Gene	Primer direction	Primer sequence
Glyceraldehyde 3-phosphate	Forward	5'-AGGTCGGTGTGAACGGATTTG-3'
dehydrogenase (Gapdh)	Reverse	5'-TGTAGACCATGTAGTTGAGGTCA-3'
CD are tigging (8 (Cd(8))	Forward	5'-CCATCCTTCACGATGACACCT-3'
CD antigen 68 (Cd68)	Reverse	5'-GGCAGGGTTATGAGTGACAGTT-3'
Chemokine (C-C motif) ligand	Forward	5'-ACTGAAGCCAGCTCTCTCTCCTC-3'
(Ccl2, MCP-1)	Reverse	5'-TTCCTTCTTGGGGTCAGCACAGAC-3'
Egf-like module containing,	Forward	5'-CCCCAGTGTCCTTACAGAGTG-3'
like 1 (Emr1, F4/80)	Reverse	5'-GTGCCAGAGTGGATGTCT-3'
Colony stimulating factor 1	Forward	5'-CCACCATCCACTTGTATGTCAAAGAT- 3'
receptor (Csf1r)	Reverse	5'-CTCAACCACTGTCACCTCCTGT-3'
Some angelaid & 2 (Saa2)	Forward	5'-GCCTGGGCTGCTAAAGTCAT-3'
Serum amytold A 3 (Saa3)	Reverse	5'-TGCTCCATGTCCCGTGAAC-3'

Table S1. Primer sequences used for RT-qPCR validation of the microarray data.

Table S2. The number of differentially expressed genes (DEGs) in the epididymal WAT of C57BL/6J mice.

	HFD vs. ND	LU vs. HFD
A	1038	188
▼	640	335

Differentially expressed genes based on comparison of HFD vs. ND and LU vs. HFD according to *p*-value < 0.05, fold change > 1.5 in the epididymal WAT depot.

▲: up-regulated genes, ▼: down-regulated genes.

Table S3. Effect of luteolin on transcriptional pattern of anti- and pro-inflammatory cytokine and chemokine genes in adipose tissue of C57BL/6J mice.

	ND	HFD	LU
Chemokines			
Ccl2 (MCP-1)	1.00 ± 0.04	$2.12 \pm 0.07^{***}$	$1.29 \pm 0.01^{\text{SSS}}$
Ccl3 ((MIP-1 α)	1.00 ± 0.11	$1.68 \pm 0.07^{***}$	$1.26 \pm 0.02^{\text{SSS}}$
Ccl4 (MIP-1β)	1.00 ± 0.01	$2.09 \pm 0.15^{***}$	1.33 ± 0.05 §§
Ccl5 (RANTES)	1.00 ± 0.06	$1.41 \pm 0.21^{*}$	$1.07 \pm 0.05^{\$}$
Ccl6 (MRP-1)	1.01 ± 0.19	$1.57 \pm 0.04^{**}$	$0.91 \pm 0.03^{\text{SSS}}$
Ccl7 (MCP3)	1.01 ± 0.13	$2.39 \pm 0.33^{**}$	1.38 ± 0.04 §§
Ccl9 (MRP-2)	1.00 ± 0.09	$2.41 \pm 0.18^{***}$	1.42 ± 0.04 sss
Ccl11 (Eotaxin)	1.00 ± 0.02	1.16 ± 0.11	$0.89 \pm 0.00^{\$}$
Ccr5	1.00 ± 0.04	$3.04 \pm 0.43^{***}$	1.52 ± 0.05 §§
Cxcl1	1.00 ± 0.08	$1.70 \pm 0.10^{***}$	1.32 ± 0.02 §§
Cxcl9	1.00 ± 0.06	$0.60 \pm 0.02^{**}$	$0.73 \pm 0.02^{\$}$
Cxcl16	1.00 ± 0.03	$1.67 \pm 0.10^{**}$	$1.34 \pm 0.02^{\$}$
Cxcr4	1.01 ± 0.15	$1.48 \pm 0.08^{**}$	$0.91 \pm 0.02^{\$}$
Interleukines			
Il1a	1.00 ± 0.03	$1.19 \pm 0.04^{*}$	1.13 ± 0.06
Il1rn	1.00 ± 0.04	$3.68 \pm 0.37^{**}$	$2.28 \pm 0.06^{\$}$
I17	1.00 ± 0.06	$1.27 \pm 0.02^{*}$	$1.03 \pm 0.01^{\text{SSS}}$
ll7r	1.00 ± 0.06	$6.51 \pm 0.60^{***}$	3.34 ± 0.23 §§

