{28} d$	(adipose tissue	- Post-: 0.00039 (0.000025) pre-: 0.00038 (0.00005)	(data only in	post- C: CV=22.2%	INK	nlasma
[70]	111g/ a, 20 a)	(ualpose assue, n=12)	• T: data presented as expression levels (mean SEM)	(data only in figures)	$pre_{-}C:CV = 45.6\%$		(ND) in
[70]		11-12)	Post : 0.00047 (0.000035) pro : 0.00036 (0.000025)	inguics)	pre- C. $CV = 45.0\%$		adiposo tissuo
			(values estimated from figures)		post = 1. CV = 23.0%		adipose dissue
Olecen Let al	Pag (250	No offect	• C: data presented as expression levels (mean SEM)	Madium	Colculated CV	NP	(NIC) TNE
2014 [71]	$\operatorname{Res}(250)$	(skolotal	Post $: 11(0.26)$ pro $: 10(0.11)$	(data only in	valculated CV	INK	(INC) INF
2014 [71]	mg/u, 56 u)	$(SKeletal m_7 14)$	- $105t$ - $1.1(0.20)$, pte- $1.0(0.11)$	(uata only in	post-C. CV = 02.5%		niuscie &
		muscle, m-7-14)	• 1. data presented as expression revers (mean, $5EW$) Post : 0.82 (0.17), pro : 1.0 (0.2)	inguies)	pre- C. $CV = 29.1\%$		plasma
			-105(-0.05)(0.17), pte- $-1.0(0.2)$		post-1.CV-61.4%		
	Dec. 1	Derrorte the offect	(values estimated from figures)	-	$\frac{\text{pre-1: CV = 60.0\%}}{\text{Calculated CV}}$		
	Kes +	Revents the effect	• C. data presented as expression revers (mean, SEW) $Past = 0.57 (0.11)$ area $\pm 1.0 (0.17)$		Calculated CV		
	training	or exercise	- Post-: 0.57 (0.11), pre-: 1.0 (0.17)		post- C: CV=69.5%		
	(56 d)	(skeletal	• 1: data presented as expression levels (mean, SEIVI)		pre- C: $CV = 61.0\%$		
		muscle, n=/-14)	- Post-: 0.90 (0.14), pre-: 1.0 (0.1)		post- 1: CV=58.2%		
01 11 11	I	1			pre- 1: CV= 37.4%		
Uils rich in bioa	active compound	1S			IOD	ND	ND
Labonte M-E	Fish oil	No effect <i>INF</i>	• C: data presented as N [∞] copies/10 ⁵ copies ref gene (median, IQR)	Poor (only	IQK	NK	NK
et al., 2013	(EPA +	(duodenal	- Post-: 109 (51)	post data)			
[61]	DHA) (3g/d,	biopsies, n=12)	• 1: data presented as N [∞] copies/10 [°] copies ref gene (median, IQR)				
	56 d)		-10st - 193(50)				
T 11 M 1	E: 1 - 11 (2/0		• 1 vs C (difference):-16 (p-value:0.75)			NID	NID
Jamilian M et	Fish oil (360	↓ <i>INF</i>	• C: placebo capsules	Medium-	Calculated CV	NK	NK
al., 2018 [62]	mg EPA +	(mononuclear	• T: data presented as relative Fold-change compared to placebo	Poor (poor	post- C: CV=10.5%		
	240 mg	cells, n=20)	(log transformed data, unclear reporting, mean, SD)	data	post- T: CV=18.0%		
	DHA, 42 d)		• T vs C (difference):-1.12 (p-value:0.01)	reporting,			
				data only in			
V. C. i l	T EDA			figures)		NID	
vors C. et al.,	11: EPA		• C: data presented as N [×] copies/copies of ref gene (mean, SEM)	Poor (only	Calculated CV	NK	No correlation
2017 [67]	(2.7g/d,	(blood, n=44)	- Post-: 3110 (93)	post- data)	post- C: CV=19.8%		between TNF
	70 d)		• 1: data presented as N ^o copies/copies of ref gene (mean, SEM)		post- 1: CV=23.9%		& plasma
			- Post-: 3329 (120)		Individual data		protein
		^	• T vs C (difference):+219 (p-value:0.06)	-	provided		
	T ₂ : DHA	ITNF	• C: data presented as № copies/copies ref gene (mean, SEM)		Calculated CV		
	(2.7g/d, 70.1)	(blood, n=44)	- Post-: 3110 (93)		post- C: CV=19.8%		
	70 d)		• T: data presented as N ^o copies/copies ref gene (mean, SEM)		post- T: CV=24.2%		
			- Post-: 3392 (124)		Individual data		
			• T vs C (difference):+282 (p-value:0.01)		provided		ļ
Kruse M et	T1:rapeseed/	No difference	C: not included	Poor (only	Calculated CV	NR	NR

al., 2015 [29]	canola oil (MUFA, PUFA) (50g/d, 28 d) T ₂ : Olive oil (MUFA) (50g/d, 28 d)	T ₁ vs T ₂ (adipose tissue, n=9)	 T: data presented as arbitrary units (mean, SEM) Post-: 0.55 (0.18) C: not included. T: data presented as arbitrary units (mean, SEM) Post-: 0.20 (0.05) 	post- data)	post- T: CV=98.1% Calculated CV post- T: CV=75.0%		
Other bioactive	compounds						
Koosirat C et al., 2010 [82]	Turmeric tablet (Cur) (120 mg/d, 28 d)	No effect (gastric antrum, n=17-19)	 C: data presented as expression levels, FC (mean, 95% CI, SD), % individuals with a change Pre-: 0.20 (0.11-0.29); FC (post- vs pre-): -37.2 (34.06); 63.2% ↓<i>TNF</i> T: data presented as expression levels, FC (mean, 95% CI, SD), % individuals with a change Pre-: 0.50 (0.27-0.73); FC (post- vs pre-): -1.9 (0.38); 52.9% ↓<i>TNF</i> T vs C (difference): NS (stronger reducing effect in control group) 	Medium- Poor (poor data reporting)	Calculated CV pre- C: CV=109% C (post- <i>vs</i> pre-): CV:91.6% pre- T: CV=99% T (post- <i>vs</i> pre-): CV: 20%	NR	NR
Nieman DC et al., 2007 [76]	Quer (1000 mg/d, 24 d)	No effect (skeletal muscle n=20)	 C: data presented as FC (mean, SEM) Post-: +3.5 (0.38); T: data presented as FC (mean, SEM) Post-: +5.0 (0.75) T <i>vs</i> C (difference): NS (<i>p</i>-value:0.930) 	Poor (only post- data)	Calculated CV post- C: CV=48.5% post- T: CV=67.0%	NR	NR

¹White blood cells or Leukocytes: mononuclear cells agranulocytes (lymphocytes and monocytes) and polymorphonuclear granulocytes (neutrophils, eosinophils, basophils, mast cells);²Data quality based on: absence of proper control group, poor or confusing data reporting, results only in figures; ³Coefficient of variation calculated when data (mean, SD, SEM) available.

