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Abstract: Peucedanum japonicum Thunberg is an herbal medicine used to treat neuralgia, rheumatoid
arthritis, and inflammatory-related diseases. However, its effects on osteoarthritis (OA) and its
regulatory mechanisms have not been investigated by network analysis. Here, we investigated
the pharmacological effects of Peucedanum japonicum extract (PJE) on OA, by combining in vivo
effective verification and network pharmacology prediction. Rats in which OA was induced by
monosodium iodoacetate (MIA) were treated with PJE (200 mg/kg), and histopathological parameters,
weight bearing distribution and inflammatory factors in serum and joint tissue were measured after
28 days of treatment. Additionally, in silico network analysis was used to predict holistic OA
regulatory mechanisms of PJE. The results showed that PJE exerted potential protective effects by
recovering hind paw weight bearing distribution, alleviating histopathological features of cartilage
and inhibiting inflammatory mediator levels in the OA rat model. Furthermore, network analysis
identified caspase-3 (CASP3), caspase-7 (CASP7), and cytochrome P450 2D6 (CYP2D6) as potential
target genes; in addition, the TNF (Tumor necrosis factor) signaling pathway was linked to OA
therapeutic action. Our combined animal OA model and network analysis confirmed the therapeutic
effects of PJE against OA and identified intracellular signaling pathways, active compounds and
target genes linked to its therapeutic action.

Keywords: Peucedanum japonicum; osteoarthritis; monosodium iodoacetate; inflammatory mediator;
network pharmacology; compound-target gene network

1. Introduction

Osteoarthritis (OA) is a common degenerative inflammatory joint disease characterized by
joint cartilage degeneration, subchondral bone sclerosis, osteophyte formation, and joint tissue
inflammation [1]. Although the pathogenesis of OA has not been fully elucidated, OA treatments have
been developed to relieve symptoms such as joint pain and stiffness, reduce inflammation, and prevent
joint damage [2]. There is currently no cure for OA, and the molecular mechanisms underlying the
disease are not yet fully understood. However, there is growing interest in delaying or treating OA
using new therapeutic approaches, and many studies highlight the potential of natural products.
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The causes of OA are multifactorial, and disease progression is highly complex and involves multiple
tissues. Thus, herbal medicines and natural products that target multiple mechanistic pathways have
great potential as OA treatments.

One herbal medicine attracting attention is Peucedanum japonicum Thunberg (PJ), which is used to
treat colds, headaches, neuralgia, rheumatoid arthritis and other inflammatory diseases in some Asian
countries [3,4]; it also has anti-obesity [5,6], anti-nociceptive [4], anti-osteoporotic [7], and anti-allergic
lung inflammatory properties [8]. However, it remains unclear whether PJ is pharmacologically
active against OA. The pharmacological effects of PJ have been linked to various components,
and phytochemical studies have indicated that the roots contain coumarins, chromones, polyacetylenes,
inositols, steroid glycosides, and dihydropyranocoumarins [9]. Several studies report the identities
and pharmacological activities of compounds isolated from PJ [10–14].

The network pharmacology approach can be used to investigate drug-target interactions of herbal
medicines, and to uncover the underlying molecular mechanisms [15]. This method is attracting
attention as a tool for clarifying the molecular mechanisms underlying the effects of herbal medicines
on complex diseases such as OA. This approach can consider multiple targets and multiple effects
simultaneously, and applying it to complex diseases such as OA could provide insight into the complex
mechanisms of herbal medicines [16–18]. Thus, the therapeutic effects of PJ on OA and the underlying
mechanisms could benefit from network pharmacologybased analysis.

Although various isolated components of PJ and their effects have been investigated, network
pharmacology analysis of the effects on OA has not been performed. Therefore, in the present study
we investigated the pharmacological effects of PJ extract (PJE) by examining its inhibitory effects in
monosodium iodoacetate (MIA)-induced model rats. We then holistically evaluated the regulatory
mechanisms of PJE using pharmacological network analysis to identify potential active compounds
and OA related target genes.

2. Materials and Methods

2.1. Preparation of PJE

Roots of PJ were purchased from Kwangmyongdang Co. (Ulsan, Korea) and authenticated
based on macroscopic characteristics as described by Dr. Goya Choi of the Korea Institute of Oriental
Medicine. A voucher specimen was deposited in the Korean Herbarium of Standard Herbal Resources
(Accession no. 2014 PJE-1). The dried herb (289.8 g) was extracted twice with 70% ethanol (by 2
h reflux), and the extract was concentrated as described previously [8]. The decoction was filtered,
lyophilized and stored at 4 ◦C. The yield of the dried extract from the crude material was 34.0%
(w/w). Before use in animal experiments, the lyophilized powder was dissolved in vehicle (0.25%
carboxymethylcellulose).

