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Abstract: Ingredients delivering functional and nutritional benefits are of interest to food
manufacturers. Isomaltooligosaccharides (IMOs) which serve as alternate sweeteners fit into this
category. IMOs are a mixture of α-(1 → 6) and α-(1 → 4)-linked glucose oligomers, synthesized
by an enzymatic reaction from starch (corn, tapioca). The aim of this study was to evaluate the
fermentability and glycemic response of IMO in a healthy population. Two randomized, double-blind,
placebo-controlled, cross-over human studies were conducted. In the first study (n = 26), participants’
breath hydrogen over 24 h, gastrointestinal tolerance, and glycemic and insulinemic response to
BIOLIGOTM IL5040 isomaltooligosaccharide were measured. In another study (n = 10), participants’
two-hour post-prandial glycemic response to BIOLIGOTM IL5040 isomaltooligosaccharide and
BIOLIGOTM IL7010 isomaltooligosaccharide was measured compared to dextrose (control). The IMOs
differed in the composition of mono and di-saccharide sugars. IMO syrup dose was matched for
50 g of total carbohydrates and was consumed by mixing in water (237 mL/8 oz.). Mean composite
gastrointestinal score was not significantly different (p = 0.322) between the control (1.42) and IMO
(1.38). Lack of difference in glycemic response (p = 0.662), with no impact on breath hydrogen (24 h;
p = 0.319) and intestinal tolerance, demonstrates that IMO is digestible and can be used to replace
sugars in product formulations.
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1. Introduction

Global forecasts on obesity and diabetes prevalence are among the top issues of concern, and
they have led to increased scrutiny of sugar-sweetened products [1]. The World Health Organization
(WHO) recommends limiting sugar intake to 10% of total energy intake, equivalent to 12 teaspoons
or 50 g/day [2]. This has been adopted by various nations, with public policies restricting added
sugars through taxes on sugar beverages and warning labels. More recently, the US Food and Drug
Administration (FDA) mandated the inclusion of “added sugars” on the nutrition facts labeling.
Although there is no consistent evidence that added sugars cause weight gain leading to obesity in
children and adults, consumer surveys point to the heightened market need for sugar alternatives in
full-calorie products [3–5].

One such alternative is sugar alcohols (polyols). Polyols provide sweet taste while yielding
a low glycemic index, are non-cariogenic, and thus can be used as sugar replacers [6]. However,
polyols use at higher levels is limited due to their effects on gastrointestinal intolerance in
healthy subjects and patients with irritable bowel syndrome (IBS) [7,8]. Maltitol, at higher levels,
caused intestinal discomfort by inducing osmatic pressure, but when combined with short-chain
fructooligosaccharide, a prebiotic fiber, has been shown to attenuate the intestinal symptoms in healthy
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adults [9]. More commonly used alternate sweeteners in Asia are fructooligosaccharides (FOS) and
isomaltooligosaccharides (IMO). Oligosaccharides are appealing as alternate sweeteners due to their
improved functionality and nutritional benefits [10]. Fructooligosaccharides are unique in a way
providing both nutritional (fiber) and functional (sweetness) benefits when formulated in food and
beverages. However, the use of FOS has few limitations with regard to its effect on digestive intolerance
at higher doses and lack of stability in highly acidic products. The physicochemical properties of
isomaltooligosaccharides make them highly functional as sweeteners, due to their higher stability in
food and beverage formulations, compared to FOS [11].

Isomaltooligosaccharides are mixtures of α-(1 → 6)-linked glucose oligomers with degrees
of polymerization from 2–10, and their carbohydrate composition includes isomaltose, panose,
isomaltotriose, isomaltotetraose, isomaltopentaose and so forth. IMOs are functional sweeteners
and commonly derived from the enzymatic processing of starch (transglycosylation of hydrolyzed
starch from corn and tapioca being the most commonly used bases) on a commercial scale. Its sweetness
depends on the composition, specifically on the amount of lower molecular weight components, such
as glucose (about 70–75% as sweet as sucrose) and maltose (about 30–35% as sweet as sucrose). IMOs
can also be produced via bacterial fermentation of sucrose in the presence of a maltose acceptor by
a glucosyltransferase enzyme, such as dextransucrase [12]. In addition to α-(1→ 6)-linked glucose
oligomers, commercial IMO products also contain some level of α-(1→ 4)-linked glucose oligomers,
including maltose, maltotriose, etc. [13]. Rarely, it is possible to find minor amounts of α-(1→ 2) and
α-(1→ 3)-linked kojibiose and nigerose in the products as well. IMOs naturally exist in honey, and
fermented foods, such as soy sauce, miso, and sake.