Table abbreviations (in alphabetical order): C, control group; CI, confidence intervals; Cur, curcumin; CV, coefficient of variation; d, days; DHA, docosahexaenoic acid;EPA, eicosapentaenoic acid; FC, fold-change; h, hours; IQR, interquartile range; LPS, lipopolysaccharide; McD, MacDonald; Med, Mediterranean; MUFA, monounsaturated fatty acids; NC, no change; ND, not detected; NR, not reported; NS, not significant; post-, after treatment; pre-, baseline or before treatment; PUFA, polyunsaturated fatty acids; Quer, quercetin; ref gene, reference gene; Res, resveratrol; SD, standard deviation; SEM, standard error of the mean; T, treated group; *TNF*, tumour necrosis factor alpha (alias: *TNFα*).

Table S5. Summary of the expression changes in the *PPAR* family of genes as determined in human cell or tissue samples following intervention with diets, foods or derived products rich in bioactive compounds or with single bioactive compounds. The type and quality of the data presented in the study, estimation of or information about the variability as well as information about the association between the observed effects with the presence of bioactive metabolites and (or) with the corresponding protein quantity/activity are indicated.

Reference	Intervention	Effect potentially	PPARs expression results in human cli	inical studies		Association w	ith
	(daily dose, duration)	associated to the intervention with the bioactive	Data presentation	Data quality ²	Variability information ³	Compounds/ Metabolites	Protein levels and (or) activity tissue
		source, (cells ¹ , tissue, sample size)				plasma, tissue)	uctivity, tissue
Mixed products	s rich in bioactive com	pounds					
Radler U et al., 2011 [65]	Low-fat yoghurt (grapeseed extract + fish oil + phospholipids + carnitine + VitC + VitE) (125g ×2/d, 84 d)	†PPARG (mononuclear cells, n=20-22)	 C: data not shown No change indicated in the text T: data presented as expression levels (mean, SD) Post-: 2.53 (1.26), pre-: 1.0 (NR) (values estimated from figures) 	Poor (Control data not included; data only in figures)	Calculated CV post- T: CV= 49.8%	NR	NR
Oils rich in bioa	active compounds						
Vors C et al., 2017 [67]	Tı: EPA (2.7g/d, 70 d)	†PPARA (blood, n=44)	 C: data presented as N° copies/copies of ref (mean, SEM) Post-: 411.6 (16.2) T: data presented as N° copies/copies of ref (mean, SEM) Post-: 461.4 (12.5) T <i>vs</i> C (difference): +49.8 (<i>n</i>-value:0.003) 	Poor (only post- data)	Calculated CV post- C: CV=26.1% post- T: CV= 17.9% Individual data provided	NR	NR
	T2: DHA (2.7g/d, 70 d)		 C: data presented as N° copies (mean, SEM) Post-: 411.6 (16.2) T: data presented as N° copies (mean, SEM) Post-: 454.7 (13.4) T vs C (difference): +43.1 (p-value:0.01) 		Calculated CV post-C: CV=26.1% post-T: CV= 19.5% Individual data provided		
	T1: EPA (2.7g/d, 70 d)	No effect <i>PPARG</i> (blood, n=44)	 C: data presented as Nº copies/copies of ref (mean, SEM) Post-: 46.0 (3.5) T: data presented as Nº copies/copies of ref (mean, SEM) Post-: 44.1 (3.5) T vs C (difference): -1.9 (p-value:0.30) 	_	Calculated CV post-C: CV=50.5% post-T: CV= 52.6%		
	T2: DHA (2.7g/d, 70 d)		 C: data presented as N° copies (mean, SEM) Post-: 46.0 (3.5) T: data presented as N° copies (mean, SEM) Post-: 48.0 (3.9) T vs C (difference): -2.0 (p-value:0.68) 		Calculated CV post-C: CV=50.5% post-T: CV= 53.9%		

Jamilian M et al., 2018 [62]	Fish oil (360 mg EPA + 240 mg DHA, 42 d)	† <i>PPARG</i> (mononuclear cells, n=20)	 C: placebo capsules T: data presented as relative Fold-change compared to placebo (log transformed data, unclear reporting, mean, SD) 	Medium- Poor (poor data	Calculated CV post-C: CV=9.0% post-T: CV=11.3%	NR	NR
			• T <i>vs</i> C (difference):+1.06 (<i>p</i> -value: 0.04)	reporting, data only in figures)			
Farràs M al., 2013 [23]	Olive oil (T1: 26.2 mg polyphenols T2: 8.0 mg	† <i>PPARG</i> (white blood cells, n=13) † <i>PPARA</i>	 T: data presented as the ratio T₁/T₂ (geometric mean, 95%CI) FC (T₁/T₂): 2.8 (1.7-4.6) (<i>p</i>-value<0.05) (values estimated from figures) T: data presented as the ratio T₁/T₂ (geometric mean, 95%CI) 	Poor (Control not included; post- vs pre-	Calculated CV T ₁ /T ₂ : CV=118.3% Calculated CV	NR	NR
	polyphenois, postprandial response 5 h)	(white blood cells, n=13) ^ PPARD (white blood cells, n=13)	 FC (11/12): 2.0 (1.5-2.6) (<i>p</i>-value<0.05) (values estimated from figures) T: data presented as the ratio T1/T2 (geometric mean, 95%CI) FC (T1/T2): 2.0 (1.2-2.35) (<i>p</i>-value<0.05) (values estimated from figures) 	not included; data only in figures)	Calculated CV T ₁ /T ₂ : CV= 32.2%	_	
		PPARBP (MED1) (white blood cells, n=13)	 T: data presented as the ratio T₁/T₂ (geometric mean, 95%CI) FC (T₁/T₂): 1.45 (1.2-1.8) (<i>p</i>-value<0.05) (values estimated from figures) 		Calculated CV T ₁ /T ₂ : CV= 44.4%		
Single bioactive	e compounds						
Poulsen MM et al., 2013 [70]	Res (1500 mg/d, 28 d)	No effect on <i>PPARGC1A</i> (skeletal muscle tissue, n=12)	 C: data presented as expression levels (mean, SEM) Post-: 0.15 (0.021), pre-: 0.12 (0.011) T: data presented as expression levels (mean, SEM) Post-: 0.11 (0.017), pre-: 0.13 (0.017) (values estimated from figures) 	Medium (data only in figures)	Calculated CV post-C: CV=48.5% pre-C: CV= 31.7% post-T: CV=53.5% pre-T: CV= 45.3%	NR	NR
Olesen J et al., 2014 [71]	Res (250 mg/d, 56 d)	No effect on PPARGC1A (skeletal muscle tissue, n=7-14)	 C: data presented as expression levels (mean, SEM) Post-: 0.96 (0.42), pre-: 1.0 (0.22) T: data presented as expression levels (mean, SEM) Post-: 0.92 (0.20), pre-: 1.0 (0.24) (values estimated from figures) 	Medium (data only in figures)	Calculated CV post-C: CV=112% pre-C: CV= 58% post-T: CV=65.2% pre-T: CV= 72.0%	NR	NR
	Res + training (56 d)		 C: data presented as expression levels (mean, SEM) Post-: 1.48 (0.28), pre-: 1.0 (0.24) T: data presented as expression levels (mean, SEM) Post-: 1.44 (0.24), pre-: 1.0 (0.14) (values estimated from figures) 		Calculated CV post-C: CV=50.0% pre-C: CV= 63.5% post-T: CV=50.0% pre-T: CV= 42.0%		
Yoshino J et al., 2012 [69]	Res (75mg/d, 84 d)	No effect on <i>PPARGC1A</i> (skeletal muscle, n=15)	 C: data presented as expression levels (mean, SEM) Post-: 1.0 (0.10), pre-: 1.1 (0.10) T: data presented as expression levels (mean, SEM) Post-: 1.1 (0.10), pre-: 0.97 (0.13) (values estimated from figures) 	Medium (data only in figures)	Calculated CV post-C: CV=38.7% pre-C: CV= 35.2% post-T: CV=35.2% pre-T: CV= 51.9%	NR	NR
		No effect on <i>PPARGC1A</i> (adipose tissue, n=15)	 C: data presented as expression levels (mean, SEM) Post-: 1.1 (0.10), pre-: 1.1 (0.10) T: data presented as expression levels (mean, SEM) Post-: 1.13 (0.17), pre-: 1.13 (0.10) (values estimated from figures) 		Calculated CV post-C: CV=35.2% pre-C: CV= 35.2% post-T: CV=58.3% pre-T: CV= 34.3%		