2.2. The MIA-Induced OA Rat Model

2.2.1. Animals

Male Sprague-Dawley rats (7 weeks old) were purchased from Samtako Inc. (Osan, Korea) and
housed under controlled conditions with a 12-h light/dark cycle at 22 ◦C ± 2 ◦C and 55% ± 15%
humidity. All animal experiments were performed with the approval of the Institutional Animal Care
and Use Committee of Daejeon University (DJUARB-2016-019, 7 June 2016).

2.2.2. Induction of OA and Drug Treatment

MIA (Sigma-Aldrich, Germany) was used to induce OA as described previously [19]. Briefly,
all groups of rats except the saline (control) group were directly injected with MIA (3 mg in 50 µL of
0.9% saline) into the intra-articular space of the right knee. Rats were orally administered daily with
PJE (200 mg/kg) and 1 week before MIA injection for 4 weeks. After 1 week of acclimatization, rats
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were divided randomly into three groups (n = 7 per group) as follows: (1) Saline group (Control): saline
alone (no MIA injection); (2) MIA group (MIA + Saline): saline plus MIA injection; and (3) PJE group
(MIA + PJE): PJE (200 mg/kg) plus MIA injection. The experimental scheme is shown in Figure 1A.
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Figure 1. The experimental scheme and the effects of Peucedanum japonicum extract (PJE) on the hind
paw weight bearing distribution in monosodium iodoacetate (MIA)-induced osteoarthritis (OA) model
rats. (A) Experimental protocol used to induce osteoarthritis, followed by administration of PJE. I.A.,
intra-articular injection. (B) Body weights and (C) weight bearing distribution were measured (once
per week for 21 days after injection of MIA) using an incapacitance tester. ### p < 0.001 vs. saline
controls; * p < 0.05 vs. the MIA group.

2.2.3. Measurement of Hind Paw Weight-Bearing Distribution

After OA induction, the weight of rats was measured along with the weight-bearing capability
on days 0, 7, 14, and 21. The original balance in weight-bearing capability of the hind paws was
disrupted, and an incapacitance tester (Linton Instrumentation, Norfolk, UK) was used to evaluate
changes in weight-bearing tolerance. Rats were carefully placed into the measuring chamber, and the
weight-bearing force exerted by the hind limb was measured and averaged over a 3 s period.
The weight distribution ratio was calculated as described previously [20].

2.2.4. Histopathological Analysis

Following rat sacrifice at 4 weeks, tissue specimens from the knee joint were removed, fixed
in 10% formalin, embedded in paraffin, and serially sectioned. Hematoxylin and eosin (H&E) or
Safranin O-fast green staining was performed to visualize joint cells and matrices. Histological changes
were examined by light microscopy (Olympus CX31/BX51, Olympus Optical Co., Tokyo, Japan) and
photographed (Olympus DP70).

2.2.5. Measurement of Serum Cytokine and Inflammatory Mediator Levels

Cytokine levels in serum were measured by centrifuging blood samples (1500× g, 10 min, 4 ◦C),
and serum was collected and stored at −70 ◦C until needed. Levels of tumor necrosis factor (TNF)-α,
interleukin (IL)-6, leukotriene B4 (LTB4) and 5-lipoxygenase (5-LOX) in serum were measured using
ELISA kits from R&D Systems (Minneapolis, MN, USA) according to the manufacturer’s instructions.



Nutrients 2018, 10, 754 4 of 13

2.2.6. Real-Time Quantitative RT-PCR Analysis

Total RNA was extracted from knee joint tissue using TRIzol reagent (Sigma-Aldrich, Steinheim
am Albuch, Germany), reverse-transcribed into cDNA and PCR-amplified using a TM One-Step RT
PCR kit with SYBR green reagent (Applied Biosystems, Grand Island, NY, USA). Real-time quantitative
PCR was performed using a 7500 Real-Time PCR system (Applied Biosystems, Grand Island, NY,
USA). Aliquots of sample cDNAs and an equal amount of GAPDH cDNA were amplified using the
TaqMan Universal PCR master mixture containing DNA polymerase according to the manufacturer’s
instructions (Applied Biosystems, Foster, CA, USA). PCR amplification cycling conditions were 2 min
at 50 ◦C, 10 min at 94 ◦C, 15 s at 95 ◦C, and 1 min at 60 ◦C for 40 cycles. The relative expression of
the target gene was determined using the comparative Ct (threshold cycle number at the cross-point
between amplification plot and threshold) method according to the manufacturer’s instructions.
The sequences of primers and probes used are listed in Table 1.