Although IMOs are promoted as prebiotic fiber in Asia, there is conflicting evidence on their
digestibility with high caloric value as shown in rat and human studies [14,15]. Madsen et al. [12] have
surveyed a number of commercially available IMO products in the US, and their results indicated that
the digestibility and potential glycemic impact of these ingredients were inconsistent with product
labels, including soluble fiber content and glycemic response. Our aim was to assess gastrointestinal
tolerance and glycemic response of two IMOs, BIOLIGOTM IL5040 and BIOLIGOTM IL7010, in healthy
individuals. In the first study, breath hydrogen response, gastrointestinal tolerance, glycemic and
insulinemic response to BIOLIGOTM IL5040 IMO was tested. In the second study, two-hour glycemic
response to BIOLIGOTM IL5040 and BIOLIGOTM IL7010 IMOs was evaluated.

2. Materials and Methods

Two IMO syrups manufactured by Ingredion Incorporated (Bridgewater, NJ, USA) were used
in these studies. The first product BIOLIGO™ IL5040 contains 50% IMO, and 40% mono- and
disaccharides, consisting of mainly dextrose and maltose, and a small amount of isomaltose.
The second product BIOLIGO™ IL7010 is a reduced mono- and disaccharide version of BIOLIGO™
IL5040, and contains 70% IMO, and less than 10% mono- and disaccharides. IMO content for these
products is defined as the IMO components from DP2 to DP7 (isomaltose, panose, isomaltotriose,
isomaltotetraose, isomaltopentaose, isomaltohexaose, isomaltoheptaose).

The studies were conducted in accordance with the ethical principles outlined in the Declaration
of Helsinki (2000), Good Clinical Practice Guidelines, and the United States 21 Code of Federal
Regulations. Study 1 was conducted at MB Clinical Research Labs (Glen Ellyn, IL, USA) in 2016,
and protocol approved by the Hummingbird institutional review board (Cambridge, MA, USA; IRB
number # MB-1518). Study 2 was conducted by The Glycemic Index Laboratories (Toronto, ON,
Canada) in 2014, and protocol approved by the Western Institutional Review Board (Vancouver, BC,
Canada; IRB number # 441 WIRB). All subjects provided written informed consent prior to starting
the study.
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2.1. Subject Screening

2.1.1. Study 1

Inclusion criteria: Healthy men or women aged 18 to 75 years, body mass index (BMI) 18.50–29.99 kg/m2,
normally active and judged to be in good health on the basis of their medical histories, were enrolled
in the study.

Exclusion criteria: Subjects were excluded if they had fasting capillary glucose ≥100 mg/dL at
screening; major trauma or a surgical event within 3 months of screening; history of drug or alcohol
abuse; have body weight change≥4.5 kg in the 2 months prior to screening; uncontrolled hypertension;
use of antibiotics; symptoms of an active infection; intolerance to any ingredients in the study products;
extreme dietary habits; cannot abstain from consuming probiotics; alcohol; smoking, and who are
unwilling to comply with the experimental procedures.

2.1.2. Study 2

Inclusion criteria: Subjects were males or non-pregnant females aged 18–75 years and in
good health.

Exclusion criteria: Subjects less than 18 years old or older than 75 years, with a known history
of AIDS, hepatitis, diabetes or a heart condition, and unwillingness or inability to comply with the
experimental procedures, and to follow GI Labs safety guidelines.