¹White blood cells or Leukocytes: mononuclear cells agranulocytes (lymphocytes and monocytes) and polymorphonuclear granulocytes (neutrophils, eosinophils, basophils, mast cells);²Data quality based on: absence of proper control group, poor or confusing data reporting, results only in figures; ³Coefficient of variation calculated when data (mean, SD, SEM) available.

Table abbreviations (in alphabetical order): C, control group; CI, confidence intervals; CV, coefficient of variation, d, days; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FC, fold-change; *MED1*, mediator complex subunit 1 (alias: *PPARBP*); NR, not reported; post-, after treatment; *PPARA*, peroxisome proliferator activated receptor alpha; *PPARG*, peroxisome proliferator activated receptor gamma; *PPARD*, peroxisome proliferator activated receptor delta; *PPARGC1A*, PPARG coactivator 1 alpha (alias: *PGC1α*); pre-, baseline or before treatment; ref gene, reference gene; Res, resveratrol; SD, standard deviation; SEM, standard error of the mean; T, treated group; VitC, vitamin C; VitE, vitamin E.

Table S6. Summary of the expression changes in the *GPX* family of genes as determined in human cell or tissue samples following intervention with diets, foods or derived products rich in bioactive compounds or with single bioactive compounds. The type and quality of the data presented in the study, estimation of or information about the variability as well as information about the association between the observed effects with the presence of bioactive metabolites and (or) with the corresponding protein quantity/activity are indicated.

Reference	Intervention (daily dose, duration)	Effect potentially associated to the intervention with the bioactive source, (cells ¹ , tissue, sample size)	GPXs expression results in human clinical studies			Association with	
			Data presentation	Data quality ²	Variability information ³	Compounds/ Metabolites (urine, plasma, tissue)	Protein levels and (or) activity, tissue
Diets rich in bio	active compounds		•				•
Di Renzo L et al., 2014 [8]	T1: red wine (250 mL) T2: Med meal T3: T1+T2 T4: McD meal T5: T4+T1 4 h	↑ <i>GPX1</i> (blood, n=24) ↑ <i>GPX1</i> (blood, n=24)	 C (baseline) vs T1: data presented as ΔCt in bar figures ΔCt: +0.5 (estimated from figure) (p-value: ≤ 0.05) C (baseline) vs T3: data presented as ΔCt in bar figures ΔCt: +0.6 (estimated from figure) (p-value: ≤ 0.05) 	Poor No information (confusing available data reporting, data only in	NR	NR	
		↑ <i>GPX1</i> (blood, n=24)	 C (baseline) vs T₅: data presented as ΔCt in bar figures - ΔCt: +1.5 (estimated from figure) (p-value: ≤ 0.05) 	figures)			
Di Renzo L et al., 2017 [34]	T1: McD meal+ hazelnuts (40 g) T2: McD meal 3 h	↓ <i>GPX1</i> (blood, n=22)	 T₁: data presented as FC in figure FC (pre- vs post-): >+1.5 (p-value:<0.05) T₂ vs T₁: data presented as FC in figure FC : >+1.5 (p-value:<0.05) 	Poor (confusing data reporting,	No information available in	NR	NR
		↓ <i>GPX3</i> (blood, n=22)	 T2: data presented as FC in figure FC (pre- vs post-): <- 1.5 (p-value:<0.05) T2 vs T1: data presented as FC in figure FC: >+1.5 (p-value:<0.05) 	data only in figures)			
		↓ <i>GPX4</i> (blood, n=22)	 T₂ vs T₁: data presented as FC in figure FC: > +1.5 (p-value:<0.05) 				
		† <i>GPX7</i> (blood, n=22)	 T2: data presented as FC in figure FC (pre- vs post-): >1.5 (p-value:<0.05) T2 vs T1: data presented as FC in figure FC: <-1.5 (p-value:<0.05) 				
Grapes and der	ived products/bioactiv	e compounds		•	•		
Weseler AR et al., 2011 [43]	Grape seeds flavanols (200 mg/d, 56 d)	No effect on <i>GPX1</i> (blood, n= 28) No effect on <i>GPX4</i> (blood, n= 28)	 C: NS data presented only in figures (only significantly changed presented as % of change in text) T: NS data presented only in figures (only significantly changed presented as % of change in text) 	Medium – poor (no information on variability)	No information available	NR	NR