Table 1. Sequences of real-time PCR primers.

Gene Primer Sequence Accession No.

IL-1β Forward
Reverse

5′-CCCTGCAGCTGGAGAGTGTGG-3′

5′-TGTGCTCTGCTTGAGAGGTGCT-3′ NM_031512.2

IL-6 Forward
Reverse

5′-TTCCTACCCCAACTTCCAATG-3′

5′-ATGAGTTGGATGGTCTTGGTC-3′ NM_012589.1

TNF-α Forward
Reverse

5′-GACCCTCACACTCAGATCATCTTCT-3′

5′-TGCTACGACGTGGGCTACG-3′ NM_012675.3

COX-2 Forward
Reverse

5′-TGGTGCCGGGTCTGATGATG-3′

5′-GCAATGCGGTTCTGATACTG-3′ S67722.1

iNOS Forward
Reverse

5′-CTTTACGCCACTAACAGTGGCA-3′

5′-AGTCATGCTTCCCATCGCTC-3′ NM_012611.3

GAPDH Probe Applied Biosystems Rat GAPD (GAPDH) Endogenous Control
(VIC/MGB Probe, 4352338E)

IL-1β: Interleukin 1 beta; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor alpha; COX-2: Cyclooxygenase-2;
iNOS: Inducible nitric oxide synthases; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.

2.2.7. Statistical Analysis

All results are presented as the mean ± standard error of the mean (SEM). Statistical analysis was
performed using one-way analysis of variance with Dunnett’s multiple comparisons test for multiple
comparisons, and p < 0.05 was considered statistically significant. Statistical analysis was performed
using GraphPad Prism Software version 6.0 for Windows (GraphPad Software, La Jolla, CA, USA).

2.3. Network Pharmacology Analysis

2.3.1. Screening of Active PJ Components

To investigate the holistic characteristics, active components of PJ were identified by searching the
literature and public databases PubMed [21], and the Korean Traditional Knowledge Portal [22].
Through this, the PJ components were collected and finally selected as bioactive compounds,
isolated or identified compounds from PJ. Chemical structures, synonyms, molecular weight,
2D structure, chemical number and physicochemical properties were confirmed using ChEMBL [23]
and PubChem [24].

2.3.2. Pharmacokinetic Absorption, Distribution, Metabolism and Excretion (ADME) Evaluation

PJ compounds (n = 103) were selected using in silico integrative oral bioavailability (OB),
and drug-likeness (DL) was screened using absorption, distribution, metabolism, and excretion
(ADME) models administered by the Traditional Chinese Medicine Systems Pharmacology (TCMSP)
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Database [25]. Compounds without ADME information were removed. The ADME system used in this
study includes predicted OB and DL, and compounds were retained only if OB ≥ 30 and/or DL ≥ 0.18
to satisfy criteria suggested by the TCMSP database [26]. The above criteria were used to select the
final set of compounds (n = 12; Table S1) as candidates for subsequent analysis. These compounds are
the main components/active functional ingredients of PJ [10,11,13,14,27].

2.3.3. Identification of Associated Compounds and Target Genes

To gather information on interactions between PJ compounds and associated genes, the Search
Tool for Interactions of Chemicals and Proteins (STITCH) database was used [16,28]. Using this
database, chemical-protein interactions with a combined score of ≥400 (as medium confidence) were
retained [29–31]. Next, the association between these compounds and genes with OA was examined
by searching the Therapeutic Targets Database (TTD) [32]. A list of target genes (n = 42; Table S2) was
then finalized.

2.3.4. Network Construction and Analysis

To investigate interactions between PJ compounds and OA target genes, networks were
constructed using network visualization software Cytoscape ver. 3.5.1 [33,34]. This software was used
to visualize biological pathways and molecular interaction networks, and for data integration, analysis,
and visualization/analysis of complex networks. In networks, nodes represent compounds or target
genes, and edges indicate compound-target gene interactions. After network analysis, functional
annotation of genes was carried out using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID), ver. 6.8 [35] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [36].