2.2. Study Design and Test Products

Study 1: The study was a randomized, double-blinded, placebo-controlled, cross-over design, with
26 healthy adults (age 18–75 years, body mass index (BMI) 18.50–29.99 kg/m2). Eligible participants
were tested on separate days and were assigned randomly to either BIOLIGOTM IL5040 IMO (test,
68.46 g), or dextrose (CERELOSE® Dextrose, Ingredion Incorporated, Bridgewater, NJ, USA) (control;
54.77 g) mixed in 237 mL (8 oz) of water. Both the test and control were matched for 50 g total
carbohydrates. The interval between two testing periods was one week. Of 31 randomized subjects,
five did not meet inclusion/exclusion criteria and 26 participants completed the study.

Study 2: In a double-blind, randomized crossover design, eligible participants (n = 10) were
studied on three separate days, over a period of 2 to 3 weeks with an interval of no less than one
day between tests. A total of 10 subjects were randomly assigned to either BIOLIGOTM IL5040 IMO
(66.3 g); BIOLIGOTM IL7010 IMO (66.0 g), or dextrose (Clintose® Dextrose, ADM, Chicago, IL, USA)
(control; 54.9 g) mixed in 250 mL of water. The test ingredients and control were matched for 50 g of
total carbohydrates.

The doses of the IMOs were based on the batch certificate of analysis, and slight differences in
BIOLIGOTM IL5040 IMO doses between the two studies are due to differences in water content.

2.3. Study Visit Procedures

Study 1: On the test day, all participants arrived at the clinic after an overnight fasting. The initial
breath hydrogen, fasting blood glucose and insulin were measured and participants were provided
either IMO or dextrose (control) mixed in water. Blood samples were obtained for serum glucose and
insulin measurements via an indwelling venous catheter or venipuncture at t = −15, 15, 30, 45, 60, 90,
120, 150, 180, 210, and 240, where t = 0 min was the start of study product consumption. Carbohydrate
malabsorption and fermentation were measured by assessing each subject’s end-alveolar (breath)
hydrogen concentrations on test days, following the t = −15 (pre-dose), 60, 120, 180, and 240 min
blood collections. Additionally, a breath sample was collected in the clinic at t = 24 h, and subjects
collected breath samples at home at t = 8 and 12 h. During both test days, a low-fiber, very low-dairy
standardized lunch was administered in the clinic on the study days, and a low-fiber, very low-dairy
dinner, and evening snack were dispensed to be consumed at home that evening.
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A gastrointestinal tolerability (GI) questionnaire [16] was administered immediately after the test
visits, to assess the presence and severity of selected GI symptoms including nausea, GI rumblings,
abdominal pain, bloating, flatulence, and diarrhea over the past 24-h period. GI symptoms were scored
as follows: 0 = none, 1 = no more than usual, 2 = somewhat more than usual, and 3 = much more than
usual. A composite score was also calculated as the sum of the six individual GI symptom ratings, for
a total possible score of 0–12.

Study 2: On each test occasion, after subjects were weighed, two fasting blood samples were
obtained by finger-prick at 5-min intervals. Following consumption of either IMO or dextrose (control)
in water, blood samples were collected at 15, 30, 45, 60, 90, and 120 min.

2.4. Biochemical Analysis

Study 1: Glucose was measured using an enzymatic colorimetric method—GOD/PAP Method
(Randox Laboratories Ltd., Kearneysville, WV, USA) utilizing glucose oxidase and peroxidase to
degrade into Phenol, and 4-Aminoantipyrine, measured using Trinder indicator reaction at 505 nm.
The increase in absorbance correlates with the glucose concentration of the sample with an analytical
coefficient of variation (CV) of <2%. Insulin was measured with an immunoturbidimetry assay (Kamiya
Biomedical Company, Seattle, WA, USA). A radioimmunoassay method for measuring insulin (HI-14K,
Millipore Corporation, Billerica, MA, USA), was conducted at the University of California, Davis
(Davis, CA, USA) in a subset of hemolyzed, and non-hemolyzed samples. A regression equation was
developed to convert radioimmunoassay values to immunoturbidimetric values. Breath samples of
end-alveolar air were collected into 10 mL glass vacuum tubes using an EasySampler device (Quintron
Instruments, Milwaukee, WI, USA). The concentrations of hydrogen in breath samples were analyzed
by gas chromatography with a resolution of 1 ppm, and accuracy of ±2–3 ppm and a linear range:
2–150 ppm for hydrogen (Microlyzer Gas Analyzer, model SC; Quintron Instruments, Milwaukee,
WI, USA).

