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Abstract: Gestational diabetes mellitus (GDM) is characterized by excessive placental fat and
glucose transport, resulting in fetal overgrowth. Earlier we demonstrated that maternal choline
supplementation normalizes fetal growth in GDM mice at mid-gestation. In this study, we further
assess how choline and its oxidation product betaine influence determinants of placental nutrient
transport in GDM mice and human trophoblasts. C57BL/6J mice were fed a high-fat (HF) diet 4 weeks
prior to and during pregnancy to induce GDM or fed a control normal fat (NF) diet. The HF mice also
received 25 mM choline, 85 mM betaine, or control drinking water. We observed that GDM mice had
an expanded placental junctional zone with an increased area of glycogen cells, while the thickness of
the placental labyrinth zone was decreased at E17.5 compared to NF control mice (p < 0.05). Choline
and betaine supplementation alleviated these morphological changes in GDM placentas. In parallel,
both choline and betaine supplementation significantly reduced glucose accretion (p < 0.05) in in vitro
assays where the human choriocarcinoma BeWo cells were cultured in high (35.5 mM) or normal
(5.5 mM) glucose conditions. Expression of angiogenic genes was minimally altered by choline or
betaine supplementation in either model. In conclusion, both choline and betaine modified some
but not all determinants of placental transport in response to hyperglycemia in mouse and in vitro
human cell line models.
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1. Introduction

Gestational diabetes mellitus (GDM) is a disease characterized by high blood glucose and reduced
glucose tolerance that occurs during pregnancy in previously euglycemic women. The incidence of
GDM is on the rise in recent years largely due to the epidemic of obesity [1,2]. Gestational diabetes
mellitus has negative impacts on both the mother and the infant: GDM-affected women have increased
risk of developing type 2 diabetes later in life; GDM also leads to fetal overgrowth or macrosomia
(i.e., a birth weight greater than 4 kg) in the neonates, increasing their risks for childhood obesity and
metabolic diseases in the future [3–5].

The placenta is the organ that mediates nutrient exchanges between the mother and the fetus.
Gestational diabetes mellitus is associated with elevated placental transport of macronutrients, a major
contributor to the excess accretion of macronutrients by the fetus that results in fetal overgrowth [6–8].
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Placental nutrient transport is contingent on maternal nutritional status, as well as the placental size,
morphology, vasculature (fetal-placental blood flow), and nutrient transporters’ number, density,
and activity [9]. The mouse placenta is composed of the decidua (maternal side), junctional zone
(the endocrine zone that contains glycogen cells), and labyrinth zone (the vascular zone that mediates
fetal-maternal exchange), whereas the human placenta contains decidua, terminal villus unit, and
the chorionic plate (fetal side) [10]. Despite the differences in placental morphology, maternal
hyperglycemia induces placentomegaly in both species [11,12]. The placental junctional zone is
enlarged and glycogen storage increases in rodent placentas, while similarly, the glycogen content
surrounding the terminal villi in the human placenta is elevated in GDM [13,14]. Both the labyrinth
zone of the rodent placenta and the terminal villus unit of the human placenta have rich maternal and
fetal blood flow separated by trophoblasts which mediate the exchange of nutrients and metabolites
between the two circulating systems. Gestational diabetes mellitus is associated with increased
capillary branching and enlarged surface areas of exchange [15], contributing to greater flows of
maternal nutrients which can be taken up by trophoblasts and then transported to the fetal circulation.
Both human and rodent placentas have also demonstrated altered expression of macronutrient
transporters in GDM, such as the upregulation of glucose transporter 1 (GLUT1) which mediates
glucose transport and fatty acid binding proteins which mediate fatty acid transport [7,16–18].
Reducing placental transport of excess macronutrients to the fetus is a critical step for the prevention of
macrosomia secondary to GDM. Normalizing the placental transport in GDM requires the restoration
of normal placental morphology and reduction in nutrient transporter activity.