3. Results

3.1. PJE Administration Restored the Hind Paw Weight-Bearing Distribution in MIA-Induced OA Rats

To assess the safety of PJE administration, the weight of rats was monitored over 4 weeks, and the
initial and final weights did not differ among experimental animals (Figure 1B). Weight bearing
distribution, as a measure of OA progression and the efficacy of anti-inflammatory compounds, was
measured as the difference between sensitized (MIA-injected) and contralateral hind limbs [37,38].
To evaluate the effects of PJE on the progression of OA, we assessed the hind paw weight-bearing
capability for 21 days after MIA induction. As shown in Figure 1C, the average weight distribution
of the saline group was 50% ± 3% between MIA-sensitized and hind legs. In OA-induced rats,
a shift in weight distribution occurred towards contralateral limbs after MIA injection, and joint
discomfort remained constant until day 21. On day 7 following MIA injection, the MIA group
exhibited a significantly lower weight-bearing distribution, which was maintained for at least 21 days.
However, in the PJE-administered group, there was a slight but significant decrease in this ratio relative
to controls at day 7, but this gradually increased and recovered after 21 days. These results demonstrate
restoration of balance and relief of joint discomfort in the PJE-treated group.

3.2. PJE Treatment Recovered the Histopathological Features of Joint Tissue in MIA-Induced OA Rats

Cartilage degradation in animals suffering from OA was observed histopathologically.
Thus, we investigated whether PJE could exert a therapeutic effect in vivo using the MIA-induced OA
rat model. Bone sections were stained with H&E (Figure 2A) and safranin O/Fast Green (Figure 2B),
and MIA-induced OA rats exhibited a greater number of articular chondrocytes, as well as subchondral
bone remodeling. Similarly, the number of chondrocytes was increased in the PJE-treated group
relative to the control group treated with vehicle. However, the height of cartilage was decreased in
the subchondral bone of MIA-induced OA rats, but was increased in the subchondral bone tissue of
PJE-treated rats. These histological features indicated that cartilage damage caused by MIA injection
was reversed in the PJE-treated group.
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Figure 2. Histopathological features of knee joint tissue of MIA-induced OA model rats. Representative
photographs of knee joint tissues stained with (A) hematoxylin and eosin, and (B) safranin O-fast green
(×100 magnification). Scale bars = 500 µm.

3.3. PJE Administration Decreased Inflammatory Mediator Levels in Serum

Various inflammatory mediators have been identified in OA and might be involved in
pathogenesis [39]. Therefore, we investigated the effects of PJE on serum levels of TNF-α, IL-6,
LTB4, and 5-LOX in MIA-induced OA model rats. As shown in Figure 3A–D, compared with the saline
control group, the MIA group displayed significantly higher levels of TNF-α, IL-6, LTB4 and 5-LOX.
By contrast, levels of IL-6 and LTB4 were lower in the PJE-treated group, and although the difference
was not significant, TNF-α and 5-LOX were slightly lower in the PJE group.
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Figure 3. Effects of PJE on serum levels of cytokines and inflammatory mediators in MIA-induced
OA model rats. Levels of (A) TNF-α: Tumor necrosis factor alpha, (B) IL-6: Interleukin 6, (C) LTB4:
Leukotriene B4, and (D) 5-LOX: 5-lipoxygenase in serum measured by ELISA. # p < 0.05, ## p < 0.01,
and ### p < 0.001 vs. saline controls; * p < 0.05 and *** p < 0.001 vs. the MIA group.
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3.4. PJE Treatment Inhibited mRNA Expression Levels of Inflammatory Mediators in MIA-Induced OA Rats

OA is a chronic disease affecting joints that results in increased production of various inflammatory
mediators, and interactions within the cytokine network are known to be important [39,40].
We therefore examined the effects of PJE on mRNA expression levels of inflammatory mediators
(IL-1β, IL-6, TNF-α, COX-2, and iNOS) in the knee joint of MIA-induced rats. As shown in Figure 4,
the results showed that levels of all five were significantly increased in the MIA group, but mRNA
expression levels of IL-1β, IL-6, COX-2, and iNOS were lower in the PJE-treated group.
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3.5. In Silico Network Analysis and Prediction of Target Genes and Pathways Related to OA