Barona J et al., 2012 [44]	Grape powder (46 g/d, 28 d)	Pr No effect on <i>GPX1</i> (mononuclear cells, n= 24) No effect on <i>GPX4</i> (mononuclear cells, n= 24)	 T vs C : data presented as arbitrary units (mean ± SD) Dyslipidaemic : 0.460 ± 1.793 Non-dyslipidaemic: -0.152 ± 0.722 T vs C : data presented as arbitrary units (mean ± SD) Dyslipidaemic : 0.196 ± 0.738 Non-dyslipidaemic: -0.196 ± 0.798 	Medium- poor (only post- values)	Calculated CV Dyslipidaemic: post-T vs post-C : CV= 390% Non-dyslipidaemic post-T vs post-C : CV= 475% Calculated CV Dyslipidaemic: post-T vs post-C : CV= 377% Non-dyslipidaemic post-T vs post-C : CV= 407%	NR	NR
Foods and deri	ved extracts			1	1	1	-
Donadio JLS et al., 2017 [32]	Brazil nuts (Se) (3-4 g (300 μg)/d, 56 d)	↑ <i>GPX1</i> (blood, n= 130 or n=12, unclear)	 C: not included T: data presented as relative expression levels, stratification by genotype (CC, CT+TT) CC : post-: +2.2 (data estimated from figure), pre-: +1.7 (data estimated from figure) Post- <i>vs</i> pre- (↑<i>p</i>-value: < 0.05) 	Poor (control not included; unclear reporting of individuals per group; data in figures; unclear reporting of the type of data)	No information available	NR	NR
Dragsted LO et al., 2006 [6]	Mix FruVeg (600 g /d, 24 d)	(NS [†]) <i>GPX1</i> (white blood cells, n=43)	 Two controls, C₁ and C₂ (data presented as time-course of expression in figure, mean ± SEM) T: (data presented as time-course of expression in figure, mean ± SEM), FC<+1.5 	Poor (unclear reporting of tissue sample and of number of subjects per group, data only in figure)	The↑ is mostly due to large changes only in 2 subjects	NR	Erythrocytes: ↑GPx-1 activity in T (post- <i>vs</i> pre-) previously reported [7]
Marotta F et al, 2010 [39]	Fermented papaya (6 g /28 d)	↑GPX1 (neutrophils, n= 11)	 C: not included T: data presented as arbitrary expression units (relative expression levels, data estimated from figure) Post (28d)-: +6.7, post (14 d)-: +6.1 vs pre-: +0.1 (p-value: < 0.01) 	Poor (control group not included, data only in figures)	No information available	NR	NR

Volz N et al.,	Coffee (29.5 g /d,	No effect on GPX1	• C: not included	Poor	Calculated CV (based on	NR	NR
2012 [36]	28 d)	(lymphocytes,	• T: data presented as FC	(control	calculated mean: 1.16		
		n= 29)	- FC (post- vs pre-): 0.5-2.2 (individual data presented)	group not	and SD: 0.51)		
				included)	CV: 44 %		
Carrera-	T1: Lippia citriodora	No effect on GPX1	• C: placebo, data presented as expression levels (data estimated	Poor (data	CV calculated	NR	↑ GPx-1 activity
Quintanar L	extract (1.22 g/d)	(neutrophils,	from figure, mean ± SEM)	only in	C: CV=164%		in erythrocytes
et al., 2015	T2: Almond	n=33)	- Post-: 0.7 vs pre-: 1 (arbitrarily referred)	figures,	T1: CV=71.3%		in T ₁ vs C (post)
[55]	beverage + vitC +		• T1: data presented as expression levels (data estimated from figure,	only	T2: CV=168%		
	vitE) (250 mL + 25		mean ± SEM)	intragroup	T3: CV=95.8%		
	mg + 75 mg)/d),		- Post-: 0.8 vs pre-:1 (arbitrarily referred)	comparison)			
	T3: 0.55 g/d T1 + 250		• T2: data presented as expression levels (data estimated from figure,				
	mL/d T ₂ ,		mean ± SEM)				
	21 d		- Post-: 1.3 vs pre-:1 (arbitrarily referred)				
			• T3: data presented as expression levels (data estimated from figure,				
			mean ± SEM)				
			- Post-: 1.2 vs pre-:1(arbitrarily referred)				

¹White blood cells or Leukocytes: mononuclear cells agranulocytes (lymphocytes and monocytes) and polymorphonuclear granulocytes (neutrophils, eosinophils, basophils, mast cells); ²Data quality based on: absence of proper control group, poor or confusing data reporting, results only in figures; ³Coefficient of variation calculated when data (mean, SD, SEM) available.

Table abbreviations (in alphabetical order): C, control group; CV, coefficient of variation; d, days; FC, fold-change; *GPX1*, glutathione peroxidase 1; *GPX4*, glutathione peroxidase 4; *GPX7*, glutathione peroxidase 7; h, hours; McD, McDonald; Med, Mediterranean; FruVeg, fruits and vegetables; NR, not reported; NS, not significant; post-, after treatment; pre-, baseline or before treatment; SD, standard deviation; SEM, standard error of the mean; Se, selenium; T, treated group; vitC, vitamin C; vitE, vitamin E.

Supplementary References

- 1. Persson, I.; He, L.; Fang, C.; Normén, L.; Rylander, R. Influence of vegetables on the expression of GSTP1 in humans-a pilot intervention study (Sweden). *Cancer Causes Control* **2000**, *11*, 359–361.
- 2. Møller, P.; Vogel, U.; Pedersen, A.; Dragsted, L.O.; Sandström, B.; Loft, S. No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. *Cancer Epidemiol. Biomarkers Prev.* **2003**, *12*, 1016–1022.
- Almendingen, K.; Brevik, A.; Nymoen, D.A.; Hilmarsen, H.T.; Andresen, P.A.; Andersen L.F.; Vatn, M. Modulation of COX-2 expression in peripheral blood cells by increased intake of fruit and vegetables? *Eur. J. Clin. Nutr.* 2005, *59*, 597–602, DOI:10.1038/sj.ejcn.1602110.
- 4. Brevik, A.; Andersen, L.F.; Karlsen, A.; Trygg, K.U.; Blomhoff, R.; Drevon, C.A. Six carotenoids in plasma used to assess recommended intake of fruits and vegetables in a controlled feeding study. *Eur. J. Clin. Nutr.* **2004**, *58*, 1166–1173, DOI:10.1038/sj.ejcn.1601945.
- Brevik, A.; Rasmussen, S.E.; Drevon, C.A.; Andersen, L.F. Urinary excretion of flavonoids reflects even small changes in the dietary intake of fruits and vegetables. *Cancer Epidemiol. Biomarkers Prev.* 2004, 13, 843–849.
- Dragsted, L.O.; Krath, B.; Ravn-Haren, G.; Vogel, U.B.; Vinggaard, A.M.; Bo Jensen, P.; Loft, S.; Rasmussen, S.E.; Sandstrom, T.; Pedersen, A. Biological effects of fruit and vegetables. *Proc. Nutr. Soc.* 2006, 65, 61–67.
- Dragsted, L.O.; Pedersen, A.; Hermetter, A.; Basu, S.; Hansen, M.; Haren, G.R.; Kall, M.; Breinholt, V.; Castenmiller, J.J.; Stagsted, J.; et al. The 6-a-day study: Effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. *Am. J. Clin. Nutr.* 2004, *79*, 1060– 1072.
- Di Renzo, L.; Carraro, A.; Valente, R.; Iacopino, L.; Colica, C.; De Lorenzo, A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: A randomized crossover trial. *Oxid. Med. Cell. Longev.* 2014, 2014, 681318, DOI:10.1155/2014/681318.
- 9. De Lorenzo, A.; Bernardini, S.; Gualtieri, P.; Cabibbo, A.; Perrone, M.A.; Giambini, I.; Di Renzo, L. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: A randomized controlled trial for nutrigenomic approach in cardiometabolic risk. *Acta Diabetol.* 2017, 54, 141–149, DOI:10.1007/s00592-016-0917-2.
- 10. Marques-Rocha, J.L.; Milagro, F.I.; Mansego, M.L.; Zulet, M.A.; Bressan, J.; Martínez, J.A. Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. *Nutrition* **2016**, *32*, 48–55, DOI:10.1016/j.nut.2015.06.008.
- 11. Zulet, M.A.; Bondia-Pons, I.; Abete, I.; de la Iglesia, R.; Lopez-Legarrea, P.; Forga, L.; Navas-Carretero, S.; Martínez, J.A. The reduction of the metabolyc syndrome in Navarra-Spain study: A multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. *Nutr. Hosp.* **2011**, *26*, 16–26.
- 12. Gasper, A.V.; Traka, M.; Bacon, J.R.; Smith, J.A.; Taylor, M.A.; Hawkey, C.J.; Barrett, D.A.; Mithen, R.F. Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa. *J. Nutr.* **2007**, *137*, 1718–1724, DOI:10.1093/jn/137.7.1718.
- Gasper, A.V.; Al-Janobi, A.; Smith, J.A.; Bacon, J.R.; Fortun, P.; Atherton, C.; Taylor, M.A.; Hawkey, C.J.; Barrett, D.A.; Mithen, R.F. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high glucosinolate broccoli. *Am. J. Clin. Nutr.* 2005, *82*, 1283–1291, DOI:10.1093/ajcn/82.6.1283.
- 14. Riedl, M.A.; Saxon, A.; Diaz-Sanchez, D. Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. *Clin. Immunol.* **2009**, *130*, 244–251, DOI:10.1016/j.clim.2008.10.007.
- 15. Yanaka, A.; Fahey, J.W.; Fukumoto, A.; Nakayama, M.; Inoue, S.; Zhang, S.; Tauchi, M.; Suzuki, H.; Hyodo, I.; Yamamoto, M. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. *Cancer Prev. Res.* **2009**, *2*, 353–360, DOI:10.1158/1940-6207.CAPR-08-0192.