Choline is an essential nutrient that has various functions in cellular membrane structure, cellular
signaling, epigenetics, and neurotransmission. When choline is oxidized to betaine, its labile methyl
groups become available for methylation reactions. Choline and betaine interact with macronutrient
and energy metabolism in multiple ways, and thus may mitigate the macronutrient excess
observed in GDM-affected maternal and fetal dyads. For instance, 1-palmitoyl-2-oleoyl-sn-glycerol-
3-phosphocholine, a choline-containing phosphatidylcholine (PC), serves as a ligand of peroxisome
proliferator activated receptor alpha (PPAR-α) which activates fatty acid oxidation [19]. Betaine is
a methyl donor that can epigenetically modify lipogenic genes and suppress their expression [20].
Betaine also enhances mitochondrial respiration to increase energy expenditure [21,22]. Our previous
studies have demonstrated that high-fat feeding-induced GDM mice had higher fetal weight in
mid-gestation and higher total body adiposity in latest gestation, while maternal choline and betaine
supplementation in GDM mice mitigates these indices of fetal overgrowth and excess adiposity [23–25].
We further provide evidence to support the potential mechanism in which choline and betaine modify
fetal growth in GDM mice via alterations in placental functioning, such as downregulating the placental
growth promoter insulin-like growth factor 2 (Igf2), suppressing the mechanistic target of rapamycin
(mTOR) signaling or reducing macronutrient transporter expression [23–25]. Literature also suggests
that maternal choline supplementation alters DNA methylation and angiogenesis in human and rodent
placentas and/or trophoblasts [26–30].

In this study we further examine the influence of choline/betaine on the determinants of placental
transport in greater details with the focus on placental morphology and angiogenic differences among
the betaine/choline supplemented and control GDM mice. We corroborate observations in GDM
mice with assays in the BeWo choriocarcinoma cell line to investigate the effect of choline or betaine
supplementation on nutrient accumulation and transport in human trophoblasts during hyperglycemia.
We hypothesize that choline or betaine supplementation would reverse GDM-induced placental
morphological and angiogenic changes and alterations in trophoblast metabolism, e.g., enlargement of
placental layers, enhanced angiogenesis and angiogenic gene expression, and elevated intracellular
glucose and fat accumulation in trophoblasts.
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2. Materials and Methods

2.1. Animal Diet and Treatment

Six-week-old C57BL/6J mice from Jackson Laboratories were housed at conditions of 22 ◦C,
humidity 40–60%, 12 h/12 h light/dark cycle. Female mice (n = 5/group) underwent simple
randomization and received one of the following diets: normal fat control (NF-CO) which included
the D12450J (Research Diets, New Brunswick, NJ, USA) regular mouse diet containing 10% calories
from fat and plain drinking water; high fat control (HF-CO) which included the D12492 (Research
Diets) high-fat diet with 60% calories from fat and plain drinking water; high fat choline (HF-CS)
which included the D12492 HF diet and 25 mM of choline supplemented in drinking water; and high
fat betaine (HF-BS) included the D12492 HF diet and 1% betaine (85 mM) supplemented in drinking
water. Animals randomized to different groups did not have significant differences in starting weight.
Compositions of these diets have been described in a previous publication [24]. The total choline
content was 11.7 mmol/kg in the HF diet and 7.6 mmol/kg in the NF diet. Neither diet was deficient
in choline. There was no betaine in the diets. The dosages of choline/betaine supplementation were
chosen based on prior studies, demonstrating that choline supplementation at the selected dosage
improves cognitive development and placental function, while betaine supplementation at the current
dosage reduces the hepatic injury due to HF-feeding [29,31,32]. Female mice were fed one of the diets
from 4 weeks before timed-mating to embryonic day E12.5 or E17.5 of gestation. Male mice were fed
the NF-CO diet for 4 weeks until timed-mating. During timed-mating, two female mice were housed
with one male mouse and fed the females’ assigned diet. The presence of a vaginal plug was indicative
of successful mating and the date was recorded as E0.5 (Figure 1). If female mice failed to plug after
5 days, timed-mating for the pair would be aborted. We confirmed the impaired glucose tolerance of
HF mice via intraperitoneal glucose tolerance tests at E11.5 and E15.5. The glucose tolerance test (GTT)
results were published in prior studies [23–25].
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E: embryonic day; HF: high-fat diet; NF: normal-fat diet.

2.2. Sample Collection and Processing

At E12.5 or E17.5, pregnant mice were feed-deprived from 9 a.m. in the morning for 4 h before
being euthanized by CO2 exsanguination. Each placenta and fetus was dissected from the uterus.
Embryo sexing was conducted using PCR of the Sry gene on the Y chromosome using a published
method [33]. Placentas from one male and one female embryo from each dam were randomly chosen to
be fixed in 10% formalin for at least 24 h for histologic analysis. Another two placentas (one male and
one female) from each dam were selected randomly and stabilized in RNAlater® (Thermo Scientific,
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Grand Island, NY, USA) overnight at 4 ◦C before being stored at −80 ◦C until gene expression analysis.
Only one male pup and one female pup from each litter were randomly chosen for each biological assay
because the sample variation inside the litter was much lower than the variation between samples
from different litters. The study protocol was approved by the Institutional Animal Care and Use
Committee (IACUC) at Brooklyn College (protocol #294).