Study 2: Blood glucose analysis was done using a YSI (Yellow Spring Instruments, Yellow Springs,
OH, USA) analyzer, and took place within five days of collection. The YSI uses a wet method for
glucose analysis based on the reaction of glucose in the sample with immobilized glucose oxidase.
The typical analytical CV for fasting glucose is <2%.

2.5. Data Analysis and Statistics (Sample Size, Data Analysis and Statistical Analysis)

Study 1: A power analysis indicated that sample size of 26 subjects would be required to detect
a 0.58 standard deviation difference between treatments for continuous outcome variables with 80%
power, alpha = 0.05, 2-sided. A total of 31 subjects were randomized to allow for subject attrition.

Study 2: Using the t-distribution, and assuming an average CV of within-individual variation of
incremental area under the curve (iAUC) values of 25%, n = 10 subjects has 80% power to detect a 33%
difference in incremental AUC with 2 tailed p < 0.05. Paired t-tests were conducted on blood glucose,
insulin, and values at individual and incremental area-under-curveusing GraphPad Prism 7 (v7.03,
GraphPad Software, Inc., La Jolla, CA, USA). p values ≤ 0.05 were deemed statistically significant, and
data are presented as mean ± SEM.

3. Results

Subject demographics for both studies are shown in Tables 1 and 2. All participants were healthy
in both studies.

Composite gastrointestinal tolerance in response to IMO and dextrose (control) is shown in
Figure 1. There was no significant difference (p = 0.322) between the control (1.42) and IMO (1.38) in
the mean composite score on the GI tolerability questionnaire. Similar findings were observed for
individual gastrointestinal frequency of scores of 2 or greater (somewhat more than usual and much
more than usual) on the components of the GI tolerability questionnaire as shown in Table 3.
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Table 1. Subject demographics in study 1.

Mean ± SEM Participants (n = 26)

Age (years) 39.9 ± 1.9
Gender (male/female) 16/15

Weight (kg) 76.5 ± 2.4
Body mass index (kg/m2) 25.8 ± 0.4

Table 2. Subject demographics in study 2.

Mean ± SEM Participants (n = 10)

Age (years) 33.9 ± 3.5
Gender (male/female) 4/6

Weight (kg) 73.1 ± 4.8
Body mass index (kg/m2) 26.3 ± 0.9
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Figure 1. Composite gastrointestinal tolerance scores (Study 1).

Table 3. Frequency of scores ≥2 a on individual gastrointestinal (GI) symptoms (Study 1).

GI Symptoms Dextrose n (%) BIOLIGOTM IL5040 IMO n (%) p-Value b

Nausea 1 (3.8) 0 (0.0) 0.68
Bloating 3 (11.5) 2 (7.7) 0.43

Rumblings 4 (15.4) 4(15.4) 0.89
Flatulence 4 (15.4) 5 (19.2) 0.56

Abdominal pain 1 (3.8) 1 (3.8) 1.00
Diarrhea 2 (7.7) 2 (7.7) 0.23

a Scoring system was 0 = none, 1 = no more than usual, 2 = somewhat more than usual, and 3 = much more than
usual. b p-values derived from repeated measures analysis using the GEE method with subjects included as a
random effect. IMO: isomaltooligosaccharides.

GI symptoms (nausea, bloating, GI rumblings, flatulence, abdominal pain, diarrhea) were scored as
follows: 0 = none, 1 = no more than usual, 2 = somewhat more than usual and 3 = much more than usual.
The composite score was the sum of the six individual GI symptom ratings. Data are mean ± SEM.

The changes in breath hydrogen concentration in response to dextrose and BIOLIGOTM IL5040
IMO, over 24 h are shown in Figure 2. There was no significant difference between IMO and the control
at all time points. Post-prandial glycemic (Figure 3a) and insulinemic response (Figure 3b) to dextrose
and BIOLIGOTM IL5040 IMO, showed no significant differences over 4 h.
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Figure 3. Post-prandial glycemic response in healthy adults (a) venous glucose (b) venous insulin
concentration (Study 1). Data are mean ± SEM.