- Riso, P.; Martini, D.; Møller, P.; Loft, S.; Bonacina, G.; Moro, M.; Porrini, M. DNA damage and repair activity after broccoli intake in young healthy smokers. *Mutagenesis* 2010, 25, 595–602, DOI:10.1093/mutage/geq045.
- Atwell, L.L.; Hsu, A.; Wong, C.P.; Stevens, J.F.; Bella, D.; Yu T.W.; Pereira C.B.; Löhr, C.V.; Christensen, J.M.; Dashwood, R.H.; et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. *Mol. Nutr. Food Res.* 2015, *59*, 424–433, DOI:10.1002/mnfr.201400674.
- Doss, J.F.; Jonassaint, J.C.; Garrett, M.E.; Ashley-Koch, A.E.; Telen M.J.; Chi, J.T. Phase 1 study of a sulforaphane-containing broccoli sprout homogenate for sickle cell disease. *PLoS ONE* 2016, *11*, e0152895, DOI:10.1371/journal.pone.0152895.
- Camargo, A.; Ruano, J.; Fernandez, J.M.; Parnell, L.D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M.; Lopez-Miranda, J.; et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. *BMC Genomics.* 2010, *11*, 253, DOI:10.1186/1471-2164-11-253.
- Konstantinidou, V.; Covas, M.I.; Muñoz-Aguayo, D.; Khymenets, O.; de la Torre, R.; Saez, G.; Tormos Mdel, C.; Toledo, E.; Marti, A.; Ruiz-Gutiérrez, V.; et al. *In vivo* nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. *FASEB J.* 2010, 24, 2546–2557, DOI:10.1096/fj.09-148452.
- 21. Chan, J.M.; Weinberg, V.; Magbanua, M.J.; Sosa, E.; Simko, J.; Shinohara, K.; Federman, S.; Mattie, M.; Hughes-Fulford, M.; Haqq, C.; et al. Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer. *Cancer Causes Control* **2011**, *22*, 141–150, DOI:10.1007/s10552-010-9684-5.
- 22. Castañer, O.; Covas, M.I., Khymenets, O.; Nyyssonen, K.; Konstantinidou, V.; Zunft, H.F.; de la Torre, R.; Muñoz-Aguayo, D.; Vila, J.; Fitó, M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. *Am. J. Clin. Nutr.* **2012**, *95*, 1238–1244, DOI:10.3945/ajcn.111.029207.
- Farràs, M.; Valls, R.M.; Fernández-Castillejo, S.; Giralt, M.; Solà, R.; Subirana, I.; Motilva, M.J.; Konstantinidou, V.; Covas, M.I.; Fitó, M. Olive oil polyphenols enhance the expression of cholesterol efflux related genes in vivo in humans. A randomized controlled trial. *J. Nutr. Biochem.* 2013, 24, 1334–1339, DOI:10.1016/j.jnutbio.2012.10.008.
- 24. Perez-Herrera, A.; Rangel-Zuñiga, O.A.; Delgado-Lista, J.; Marin, C.; Perez-Martinez, P.; Tasset, I.; Tunez, I.; Quintana-Navarro, G.M.; Lopez-Segura, F.; Luque de Castro, M.D.; et al. The antioxidants in oils heated at frying temperature, whether natural or added, could protect against postprandial oxidative stress in obese people. *Food Chem.* **2013**, *138*, 2250–2259, DOI:10.1016/j.foodchem.2012.12.023.
- Rangel-Zuñiga, O.A.; Haro, C.; Perez-Martinez, P.; Delgado-Lista, J.; Marin, C.; Quintana-Navarro, G.M.; Tinahones, F.J.; Malagón, M.M.; Lopez-Segura, F.; López-Miranda, J.; Perez-Jimenez, F.; Camargo, A. Effect of frying oils on the postprandial endoplasmic reticulum stress in obese people. *Mol. Nutr. Food Res.* 2014, *58*, 2239–2242, DOI:10.1002/mnfr.201400401.
- Hernáez, Á.; Remaley, A.T.; Farràs, M.; Fernández-Castillejo, S.; Subirana, I.; Schröder, H.; Fernández-Mampel, M.; Muñoz-Aguayo, D.; Sampson, M.; Solà, R.; et al. Olive oil polyphenols decrease LDL concentrations and LDL atherogenicity in men in a randomized controlled trial. *J. Nutr.* 2015, 145, 1692–1697, DOI:10.3945/jn.115.211557.
- 27. Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre R.; Mursu, J.; Bäumler, H.; et al. EUROLIVE study group. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. *Ann. Intern. Med.* **2006**, *145*, 333–341.
- 28. Martín-Peláez, S.; Castañer, O.; Konstantinidou, V.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Gaixas, S.; de la Torre, R.; Farré, M.; Sáez, G.T.; et al. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. *Eur. J. Nutr.* **2017**, *56*, 663–670, DOI:10.1007/s00394-015-1110-z.
- 29. Kruse, M.; von Loeffelholz, C.; Hoffmann, D.; Pohlmann, A.; Seltmann, A.C.; Osterhoff, M.; Hornemann, S.; Pivovarova, O.; Rohn, S.; Jahreis, G.; et al. Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory

responses in adipose tissue compared to olive-oil supplementation in obese men. *Mol. Nutr. Food Res.* **2015**, *59*, 507–519, DOI:10.1002/mnfr.201400446.