2.3. Placental Histology

Formalin fixed placental samples were sectioned at 5 µm thickness, stained with hematoxylin and
eosin, and scanned with the ImageScope software (Leica Biosystems Inc., Buffalo Grove, IL, USA) by
Histowicz, Inc. (Brooklyn, NY, USA). Placental slides (2 per dam) from 5 dams of each group were
analyzed using the ImageJ software (National Institutes of Health, Bethesda, MD, USA). To measure
the thickness of placental layers, the thickest point of the placenta was first identified. The thickness of
each layer was then measured and the ratio of thickness of each layer/total thickness of the placenta
was measured [34]. To assess the abundance of glycogen cells in the junctional zone, we scanned from
one side of the placenta to the other side to capture 10 view field snapshots at 20× magnification that
did not overlap with each other. We took equal numbers of snapshots close to the margins of both
sides or the center of the placenta in each sample. Thus, the 10 view fields were true representation of
the entire tissue section. We measured the area occupied by glycogen cell clusters and divided it by the
total area of the junctional zone in the view field. The average ratio from all view fields was calculated
for each sample [35]. To assess the labyrinth vasculature, we measured the area of total blood space
(including both fetal and maternal sinuses) in the labyrinth zone using the same view field capturing
method as what was used for the glycogen cells. The area of blood space was automatically selected
by ImageJ using set parameters and adjusted for the total labyrinth zone area in the view field (total
blood space/total labyrinth area). The average blood space area was calculated from all view fields for
the same sample [36].

2.4. Cell Culture and Treatments

The human choriocarcinoma cell line BeWo was retrieved from the American Type Culture
Collection (ATCC). Cells were maintained in Kaighn’s Modification of Ham’s F-12 Medium (F-12K
Medium, ATCC®30-2004™, Manassas, VA, USA) and 10% fetal bovine serum (FBS, Mediatech Inc.,
Manassas, VA, USA) and incubated in 5% CO2 + 95% air at 37 ◦C. During experiments, BeWo cells
were cultured in Minimum Essential Medium (MEM, Mediatech Inc., Manassas, VA, USA) containing
2.5% FBS and different glucose and choline or betaine concentrations. The MEM contained 7 µM
of choline as was specified by the manufacturer (Corning, Manassas, VA, USA) and the 2.5% FBS
contained 16 µM of choline as previously measured [26]. Therefore, the total choline concentration in
the MEM and 2.5% FBS was 23 µM. This basal concentration of choline is required to maintain the
normal growth and proliferation of trophoblasts without the sign of increased apoptosis observed in
trophoblasts with moderate choline insufficiency [26]. The original MEM medium contains 5.5 mM
glucose. The glucose concentration of the medium was increased to 35.5 mM to generate high glucose
treatment groups. In order to account for the potential change in osmolality due to additional glucose,
30 mM of mannose was added as an osmotic control to the low glucose treatment groups. In summary,
there were 4 cell culture conditions during experiments: the normal glucose control group (NG-CO)
containing no additional glucose or choline or betaine; the high glucose control group (HG-CO)
containing 30 mM additional glucose but no choline or betaine supplement; the high glucose choline
supplemented group (HG-CS) containing 30 mM additional glucose and 1 mM choline chloride added
to cell culture medium; and the high glucose betaine supplemented group (HG-BS) containing 30 mM
additional glucose and 1 mM betaine anhydrous added to cell culture medium. These supplementation
levels were selected based on our previous study [37] to maximize the effect of choline or betaine
supplementation on endpoints of interest. Cells were seeded at a starting number of 2 × 105 cells
per well in 6-well plates in the maintenance medium for 24 h. Thereafter, cells were cultured with
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one of the four experimental media for 48 h before harvest for RNA extraction. For nutrient uptake
experiments, cells were seeded in 96-well plates at a starting amount of 5 × 104 cells in the maintenance
medium for 24 h before being switched to experimental media for 48 h. Each experiment was done in
triplicate and repeated three times.