To further clarify the interactions between active compounds of PJ and OA target genes,
relationships were investigated using network analysis. The resulting network includes eight PJE
components and the 42 potential target genes are shown in Figure 5. Most compounds are linked
with more than one target, and the main nodes rutin (20), myo-inositol (7), chlorogenic acid (6) and
xanthotoxin (6) are linked to six or more genes. In addition, kernel genes, caspase-3 (CASP3; rutin,
chlorogenic acid, and isoquercitrin), caspase-7 (CASP7; rutin and chlorogenic acid), and cytochrome
P450 2D6 (CYP2D6; xanthotoxin and isoimperatorin), were regulated by two or more compounds in
this network. These major compounds and genes are more likely to play important roles in OA disease
progression, while others interacting with only one compound are less likely to have a central role.Nutrients 2018, 10, x FOR PEER REVIEW  8 of 13 
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Figure 5. Compound-target gene network linking the protective effects of PJE against OA to potential
target genes and signaling pathways. Compounds derived from PJE are indicated by pink rectangles,
target genes are represented by green ovals, and gray lines represent compound-target gene interactions.
PJE: Peucedanum japonicum extract; OA: Osteoarthritis.
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To better understand the signaling pathways and functions of these target genes, we carried
out functional enrichment analysis using DAVID software and the KEGG database; potential target
genes were functionally associated with various signal transduction pathways such as Tumor necrosis
factor (TNF), Hypoxia-inducible factor 1 (HIF-1), phosphatidylinositol 3' -kinase-Akt (PI3K-Akt),
mitogen-activated protein kinase (MAPK), and Vascular endothelial growth factor (VEGF) (Table 2).
Interestingly, many of the potential target genes appear to be connected to the TNF signaling pathway,
suggesting that this pathway mediates the effects of PJE components against OA.

Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and target genes of
compounds in Peucedanum japonicum extract (PJE) potentially responsible for the therapeutic activities
against osteoarthritis.

Pathway Classification Pathway ID Term Target Gene

Signal transduction hsa04668 TNF signaling pathway AKT1, CCL2, CXCL10, CASP3, CASP7,
MAPK1, MAPK3, MAPK8

Signal transduction hsa04066 HIF-1 signaling pathway AKT1, EGFR, MAPK1, MAPK3,
NOS2, NOS3, TF

Signal transduction has04310 ErbB signaling pathway AKT1, EGFR, GSK3B, MAPK1,
MAPK3, MAPK8

Signal transduction has04151 PI3K-Akt signaling pathway AKT1, EGFR, FGF2, GSK3B, ITGB3,
ITGB5, MAPK1, MAPK3, NOS3

Signal transduction hsa04068 FoxO signaling pathway AKT1, CAT, EGFR, MAPK1,
MAPK3, MAPK8

Signal transduction hsa04010 MAPK signaling pathway AKT1, CASP3, EGFR, FGF2, MAPK1,
MAPK3, MAPK8

Signal transduction hsa4370 VEGF signaling pathway AKT1, MAPK1, MAPK3, NOS3

Signal transduction hsa04015 Rap1 signaling pathway AKT1, EGFR, FGF2, ITGB3,
MAPK1, MAPK3

Signal transduction hsa04014 Ras signaling pathway AKT1, EGFR, FGF2, MAPK1,
MAPK3, MAPK8

Signal transduction hsa04020 Calcium signaling pathway HTR2A, EGFR, NOS1, NOS2, NOS3
Signal transduction hsa04150 mTOR signaling pathway AKT1, MAPK1, MAPK3

4. Discussion

OA progression and development are complex processes involving multiple factors that alter the
homeostasis of chondrocytes. Likewise, multiple compounds contained within herbal medicines can
act on multiple target proteins to exert their biological and pharmacological effects in human diseases.
To investigate the effects of an herbal medicine for the treatment of OA disease, we attempted to verify
the efficacy of PJE using the MIA-induced rat model, and further explored the potential molecular
mechanisms of PJE components through a systematic approach using network pharmacology.

Using the OA rat model, our histopathological results showed that PJE exerted potential protective
effects against OA. Specifically, we observed changes in weight bearing distribution and levels of
inflammatory factors in serum and joint tissue. Inflammatory factors such as cytokines and lipid
inflammatory mediators have been implicated in OA pathogenesis. In particular, serum levels of
TNF-α and IL-6 have been associated with OA severity, narrowing of joint space and knee cartilage
loss. LTB4 increases the production and release of cytokines such as IL-1β and TNF-α by synovial
tissues [39,41]. The enzyme COX-2 is upregulated in inflamed joint tissues and is responsible for
elevated production of lipid mediators in OA joints. Previous research suggests that overexpression of
COX-2 is likely induced by pro-inflammatory mediators including IL-1β, TNF-α and IL-6, and these
mediators, as well as 5-LOX, can be employed for assessing the efficacy of OA treatments [42–44].
Thus, PJE appears to play an important role in preventing or slowing the progression of OA by
regulating inflammatory reactions.