- 30. González-Sarrías, A.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Gómez-Sánchez, M.B.; García-Talavera N.V.; Gil-Izquierdo, A.; Sánchez-Alvarez, C.; Fontana-Compiano, L.O.; Morga-Egea, J.P.; Pastor-Quirante, F.A.; et al. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. *Mol. Nutr. Food Res.* 2010, 54, 311–322, DOI:10.1002/mnfr.200900152.
- 31. Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bulló, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. *Diabetes Care* **2014**, *37*, 3098–3105, DOI:10.2337/dc14-1431.
- 32. Donadio, J.L.S.; Rogero, M.M.; Cockell, S.; Hesketh, J.; Cozzolino, S.M.F. Influence of genetic variations in selenoprotein genes on the pattern of gene expression after supplementation with Brazil nuts. *Nutrients* **2017**, *9*, E739, DOI:10.3390/nu9070739.
- Donadio, J.L.S.; Rogero, M.M.; Guerra-Shinohara, E.M.; Desmarchelier, C.; Borel, P.; Cozzolino, S.M.F. SEPP1 polymorphisms modulate serum glucose and lipid response to Brazil nut supplementation. *Eur. J. Nutr.* 2017, 1–10, DOI:10.1007/s00394-017-1470-7.
- 34. Di Renzo, L.; Merra, G.; Botta, R.; Gualtieri, P.; Manzo, A.; Perrone, M.A.; Mazza, M.; Cascapera, S.; De Lorenzo, A. Post-prandial effects of hazelnut-enriched high fat meal on LDL oxidative status, oxidative and inflammatory gene expression of healthy subjects: A randomized trial. *Eur. Rev. Med. Pharmacol. Sci.* 2017, *21*, 1610–1626.
- 35. Guarrera, S.; Sacerdote, C.; Fiorini, L.; Marsala, R.; Polidoro, S.; Gamberini, S.; Saletta, F.; Malaveille, C.; Talaska, G.; Vineis, P.; et al. Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet. *Br. J. Nutr.* **2007**, *98*, 525–533, DOI:10.1017/S0007114507725151
- 36. Volz, N.; Boettler, U.; Winkler, S.; Teller, N.; Schwarz, C.; Bakuradze, T.; Eisenbrand, G.; Haupt, L.; Griffiths, L.R.; Stiebitz, H.; et al. Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. *J. Agric. Food Chem.* 2012, *60*, 9631– 9641, DOI:10.1021/jf302258u.
- Boettler, U.; Volz, N.; Teller, N.; Haupt, L.M.; Bakuradze, T.; Eisenbrand, G.; Bytof, G.; Lantz, I.; Griffiths, L.R.; Marko, D. Induction of antioxidative Nrf2 gene transcription by coffee in humans: depending on genotype? *Mol. Biol. Rep.* 2012, *39*, 7155–7162, DOI:10.1007/s11033-012-1547-6.
- de Pascual-Teresa, S.; Johnston, K.L.; DuPont, M.S.; O'Leary, K.A.; Needs, P.W.; Morgan, L.M.; Clifford, M.N.; Bao, Y.; Williamson, G. Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. *J. Nutr.* 2004, 134, 552–557, DOI:10.1093/jn/134.3.552.
- Marotta, F.; Koike, K.; Lorenzetti, A.; Jain, S.; Signorelli, P.; Metugriachuk, Y.; Mantello, P.; Locorotondo, N. Regulating redox balance gene expression in healthy individuals by nutraceuticals: A pilot study. *Rejuvenation Res.* 2010, 13, 175–178, DOI:10.1089/rej.2009.0950.
- Bertuccelli, G.; Zerbinati, N.; Marcellino, M.; Nanda Kumar, N.S.; He, F.; Tsepakolenko, V.; Cervi, J.; Lorenzetti, A.; Marotta, F. Effect of a quality-controlled fermented nutraceutical on skin aging markers: An antioxidant-control, double-blind study. *Exp. Ther. Med.* 2016, *11*, 909–916, DOI:10.3892/etm.2016.3011.
- Ishikawa, H.; Goto, M.; Matsuura, N.; Murakami, Y.; Goto, C.; Sakai, T.; Kanazawa, K. A pilot, randomized, placebo-controlled, double-blind phase 0/biomarker study on effect of artepillin C-rich extract of Brazilian propolis in frequent colorectal adenoma polyp patients. *J. Am. Coll. Nutr.* 2012, *31*, 327–337.
- 42. Nguyen, A.V.; Martinez, M.; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope, C.; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. *Cancer Manag. Res.* 2009, *1*, 25–37.
- 43. Weseler, A.R.; Ruijters E.J.; Drittij-Reijnders, M.J.; Reesink, K.D.; Haenen, G.R.; Bast, A. Pleiotropic benefit of monomeric and oligomeric flavanols on vascular health—a randomized controlled clinical pilot study. *PLoS ONE* **2011**, *6*, e28460, DOI:10.1371/journal.pone.0028460.