Glucose iAUC in the first two and four hours was ~11% and ~15% lower, respectively, for
IMO compared to the control (Table 4). These differences were not large enough to reach statistical
significance, but the difference in glucose iAUC over 4 h, neared significance (p = 0.058). Glucose
iAUC from 2–4 h was significantly lower for IMO compared to the control (p = 0.008). There were no
significant differences between treatments, for any of the other glucose and insulin iAUC. In study 2,
the glucose iAUC 0–2 h means (± SEM) were not significantly different from one another (BIOLIGO™
IL7010: 201.5 ± 25.5; BIOLIGO™ IL5040: 181.3 ± 23.4; Dextrose: 191.3 ± 22.2: p = 0.662).

Table 4. Incremental area-under-curve (iAUC) for glucose and insulin (Study 1).

Parameters Dextrose BIOLIGOTM IL5040 IMO p-Value

Glucose iAUC (0–2 h) 211.4 ± 19.5 189.0 ± 18.1 0.189
Glucose iAUC (0–4 h) 230.0 ± 22.8 194.8 ± 20.1 0.058
Glucose iAUC (2–4 h) 18.6 ± 7.2 5.9 ± 3.1 0.008
Insulin iAUC (0–2 h) 21855 ± 3573 20068 ± 2956 0.743
Insulin iAUC (0–4 h) 25378 ± 3674 22781 ± 3494 0.354
Insulin iAUC (2–4 h) 3523 ± 1119 2712 ± 1004 0.290

iAUC: incremental area under the curve; IMO: isomaltooligosaccharides; Glucose iAUC ((min × mmol/L);
insulin iAUC (min × pmol/L)); Data are mean ± SEM; p-values derived from repeated measures analysis of
variance (ANOVA).

Following consumption of two IMOs, there was no significant difference in capillary blood glucose
concentrations compared to dextrose, in healthy adults (Figure 4). The compositional differences
between two IMOs (Table 5 did not impact their effects on glycemic response.
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(Study 2). Data are mean ± SEM.

Table 5. Compositional differences of tested IMOs.

IMO DP 1–2 (% Dry Basis) DP 3–8 (% Dry Basis) DP 9+ (% Dry Basis) IMO Content * (% Dry Basis)

BIOLIGOTM IL5040 43.0 53.3 3.3 50
BIOLIGOTM IL7010 9.2 77.4 13.5 70

DP: Degree of polymerization. BIOLIGOTM IL5040 and BIOLIGOTM IL7010 are syrups with an average of 24% water
content, as-is. * IMO content, in this paper, is defined as the sum of IMO components from DP2 to DP7 (isomaltose,
panose, isomaltotriose, isomaltotetraose, isomaltopentaose, isomaltohexaose, isomaltoheptaose).

4. Discussion

Sweeteners provide taste and rheological attributes (texture, flavor, preservative, and color) in
food and beverages [17]. Although lowering post-prandial blood glucose response is considered
as a physiological benefit, sugar-reduced products are less accepted by consumers. Thus, food
manufacturers utilize various sweeteners based on their origin (natural or synthetic), technological
function (taste and fillers), texture (powders and syrups), and nutritional value (caloric and non-caloric).
Low digestible carbohydrates such as polyols or sugar alcohols are the most commonly used sugar
substitutes, due to their low-caloric value, low glycemic response, and non-cariogenicity. Despite their
health benefits, sugar alcohols may have transient gastrointestinal effects at excessive intakes.

Emerging nutritive sweeteners include rare sugars and oligosaccharides, and are appealing due to their
natural source [17]. Oligosaccharides such as fructooligosaccharides (FOSs), and isomaltooligosaccharides
(IMOs) are used as either partial or full-sugar replacers in food formulations [18]. The majority of
the studies that tested IMOs in Asian populations had conflicting evidence on their digestibility
and fermentability. Glycemic response is an indicator of carbohydrate digestibility. Fully digestible
carbohydrates such as dextrose produce a rapid rise and fall in blood glucose. Insulin is released in
response to initial blood glucose rise and causes it to fall. Non-digestible carbohydrates containing
glucose show negligible glycemic response, while partially absorbed polyols do not cause increased
blood glucose levels. Previous studies, with different commercial IMOs, are inconsistent and reported
mixed results (bifidogenic and no impact on blood glucose breath hydrogen) suggesting IMO to be
partly digestible and partly fermentable [19].