2.5. Accumulation of Glucose and Fatty Acid in BeWo Cells

We measured glucose and fatty acid that were taken up by, and accumulated in, the BeWo cells
using the commercially available end-point measurement assay kits. The experiments were conducted
on cells cultured in 96-well plates after the 48 h treatments with varied levels of glucose and choline
or betaine. For the glucose accumulation measurement, cells were transferred to glucose-free MEM
containing betaine (1 mM), choline (1 mM), or saline control for starvation and incubated for another 6 h.
Thereafter, labeled glucose was measured with the Glucose Uptake-GloTM Assay (Promega, Madison,
WI, USA) according to manufacturer’s instructions. This assay uses deoxyglucose (2DG) in place of
regular glucose. After the phosphorylation 2DG to 2DG-6-phosphate (2DG6P), G6P dehydrogenase
oxidizes 2DG6P and converts nicotinamide adenine dinucleotide phosphate (NADP+) to the reduced
form of NADP+ (NADPH). NADPH provides materials to convert proluciferin to luciferin to be
detected using luminescence detection. Luminescence was measured by a luminometer. For the fatty
acid accumulation measurement, cells were transferred to glucose-free medium (containing 1 mM
betaine, 1 mM choline or saline control) and starved for 4 h. Thereafter, cellular concentrations of the
labeled fatty acid were measured after one hour of incubation using the fatty acid uptake kit (Abcam,
Cambridge, MA, USA) following manufacturer’s instructions. Labeled dodecanoic acid (C12:0) was
used in this assay. Fluorescence was measured at Excitation/Emission = 485/515 nm.

2.6. RNA Extraction and Real-Time PCR

RNA was extracted from the RNAlater®stabilized placental samples and freshly harvested
BeWo cells using TRIzol reagent (Fisher Scientific, Hampton, NH, USA), reverse transcribed using
a High-Capacity cDNA Reverse Transcription kit (Fisher Scientific, Hampton, NH, USA), and analyzed
with real-time quantitative PCR as previously described [24]. Expression of the following genes related
to placental proliferation (proliferating cell nuclear antigen (PCNA)), apoptosis (caspase 3(CASP3)), and
angiogenesis (vascular endothelial growth factor A (VEGFA), placental growth factor (PGF), and soluble
fms-like tyrosin kinase 1 (sFLT1)) were measured in both mouse placentas and BeWo cells. In addition,
genes related to glucose and fatty acid transport, such as GLUT1, GLUT3, fatty acid transporter 1
and 4 (FATP1 and FATP4), and sodium-dependent neutral amino acid transporter-2 (SNAT2, encoded
by Slc38a2) were also analyzed in BeWo cells. Beta-actin (Actb) and glucuronidase beta (GUSB)
were used as housekeeping genes for mouse placentas and BeWo cells, respectively. Primers were
either published previously or designed with GeneRunner Version 3.01 (http://www.softpedia.com)
(Table S1) [24,26,37].

2.7. Statistical Analyses

For mouse placentas, the general linear model (GLM) was used to assess the differences among
the groups controlling for embryonic sex and the random effect of different litters. Post-hoc analysis
was conducted using the Tukey’s Honest Significant Difference (HSD) test. For the cell culture study,
analysis of variance (ANOVA) tests followed by post-hoc Tukey’s HSD tests were conducted to
assess the differences among the treatment groups. Data not meeting the normality assumption
were log-transformed. All analyses were performed using SPSS (release 24, IBM Inc., Armonk, NY,
USA). Differences were considered significant at p < 0.05. Values are presented as means ± standard
errors (SE).

http://www.softpedia.com
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3. Results

3.1. Choline and Betaine Supplementation Partially Normalized the Altered Placental Morphology of GDM
Mice at E17.5

We have previously shown that the HF-fed mice demonstrate impaired glucose tolerance during
pregnancy, resembling the characteristics of GDM [23–25]. The HF-fed female mice also had higher
weight gain and visceral fat weight than the NF-CO mice. Choline or betaine supplementation did
not modify the maternal metabolic markers except that choline supplementation improved glucose
tolerance at E15.5 [23–25]. The choline intake in the HF-CS group (0.66 mmol/week) was approximately
4.5 times of intakes in the CO groups (0.13–0.15 mmol/week). Betaine supplementation led to
1.72 mmol betaine intake per week [23–25]. In a previous study, we also observed that maternal
HF feeding and choline supplementation did not affect the relative thickness of placental layers at
E12.5 [24]. However, in this study, betaine supplementation in the HF-BS group led to lower relative
thickness of the decidua than the NF-CO group at this time point (n = 5 dams/ group) (Figure 2a).
This difference in decidua thickness of the HF-BS versus the NF-CO group was not maintained at
E17.5 (Figure 2b,c). The HF-CO group had increased relative thickness of the junctional zone (p = 0.02)
but decreased relative thickness of the labyrinth zone (p = 0.02) versus the NF-CO group (p = 0.02)
at E17.5 (Figure 2b,c). The HF-CS and HF-BS groups did not show such differences compared to
NF-CO, suggesting that the choline or betaine supplementation alleviated the alteration in placental
morphology due to HF-feeding. The area of glycogen cell islets in the junctional zone was not different
among the groups at E12.5 (Figure 2d), yet was larger in the HF-CO group than in the NF-CO group
(p = 0.03) at E17.5, while the area in the HF-CS and HF-BS groups did not differ from the NF-CO
group (Figure 2e,f). When measuring the area of total blood space in the labyrinth zone as a marker
of placental vasculature that determines the surface area of fetal-placental exchange, we observed no
differences in this marker among the groups at either E12.5 or E17.5 (Figure 2g).