From our network pharmacology analysis, we concluded that the main active compounds in PJE,
including rutin, myo-inositol, chlorogenic acid, and xanthotoxin [10,12,14], might play key roles in
the treatment of OA by regulating key target genes such as CASP3, CASP7, and CYP2D6. These main
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nodes, identified by KEGG pathway analysis, are associated with various signaling pathways, and the
TNF signaling pathway was found to be strongly linked to OA. Previous studies of the effects of active
compounds in OA showed that rutin was found to protect rat articular chondrocytes against oxidative
stress induced by hydrogen peroxide via activation of silent information regulator 1 (SIRT1) [45].
Chlorogenic acid exhibits anti-arthritic effects in rabbit chondrocytes and OA models by altering
protein expression and reducing cartilage degradation [46]; xanthotoxin suppresses the expression
of chondrocyte hypertrophic genes by inactivating the p38-MAPK/HDAC4 signaling pathway [47].
These compounds exerting protective effects in OA are therefore possible treatment candidates.

We identified CASP3 and CASP7 as potential target genes, and these apoptosis markers play
a central role in chondrocyte apoptosis, a complex process involving the activation of multiple
intercellular signaling pathways including the caspase cascade. The regulatory mechanisms of
this process are likely to be valid targets for modulating cartilage degeneration in future OA
treatments [48,49]. The CYP2D6 enzyme involved in drug metabolism in the liver reportedly interacts
with Tramadol, an analgesic used to treat moderate to moderately severe pain such as that experienced
by OA patients [50]; however, further studies on the relevance to OA are needed. The functions of
potential target genes identified from KEGG analysis were associated with multiple signal transduction
pathways such as TNF, HIF-1, PI3K-Akt, MAPK, and VEGF. These pathways contribute to the
complex regulation of OA disease progression, and the therapeutic effects of OA-active compounds.
For instance, previous research reported that targeting TNF alleviates the symptoms of inflammatory
OA [51]. The HIF-1 signaling pathway has also been linked to OA via the actions of a survival factor
that affects autophagy and apoptosis, and hence cartilage homeostasis [52]. In addition, the PI3K/Akt
signaling pathway is important for regulating chondrocyte apoptosis [53]. MAPK and VEGF signaling
pathways are also involved in OA pathogenesis and could be considered potential OA therapeutic
targets [54,55]. Therefore, our results suggest that these pathways might be coordinated during OA
disease progression, and the effects of PJE could be mediated through multiple signaling pathways.

5. Conclusions

In conclusion, our results revealed that the protective effects of PJE restored the hind paw
weight distribution in OA model rats by alleviating the histopathological features in the cartilage and
suppressing levels of inflammatory mediators. Our subsequent network analysis identified CASP3,
CASP7, and CYP2D6 as potential target genes playing roles in various signaling pathways; the TNF
signaling pathway in particular appears to be linked to the therapeutic activity of PJE components in
OA rats. Thus, our combined OA animal model and pharmacological network analyses confirmed the
beneficial effects of PJE against OA and identified key intracellular signaling pathways connecting
active compounds and target genes linked to OA. Further research is needed to identify the individual
components responsible for the therapeutic activities, to establish their mechanisms of action, and to
confirm the target genes and signaling pathways involved.
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target genes.
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Abbreviations

OA Osteoarthritis
PJ Peucedanum japonicum
PJE Peucedanum japonicum extract
MIA Monosodium iodoacetate
CASP3 Caspase-3
CASP7 Caspase-7
CYP2D6 Cytochrome P450 2D6
TNF-α Tumor necrosis factor
IL-6 Interleukin-6
LTB4 Leukotriene B4
5-LOX 5-lipoxygenase
OB Oral bioavailability
DL Drug-likeness
ADME Absorption, distribution, metabolism, and excretion
TCMSP Traditional Chinese Medicine Systems Pharmacology
STITCH Search Tool for Interactions of Chemicals and Proteins
TTD Therapeutic Targets Database
DAVID Database for Annotation, Visualization, and Integrated Discovery
KEGG Kyoto Encyclopedia of Genes and Genomes
SIRT1 Silent information regulator 1
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