- 44. Barona, J.; Blesso, C.N.; Andersen, C.J.; Park, Y.; Lee, J.; Fernandez, M.L. Grape consumption increases anti-inflammatory markers and upregulates peripheral nitric oxide synthase in the absence of dyslipidemias in men with metabolic syndrome. *Nutrients* **2012**, *4*, 1945–1957, DOI:10.3390/nu4121945.
- 45. Tomé-Carneiro, J.; Larrosa, M.; Yáñez-Gascón, M.J.; Dávalos, A.; Gil-Zamorano, J.; Gonzálvez, M.; García-Almagro, F.J.; Ruiz Ros, J.A.; Tomás-Barberán, F.A.; Espín, J.C.; et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. *Pharmacol. Res.* 2013, 72, 69–82, DOI:10.1016/j.phrs.2013.03.011.
- Mallery, S.R.; Zwick, J.C.; Pei, P.; Tong, M.; Larsen, P.E.; Shumway, B.S.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D. Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. *Cancer Res.* 2008, *68*, 4945–4957, DOI:10.1158/0008-5472.CAN-08-0568.
- Kropat, C.; Mueller, D.; Boettler, U.; Zimmermann, K.; Heiss, E.H.; Dirsch, V.M.; Rogoll, D.; Melcher, R.; Richling, E.; Marko, D. Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo. *Mol. Nutr. Food Res.* 2013, *57*, 545–550, DOI:10.1002/mnfr.201200504.
- Knobloch, T.J.; Uhrig, L.K.; Pearl, D.K.; Casto, B.C.; Warner, B.M.; Clinton, S.K.; Sardo-Molmenti, C.L.; Ferguson, J.M.; Daly, B.T.; Riedl, K.; et al. Suppression of proinflammatory and prosurvival biomarkers in oral cancer patients consuming ablack raspberry phytochemical-rich troche. *Cancer Prev. Res.* 2016, *9*, 159–171, DOI:10.1158/1940-6207.CAPR-15-0187.
- 49. Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: a randomized controlled trial. *Nutr. Res.* 2017, 37, 67–77, DOI:10.1016/j.nutres.2016.12.007.
- 50. Nuñez-Sánchez, M.A.; González-Sarrías, A.; García-Villalba, R.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; Rodríguez-Gil, F.J.; Ruiz-Marín, M.; et al. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: a randomized clinical trial. *J. Nutr. Biochem.* 2017, 42, 126–133, DOI:10.1016/j.jnutbio.2017.01.014.
- 51. Knott, A.; Reuschlein, K.; Mielke, H.; Wensorra, U.; Mummert, C.; Koop, U.; Kausch, M.; Kolbe, L.; Peters, N.; Stäb, F.; et al. Natural *Arctium lappa* fruit extract improves the clinical signs of aging skin. *J. Cosmet. Dermatol.* 2008, *7*, 281–289, DOI:10.1111/j.1473-2165.2008.00407.x.
- 52. Shrestha, S.; Freake, H.C.; McGrane, M.M.; Volek, J.S.; Fernandez, M.L. A combination of psyllium and plant sterols alters lipoprotein metabolism in hypercholesterolemic subjects by modifying the intravascular processing of lipoproteins and increasing LDL uptake. *J. Nutr.* **2007**, *137*, 1165–1170, DOI:10.1093/jn/137.5.1165.
- Ghanim, H.; Sia, C.L.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Chaudhuri, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. *J. Clin. Endocrinol. Metab.* 2010, 95, E1–E8, DOI:10.1210/jc.2010-0482.
- 54. Marini, A.; Grether-Beck, S.; Jaenicke, T.; Weber, M.; Burki, C.; Formann, P.; Brenden, H.; Schönlau, F.; Krutmann, J. Pycnogenol® effects on skin elasticity and hydration coincide with increased gene expressions of collagen type I and hyaluronic acid synthase in women. *Skin Pharmacol. Physiol.* 2012, 25, 86–92, DOI:10.1159/000335261.
- 55. Carrera-Quintanar, L.; Funes, L.; Vicente-Salar, N.; Blasco-Lafarga, C.; Pons, A.; Micol, V.; Roche, E. Effect of polyphenol supplements on redox status of blood cells: A randomized controlled exercise training trial. *Eur. J. Nutr.* 2015, *54*, 1081–1093, DOI:10.1007/s00394-014-0785-x.
- Turowski, J.B.; Pietrofesa, R.A.; Lawson, J.A.; Christofidou-Solomidou, M.; Hadjiliadis, D. Flaxseed modulates inflammatory and oxidative stress biomarkers in cystic fibrosis: A pilot study. *BMC Complement. Altern. Med.* 2015, 15, 148, DOI:10.1186/s12906-015-0651-2.

- 57. Plat, J.; Mensink, R.P. Effects of plant stanol esters on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase mRNA expression in mononuclear blood cells of healthy men and women. *FASEB J.* **2002**, *16*,258–260, DOI:10.1096/fj.01-0653fje.
- 58. Crespo, M.C.; Tomé-Carneiro, J.; Burgos-Ramos, E.; Loria Kohen, V.; Espinosa, M.I.; Herranz, J.; Visioli, F. One-week administration of hydroxytyrosol to humans does not activate Phase II enzymes. *Pharmacol. Res.* **2015**, *95–96*,132–137, DOI:10.1016/j.phrs.2015.03.018.
- 59. Boss, A.; Kao, C.H.; Murray, P.M.; Marlow, G.; Barnett, M.P.; Ferguson, L.R. Human intervention study to assess the effects of supplementation with olive leaf extract on peripheral blood mononuclear cell gene expression. *Int. J. Mol Sci.* **2016**, *17*, E2019, DOI:10.3390/ijms17122019.
- 60. Daak, A.A.; Elderdery, A.Y.; Elbashir, L.M.; Mariniello, K.; Mills, J.; Scarlett, G.; Elbashir, M.I.; Ghebremeskel, K. Omega 3 (*n*-3) fatty acids down-regulate nuclear factor-kappa B (NF-KB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. *Blood Cells Mol. Dis.* **2015**, *55*, 48–55, DOI:10.1016/j.bcmd.2015.03.014.
- 61. Labonté, M.È.; Couture, P.; Tremblay, A.J.; Hogue, J.C.; Lemelin, V.; Lamarche, B. Eicosapentaenoic and docosahexaenoic acid supplementation and inflammatory gene expression in the duodenum of obese patients with type 2 diabetes. *Nutr. J.* **2013**, *12*, 98, DOI:10.1186/1475-2891-12-98.
- 62. Jamilian, M.; Samimi, M.; Mirhosseini, N.; Afshar Ebrahimi, F.; Aghadavod, E.; Taghizadeh, M.; Asemi, Z. A randomized double-blinded, placebo-controlled trial investigating the effect of fish oil supplementation on gene expression related to insulin action, blood lipids, and inflammation in gestational diabetes mellitus-fish oil supplementation and gestational diabetes. *Nutrients* 2018, 10, E163, DOI:10.3390/nu10020163.
- 63. Marini, A.; Jaenicke, T.; Grether-Beck, S.; Le Floc'h, C.; Cheniti, A.; Piccardi, N.; Krutmann, J. Prevention of polymorphic light eruption by oral administration of a nutritional supplement containing lycopene, β-carotene, and *Lactobacillus johnsonii*: Results from a randomized, placebo-controlled, double-blinded study. *Photodermatol. Photoimmunol. Photomed.* **2014**, *30*, 189–194, DOI:10.1111/phpp.12093.
- 64. Farris, P.; Yatskayer, M.; Chen, N.; Krol, Y.; Oresajo, C. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin E for treatment of mild to moderately photodamaged skin. *J. Drugs Dermatol.* **2014**, *13*, 1467–1472.
- 65. Radler, U.; Stangl, H.; Lechner, S.; Lienbacher, G.; Krepp, R.; Zeller, E.; Brachinger, M.; Eller-Berndl, D.; Fischer, A.; Anzur, C.; et al. A combination of (ω-3) polyunsaturated fatty acids, polyphenols and L-carnitine reduces the plasma lipid levels and increases the expression of genes involved in fatty acid oxidation in human peripheral blood mononuclear cells and HepG2 cells. *Ann. Nutr. Metab.* **2011**, *58*, 133–140, DOI:10.1159/000327150.
- 66. Frommel, T.O.; Lietz, H.; Mobarhan, S. Expression of mRNA for the gap-junctional protein connexin43 in human colonic tissue is variable in response to beta-carotene supplementation. *Nutr. Cancer* **1994**, *22*, 257–265.
- Vors, C.; Allaire, J.; Marin, J.; Lépine, M.C.; Charest, A.; Tchernof, A.; Couture, P.; Lamarche, B. Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: Results from the ComparED study. *Atherosclerosis* 2017, 257, 116–122, DOI:10.1016/j.atherosclerosis.2017.01.025.
- Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lépine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The Comparing EPA to DHA (ComparED) Study. *Am. J. Clin. Nutr.* 2016, 104, 280–287, DOI:10.3945/ajcn.116.131896.
- Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Rossi Fanelli, F.; Patterson, B.W.; Klein, S. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. *Cell Metab.* 2012, *16*, 658–664, DOI:10.1016/j.cmet.2012.09.015.
- 70. Poulsen, M.M.; Vestergaard, P.F.; Clasen, B.F.; Radko, Y.; Christensen, L.P.; Stødkilde-Jørgensen, H.; Møller, N.; Jessen, N.; Pedersen, S.B.; Jørgensen J.O. High-dose resveratrol supplementation in obese

men: An investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. *Diabetes* **2013**, *62*, 1186–1195, DOI:10.2337/db12-0975.