3.2. HF Feeding and Choline/Betaine Supplementation Had Minimal Effects on Placental Angiogenic Gene
Expression in GDM Mice

To elucidate the influence of choline/betaine supplementation on placental growth and
angiogenesis, we examined the mRNA expression of pro-angiogenic and anti-angiogenic factors
as well as proliferative and apoptotic markers. At E12.5, mRNA expression of Pgf a pro-angiogenic
factor, was downregulated in the HF groups compared to the NF-CO group (p < 0.01). Choline and
betaine supplementation partially rescued the decrease compared to HF-CO (p < 0.05) (Figure 3a).
The anti-angiogenic factor sFlt1, pro-angiogenic factor Vegfa proliferative marker Pcna and the apoptotic
enzyme Casp3 had similar expression among the groups. At E17.5, no differences in any of the genes
were observed among the groups (Figure 3b).

3.3. Choline/Betaine Supplementation Influenced Gene Expression in BeWo Cells under
a Hyperglycemic Condition

Next we examined whether choline/betaine availability ameliorated the influence of
hyperglycemia in human trophoblasts using an in vitro BeWo cellular model. Experiments were
conducted in triplicate and independently repeated 3 times. High glucose exposure (HG-CO) increased
the expression of the cellular proliferation marker PCNA (p = 0.003) compared to normal glucose
control (NG-CO). Choline and betaine supplementation in the HG-CS and HG-BS groups diminished
such increases by 30% and 37%, respectively (Figure 4a). However, the cellular apoptotic marker
CASP3 expression was not altered by glucose levels or choline/betaine supplementation.
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Figure 2. Placental histology at E12.5 and E17.5. (a,b) Relative thickness of placental layers.
(c) Histological appearance of representative placentas at E17.5. (d,e) Glycogen cell area in the junctional
zone. Results are presented as glycogen cell area/total junctional zone area. (f) Histological images
demonstrate representative junctional zones with glycogen cells (arrowheads) at E17.5. (g) Labyrinth
blood space. Results are presented as labyrinth blood space/total labyrinth layer area. Each group
contained 5 dams. Different diets were fed to dams from 4 weeks before timed-mating to gestational
day 12.5 or E17.5. Placentas from one male and one female embryo in each dam were included in the
analysis. Values are mean ± standard error of mean (SEM); a, b: any two groups with no overlapping
characters have a statistically significant difference (p < 0.05) between them. D, decidua; J, junctional
zone; L, labyrinth zone; NF: normal-fat diet; HF: high-fat diet; BS: betaine supplemented; CO: untreated
control; CS: choline supplemented; NS: not significant.
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hatched bars: HF-BS. Casp3: caspase 3; Pcna: proliferating cell nuclear antigen; Pgf: placental growth 
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hyperglycemia in human trophoblasts using an in vitro BeWo cellular model. Experiments were 
conducted in triplicate and independently repeated 3 times. High glucose exposure (HG-CO) 

Figure 3. mRNA abundance of angiogenic genes in the placenta at E12.5 (a) and E17.5 (b). Different
diets were fed to dams from 4 weeks before timed-mating to gestational day 12.5 or 17.5. mRNA
abundance was measured by real-time PCR. Each group contained 5 dams. Different diets were fed to
dams from 4 weeks before timed-mating to gestational day 12.5 or E17.5. Placentas from one male and
one female embryo in each dam were included in the analysis. Values are mean ± standard error of
mean (SEM); a, b, c: any two groups with different characters have a statistically significant difference
(p < 0.05) between them. Solid bars: NF-CO; shaded bars: HF-CO; open bars: HF-CS; hatched bars:
HF-BS. Casp3: caspase 3; Pcna: proliferating cell nuclear antigen; Pgf : placental growth factor; sFLT1:
soluble fms-like tyrosine kinase 1; Vegfa: vascular growth factor A. NF: normal-fat diet; HF: high-fat
diet; BS: betaine supplemented; CO: untreated control; CS: choline supplemented; NS: not significant.
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Figure 4. mRNA abundance in BeWo cells. (a) Proliferative and apoptotic genes; (b) Angiogenic and
anti-angiogenic genes; (c) macronutrient transporters. BeWo cells were treated with 1mM choline
(CS), 1 mM betaine (BS), or saline control and with 30 mM glucose (HG) or 30 mM mannose (NG) in
the Minimum Essential Medium for 48 h. mRNA expression was analyzed with real-time PCR. Each
experiment was done in triplicate and repeated 3 times. Values are mean ± standard error of mean
(SEM); a, b, c: any two groups with no overlapping characters have a statistically significant difference
(p < 0.05) between them. Solid bars: NG-CO; shaded bars: HG-CO; open bars: HG-CS; hatched bars:
HG-BS. CASP3: caspase 3; FATP1: fatty acid transporter 1; FATP4: fatty acid transporter 4; GLUT1:
glucose transporter 1; GLUT3: glucose transporter 3; PCNA: proliferating cell nuclear antigen; PGF:
placental growth factor; sFLT1: soluble fms-like tyrosine kinase 1; SNAT2: Sodium-dependent neutral
amino acid transporter-2; VEGFA: vascular growth factor A; NG: normal glucose; HG: high glucose; BS:
betaine supplemented; CO: untreated control; CS: choline supplemented; NS: not significant.