This is the first study to evaluate gastrointestinal tolerance and glycemic response of IMO in a
healthy population. In this short-term study, BIOLIGO™ IL5040 IMO at 68.5 g/day on an as-is basis
(25 g/day pure IMO on a dry basis where IMO content is defined as in Section 2) was well-tolerated as
demonstrated by having no impact on the composite gastrointestinal symptom score, and frequency
of individual intestinal symptoms. Bouhnik et al. [20] tested IMO, among other oligosaccharides,
at 10 g/day for one week in healthy adults and reported no significant changes in four intestinal
symptoms (excess flatus, bloating, borborygmi, and abdominal pain). We measured breath hydrogen
to assess fermentability of IMO over 24 h. Although breath hydrogen increased numerically between
6–12 h, there was no significant difference between IMO and dextrose over 24 h. All participants were



Nutrients 2018, 10, 301 8 of 10

provided with a standardized (low fiber/low dairy) lunch, snack and dinner before and during the test
days, to avoid the dietary impact on breath hydrogen. Earlier studies [21] examined breath hydrogen
response to IMO up to 25 g/day for 7 h in healthy adults and reported no effect on breath hydrogen,
reflecting insufficient evidence of fermentation.

In another study [15], increase in blood glucose indicated IMO to be highly glycemic. In both
clinical studies presented in this paper, BIOLIGOTM IL5040 and IL7010 IMO dose-matched for 50 g
total carbohydrates showed similar glycemic response compared to dextrose. Though iAUC for
venous blood glucose was significantly lower than dextrose beyond 2 h, venous insulin response to
BIOLIGOTM IL5040 showed no significant change compared to the control. The tested IMOs differed
compositionally in Study 2, with BIOLIGOTM IL7010 having a higher average DP than BIOLIGOTM

IL5040. However, this difference in the degree of polymerization between the two IMOs did not affect
their digestibility and was shown to be both fully digestible and hence caloric.

The majority of the IMO studies assessed Bifidobacteria in Asian populations [22,23], while no
Bifidogenic effect was observed in European men and women [20]. The studies that showed changes in
Bifidobacteria, were not well-designed, with no proper control groups. Positive effects of IMO on stool
frequency and stool weight were reported in constipated populations [24–26]. Although the present
Study 1 did not assess changes in fecal microbiota, the low fermentation of the IMO in study 1 suggests
that it would not provide a bifidogenic effect. Further research is necessary to confirm changes in fecal
microbiota and determine if this product affects bowel habits.

According to the UK Food Standard Agency, commercial IMO is a novel ingredient and
glycemic or digestible carbohydrate [27]. The evidence suggests that IMO is highly digestible with
a small residual portion reaching the colon (estimated at 10%) and affecting the microbiota. Certain
populations, such as Asians may experience beneficial changes in the microbiota and changes in
laxation for constipated individuals, with a sufficient dose, but no evidence exists to confirm these
effects in non-Asian populations. Variability in IMO compositions from different manufacturers may
be one of the reasons for the conflicting evidence on digestibility and fermentability.

Although we have demonstrated that the tested IMOs are digestible with high gastrointestinal
tolerance, these two clinical studies have a few limitations. The current studies were conducted
in a Caucasian population. Additional research in an Asian population may provide insights into
population-specific differences in digestibility and fermentability. Secondly, these were acute studies,
and microbial changes in stool samples were not measured. Long-term evaluation would be needed
to determine whether these ingredients have a prebiotic effect or impact laxation patterns. However,
due to the high digestibility and low fermentability reported in the present studies, a prebiotic effect
is unlikely.

5. Conclusions

BIOLIGOTM IMOs are well-tolerated as demonstrated by the lack of adverse gastrointestinal
symptoms and they have no effect on breath hydrogen (an indicator of fermentability). Additionally,
these IMOs are caloric sweeteners based on the glycemic and insulinemic response in healthy adults.
Further studies are needed to determine the postprandial effects of larger doses of IMO on blood
glucose, gastrointestinal tolerance and gut microbiota over longer durations.
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