- Olesen, J.; Gliemann, L.; Biensø, R.; Schmidt, J.; Hellsten, Y.; Pilegaard, H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. *J. Physiol.* 2014, 592, 1873–1886, DOI:10.1113/jphysiol.2013.270256.
- Chachay, V.S.; Macdonald, G.A.; Martin, J.H.; Whitehead, J.P.; O'Moore-Sullivan, T.M.; Lee ,P.; Franklin, M.; Klein, K.; Taylor, P.J.; Ferguson, M.; et al. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. *Clin. Gastroenterol. Hepatol.* 2014, 12, 2092–2103, DOI:10.1016/j.cgh.2014.02.024.
- 73. Yiu, E.M.; Tai, G.; Peverill, R.E.; Lee, K.J.; Croft, K.D.; Mori, T.A.; Scheiber-Mojdehkar, B.; Sturm, B.; Praschberger, M.; Vogel, A.P.; et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. *J. Neurol.* 2015, 262, 1344–1353, DOI:10.1007/s00415-015-7719-2.
- 74. Mansur, A.P.; Roggerio, A.; Goes, M.F.S.; Avakian, S.D.; Leal, D.P.; Maranhão, R.C.; Strunz, C.M.C. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial. *Int. J. Cardiol.* 2017, 227, 788–794, DOI:10.1016/j.ijcard.2016.10.058.
- 75. Morrow, D.M.; Fitzsimmons, P.E.; Chopra, M.; McGlynn, H. Dietary supplementation with the antitumour promoter quercetin: Its effects on matrix metalloproteinase gene regulation. *Mutat. Res.* **2001**, 480–481, 269–276.
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Angela Murphy, E.; Jenkins, D.P.; Gross, S.J.; Carmichael, M.D.; Quindry, J.C.; Dumke, C.L.; Utter, A.C.; et al. Quercetin's influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. *J. Appl. Physiol.* 2007, 103, 1728–1735, DOI:10.1152/japplphysiol.00707.2007.
- 77. Boesch-Saadatmandi, C.; Pospissil, R.T.; Graeser, A.C.; Canali, R.; Boomgaarden, I.; Doering, F.; Wolffram, S.; Egert, S.; Mueller, M.J.; Rimbach, G. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes—Role of quercetin metabolism. *Int. J. Mol. Sci.* 2009, *10*, 4168–4177, DOI:10.3390/ijms10094168.
- 78. Nelson, D.M.; Joseph, B.; Hillion, J.; Segal, J.; Karp, J.E.; Resar, L.M. Flavopiridol induces BCL-2 expression and represses oncogenic transcription factors in leukemic blasts from adults with refractory acute myeloid leukemia. *Leuk. Lymphoma* 2011, 52, 1999–2006, DOI:10.3109/10428194.2011.591012.
- Lazarevic, B.; Hammarström, C.; Yang, J.; Ramberg, H.; Diep, L.M.; Karlsen, S.J.; Kucuk, O.; Saatcioglu, F, Taskèn K.A.; Svindland A. The effects of short-term genistein intervention on prostate biomarker expression in patients with localised prostate cancer before radical prostatectomy. *Br. J. Nutr.* 2012, *108*, 2138–2147, DOI:10.1017/S0007114512000384.
- 80. Kerksick, C.M.; Roberts, M.D.; Dalbo, V.J.; Kreider, R.B.; Willoughby, D.S. Changes in skeletal muscle proteolytic gene expression after prophylactic supplementation of EGCG and NAC and eccentric damage. *Food Chem. Toxicol.* **2013**, *61*, 47–52, DOI:10.1016/j.fct.2013.01.026.
- Most, J.; van Can, J.G.; van Dijk, J.W.; Goossens, G.H.; Jocken, J.; Hospers, J.J.; Bendik, I.; Blaak, E.E. A 3-day EGCG-supplementation reduces interstitial lactate concentration in skeletal muscle of overweight subjects. *Sci. Rep.* 2015, *5*, 17896, DOI:10.1038/srep17896.
- Koosirirat, C.; Linpisarn, S.; Changsom, D.; Chawansuntati, K.; Wipasa, J. Investigation of the antiinflammatory effect of *Curcuma longa* in *Helicobacter pylori*-infected patients. *Int. Immunopharmacol.* 2010, 10, 815–818, DOI:10.1016/j.intimp.2010.04.021.
- 83. Klickovic, U.; Doberer, D.; Gouya, G.; Aschauer, S.; Weisshaar, S.; Storka, A.; Bilban, M.; Wolzt, M. Human pharmacokinetics of high dose oral curcumin and its effect on heme oxygenase-1 expression in healthy male subjects. *Biomed Res. Int.* **2014**, *2014*, 458592, DOI:10.1155/2014/458592.
- Vogel, U.; Møller, P.; Dragsted, L.; Loft, S.; Pedersen, A.; Sandstrom, B. Inter-individual variation, seasonal variation and close correlation of OGG1 and ERCC1 mRNA levels in full blood from healthy volunteers. *Carcinogenesis* 2002, 23, 1505–1509.

- 85. Böyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. *Scand. J. Clin. Lab. Invest. Suppl.* **1968**, *97*, 77–89.
- 86. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanatephenolchloroform extraction. *Anal. Biochem.* **1987**, *162*, 156–159.
- 87. Park, Y.K.; Rasmussen, H.E.; Ehlers, S.J.; Blobaum, K.R.; Lu, F.; Schlegal, V.L.; Carr, T.P.; Lee, J.Y. Repression of pro-inflammatory gene expression by lipid extract of *Nostoc commune* var sphaeroides Kutzing, a blue-green alga, *via* inhibition of nuclear factor-kappa-B in RAW 264.7 macrophages. *Nutr. Res.* **2008**, *28*, 83–91, DOI:10.1016/j.nutres.2007.11.008.
- 88. Böyum, A. Separation of white blood cells. *Nature* **1964**, *204*, 793–794.
- 89. GeneCards. Available online: http://www.genecards.org/.