We then assessed whether factors that control placental angiogenesis were affected by glucose
levels or choline/betaine treatments (Figure 4b). The pro-angiogenic VEGFA was downregulated in
all HG groups than the NG-CO group (p = 0.013), while another pro-angiogenic factor PGF was not
affected by these treatments. Interestingly, sFLT1, an anti-angiogenic factor, also had lower expression
in the HG groups than the NG-CO group (p = 0.03). Choline or betaine supplementation did not alter
the expression of these genes.

Our previous mouse studies demonstrate that both choline and betaine supplementation can
reduce the placental expression of glucose and fatty acid transporters in GDM mice [24,25]. In order to
examine whether choline/betaine can exert similar effects on human trophoblasts, we measured
the expression of the macronutrient transporters in BeWo cells. The HG-CO group had higher
expression of the glucose transporters GLUT1 and GLUT3, but lower expression of the fatty acid
transporter FATP4 than the NG-CO group (p < 0.05) (Figure 4c). Betaine supplementation mitigated
these alterations in gene expression while choline supplementation did not show any effects. FATP1
(another fatty acid transporter) and SNAT2 (an amino acid transporter) expression did not differ in the
experimental groups.
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3.4. Choline or Betaine Supplementation Lowers Glucose and Fatty Acid Accumulation in BeWo Cells

To further examine whether macronutrient transport was altered by hyperglycemia and
choline/betaine supplementation, we conducted endpoint determination of glucose and fatty acid
accumulation in BeWo cells among the different groups after 1 h of incubation with glucose or fatty
acid. Both the HG-CS and HG-BS groups had lower intracellular glucose accumulation compared to
the HG-CO group (p < 0.05) (Figure 5a). Moreover, fatty acid accumulation in BeWo cells over the
1-h incubation was higher in the HG-CO group compared to the NG-CO group (p < 0.05), while the
accumulation in the HG-CS or HG-BS group did not differ from the NG-CO group, suggesting that
intracellular fatty acid accumulation was alleviated by choline/betaine supplementation (Figure 5b).
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Figure 5. Glucose and fatty acid accumulation by BeWo cells after 1-h incubation. (a) The luminescence
intensity of labeled glucose that was accumulated in the BeWo cells; (b) The fluorescence intensity of
labeled fatty acids that were accumulated in the BeWo cells. BeWo cells were treated with 1 mM choline
(CS), 1mM betaine (BS), or saline control and with 30 mM glucose (HG) or 30 mM mannose (NG) in the
Minimum Essential Medium for 48 h, followed by 1-h incubation with the labeled glucose or fatty acid
probes. Each experiment was done in triplicate and repeated 3 times. Values are mean ± standard error
of mean (SEM); a, b, c: any two groups with no overlapping characters have a statistically significant
difference (p < 0.05) between them. Solid bars: NG-CO; shaded bars: HG-CO; open bars: HG-CS;
hatched bars: HG-BS. NG: normal glucose; HG: high glucose; BS: betaine supplemented; CO: untreated
control; CS: choline supplemented.

4. Discussion

The current study suggests that hyperglycemia affects placental morphology in late gestation in
mice, whereas concurrent choline or betaine supplementation moderately alleviates the morphological
alterations. In cultured human trophoblasts, the high glucose treatment alters markers of cellular
proliferation, angiogenesis, and nutrient transport. Betaine supplementation seems to have a greater
effect than choline on normalizing macronutrient transporter expression, yet both betaine and choline
effectively lower macronutrient uptake into trophoblasts.

4.1. Choline and Betaine Supplementation Mitigates the Alteration in Placental Layer Thickness in GDM Mice

GDM is a condition associated with excess placental transport of macronutrients to the fetus that
results in fetal overgrowth. Placental transport is determined by its morphology, vasculature, and
transporter expression and activity. Our mouse study demonstrated that placental morphology was
altered by GDM but only in late gestation (E17.5). Hyperglycemia enlarged the relative thickness of the
junctional zone and increased the area of glycogen cells in the layer while decreasing the thickness of the
labyrinth zone in these mice. The expansion of the junctional zone in diabetic rodents has been reported
by other studies and is associated with a larger number of glycogen cells in the layer than euglycemic
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animals [35]. The number of glycogen cells in the junctional zone normally increases during early and
mid-gestation but gradually decreases towards late gestation [35]. However, glycogen cell numbers
remain high in GDM mouse placentas in late gestation. The role of the glycogen cells and glycogen
accumulation in the placenta is not entirely known. One hypothesis is that placental glycogen storage
serves as a reservoir of glucose to be used when fetal-placental demand exceeds maternal glucose
supply such as during late gestation [13]. Alternatively, placental glycogen production may serve as
a buffering system that prevents excess glucose from being transported to the fetus and accumulated
in fetal tissue [38]. The source of glucose for placental glycogen synthesis is also debatable. In human
placentas, glycogen is mainly stored around the fetal-placental circulation suggesting glycogen storage
as a result of fetal spillover or reverse transport of glucose [38,39]. However, placental glycogen
accumulation is also associated with the extent of maternal hyperglycemia, indicating the maternal
contribution to placental glycogen storage [14].

This study shows that maternal choline and betaine supplementation attenuated the morphological
abnormality of the placental layers and glycogen cell areas arising from GDM at E17.5. We previously
observed that both choline and betaine supplementation reduced overall adiposity and hepatic fat
accumulation in fetuses of GDM mice at the same time point in late gestation [23,25]. The improvements
in fetal metabolism in the betaine and choline supplemented groups may thus serve as a potential
mechanism to reduce the amount of glucose being reverse transported from the fetal circulation to the
placental junctional zone, thereby mitigating the persistent presence of glycogen cells and enlargement
of the placental layer in late gestation. Maternal glucose supply may be another source of glucose for
placental glycogen synthesis [38]. However, our previous studies only observed improved maternal
glucose tolerance in choline supplemented HF dams while betaine supplemented dams did not show
improved glycemia, suggesting that the influence of choline and betaine on maternal glucose control
cannot fully explain the normalized morphology in the placental junctional zone of GDM mice [23,25].

In addition to the expansion of the junctional zone, GDM placentas have a relatively smaller
labyrinth zone. The labyrinth zone is the main location of maternal-fetal exchange, with rich maternal
and fetal blood flow separated by trophoblasts. The shrinkage of the labyrinth zone in GDM mice
could be a compensatory mechanism to reduce the amount of nutrients being transported to the fetus,
yet a side effect is the reduction in oxygen transport. Hypoxia is common in GDM fetuses since they
have an increased demand for oxygen for the excess glucose and fat metabolism [15,40]. The lower
fetal and maternal exchange in the labyrinth zone may exacerbate the in utero deficiency in oxygen.
Choline and betaine supplementation normalized placental labyrinth thickness, which may improve
maternal and fetal exchange. Whether choline/betaine modifies the placental morphology directly or
indirectly by normalizing fetal metabolism remains to be explored.

4.2. Choline and Betaine Have Minimal Effects on the Vasculature of GDM Placentas

Placental blood flow affects the exchange of nutrients. Previous research suggests that GDM
increases measures of angiogenesis by increasing branching of villous capillaries and the diameters
of blood vessels; eventually these changes enhance placental blood flow and subsequently nutrient
transport [41,42]. However, in the current mouse model we did not observe placental vascular alterations
in the labyrinth zone of GDM mice, which may reflect a differential response to hyperglycemia in
humans versus rodents. Since placental vasculature is influenced by the action of pro-angiogenic (e.g.,
VEGFA and PGF) and anti-angiogenic (e.g., sFLT1) factors, we measured angiogenic gene expression in
both mouse placentas and human BeWo cells. Pgf demonstrated lower expression in GDM mice, while
both VEGFA and sFLT1 were downregulated in BeWo cells. The decrease in the pro-angiogenic factors in
GDM placentas/trophoblasts corroborates observations in human pregnancies [43,44], although there
are also studies with contradictory results [45]. sFLT1 is shown to increase in diabetic pregnancies [45],
thus the cause of its downregulation in BeWo cells treated with high glucose is unclear. Hypoxia and
oxidative stress in GDM placentas are potential contributors to the inconsistent alterations in angiogenic
factors in different stages of pregnancy and under different disease conditions [15,46]. Choline and
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betaine had minimal effects on the labyrinth vasculature or expression of angiogenic markers in the
rodent and in vitro human trophoblast models of GDM, suggesting that these nutrients influence fetal
metabolism and placental function through routes other than angiogenesis in these models. Previous
research using the HTR8-SVneo human trophoblast cell line suggests that moderate choline deficiency
leads to impaired angiogenesis [26]. However, since in this study all of the groups were choline sufficient,
the additional choline or betaine did not seem to have an impact on angiogenesis.

4.3. Both Betaine and Choline Reduce Glucose and Fatty Acid Accumulation in Trophoblasts

Trophoblasts are situated between the maternal and fetal circulation in the placenta and take
up both maternal and fetal metabolites. Trophoblast proliferation, transport and uptake affect fetal
accretion of nutrients [11]. We previously reported that choline and betaine supplementation reduced
the expression of macronutrient transporters such as FATP1 and GLUT1 in GDM mice at mid-gestation
and speculated that trophoblast uptake and transport of nutrients would decrease accordingly [24,25].
In the in vitro BeWo cell culture model, we observed that choline and betaine supplementation indeed
reduced glucose accumulation and alleviated the increase in fatty acid accumulation in BeWo cells
treated with high glucose. Results of this study provide further evidence supporting the hypothesis that
choline and betaine reduce accretion of macronutrients by the trophoblasts, thereby alleviating excess
macronutrient transfer to GDM-affected fetuses. We also observed an increase in glucose transporter
expression in response to hyperglycemia, corroborating findings from our previous mouse study [24].
However, only the betaine supplemented HG-BS group but not the choline supplemented HG-CS
group was able to reduce the expression of the glucose transporters. Since both the HG-CS and HG-BS
trophoblasts had reduced glucose accumulation, how choline mitigates glucose accumulation in the
BeWo cells requires an alternative mechanism than the downregulation of these glucose transporters.
It is possible that the localization of glucose transporters to cellular membranes was reduced, thereby
reducing the amount of functioning transporters available for nutrient uptake. In fact, maternal choline
supplementation in mice suppresses mTOR signaling, a known facilitator of membrane localization of
GLUTs [47], in mouse placentas [24]. The fatty acid transport FATP1 was not affected by choline/betaine
supplementation, whereas FATP4 was decreased by HG bu t upregulated by BS. These results also
suggest that mechanisms other than transporter expression explain the alleviation of cellular fatty acid
accumulation by choline/betaine in BeWo cells. Although FATP4 was differentially expressed among
the groups, since this transporter preferentially transports polyunsaturated fatty acids (PUFA) [48]
while the fatty acid uptake assay conducted in this study uses labeled dodecanoic acid (C12:0) as
a probe, whether the alteration in FATP4 expression influences PUFA accretion cannot be assessed
by the current method. Since literature suggests that PUFA accretion in GDM-affected fetuses was
reduced [49], the higher FATP4 expression due to betaine supplementation could plausibly have
a positive influence on the placental transport of PUFA during hyperglycemia. Betaine and choline
supplementation also decreased the expression of the proliferative marker PCNA in BeWo cells, which
may also reduce proliferation of trophoblasts and their ability to take up macronutrients.

The cellular model has several limitations. It cannot fully account for all pathways of choline
metabolism and the crosstalk among different organs that occur in vivo. For example, the enzyme
betaine-homocysteine S-methyltransferase 1 (BHMT1) is mainly expressed in the liver which transfers
the choline or betaine-derived methyl groups to the methionine cycle. The choline or betaine-derived
methyl groups can then be incorporated to the universal methyl donor S-adenosylmethionine (SAM)
and transported to the placenta in vivo, thereby influencing methylation in the placenta. However,
the BeWo cells cultured in vitro cannot use the supplemented choline or betaine as a source of methyl
groups due to the lack of BHMT in these cells. Therefore, the influence of choline or betaine on the
methylation reactions in trophoblasts cannot be determined by the current model. Nevertheless,
other influence of choline or betaine on trophoblasts, such as their roles in cellular membrane
integrity, PPAR-α activation, or mitochondrial function, is still applicable. We used a high dose
of supplementation to maximize any potential effects of choline or betaine on the trophoblasts, yet this
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dosage was not likely to be achieved physiologically. Dose-response experiments in both in vivo and
in vitro systems would be desirable to further delineate the relationship between choline/betaine and
trophoblast functioning.

5. Conclusions

In conclusion, this study provides in vitro and in vivo evidence regarding the effect of choline/
betaine supplementation on the modification of placental functioning during hyperglycemia, by altering
placental morphology, lowering macronutrient accumulation, and influencing nutrient transport.
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