Nutrients 2018, 10, 1415; doi:10.3390/nu10101415

Il10ra	1.00 ± 0.04	$1.56 \pm 0.06^{**}$	$1.26 \pm 0.02^{\text{SS}}$
Il10rb	1.00 ± 0.01	$1.52 \pm 0.04^{***}$	1.37 ± 0.09
Il13ra1	1.00 ± 0.04	$1.24 \pm 0.01^{**}$	$0.86 \pm 0.02^{\text{SSS}}$
Il13ra2	1.00 ± 0.04	$1.85 \pm 0.13^{**}$	$1.43 \pm 0.03^{\text{s}}$
Il15	1.00 ± 0.02	$1.31 \pm 0.04^{**}$	1.24 ± 0.02
Il15ra	1.00 ± 0.06	$0.64 \pm 0.01^{**}$	$0.87 \pm 0.03^{\text{sss}}$
Other cytokines			
Tnf	1.00 ± 0.02	$1.30 \pm 0.05^{**}$	1.24 ± 0.05
Tnfrsf1b	1.00 ± 0.03	$1.82 \pm 0.09^{***}$	1.23 ± 0.01 ^{§§}
Tnfrsf11a	1.00 ± 0.02	$1.33 \pm 0.04^{**}$	$1.07 \pm 0.06^{\$}$
Tnfrsf11b	1.01 ± 0.10	1.02 ± 0.05	$0.54 \pm 0.02^{\text{sss}}$
Tnfrsf12a	1.00 ± 0.04	$1.31 \pm 0.03^{**}$	1.02 ± 0.04 §§
Tnfrsf13b	1.00 ± 0.04	$1.45 \pm 0.05^{***}$	1.11 ± 0.04 §§
Tnfrsf21	1.00 ± 0.06	$1.78 \pm 0.04^{***}$	$1.53 \pm 0.03^{\text{\$}}$
Tnfrsf22	1.00 ± 0.04	$1.30 \pm 0.03^{**}$	1.03 ± 0.02 §§
Adam8	1.00 ± 0.02	$2.80 \pm 0.20^{***}$	1.76 ± 0.03 §§
Casp1 (Ice)	1.00 ± 0.03	$2.40 \pm 0.04^{***}$	$1.71 \pm 0.03^{\text{sss}}$
Casp4	1.00 ± 0.03	$1.35 \pm 0.04^{**}$	1.09 ± 0.03 §§
Csf1r	1.00 ± 0.05	$1.83 \pm 0.09^{***}$	1.23 ± 0.09 §§
Csf2ra	1.00 ± 0.03	$2.09 \pm 0.13^{***}$	$1.55 \pm 0.09^{\$}$
Csf2rb2	1.00 ± 0.01	$2.00 \pm 0.13^{**}$	$1.58 \pm 0.03^{\text{\$}}$
Saa3	1.00 ± 0.02	$9.44 \pm 1.09^{***}$	$5.78 \pm 0.61^{\$}$
Emr1	1.00 ± 0.02	$2.93 \pm 0.12^{***}$	1.21 ± 0.00 §§§
Pvcard	1.00 ± 0.04	$1.39 \pm 0.01^{***}$	1.12 ± 0.04 §§

Data shown as means ± S.E. ND vs HFD: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001. Ccl, chemokine (C-C motif) ligand; Ccr, chemokine (C-C motif) receptor; Cxcl, chemokine (C-X-C motif) ligand; Cxcr, chemokine (C-X-C motif) receptor, Il1rn, interleukin 1 receptor antagonist; Il, interleukin; Ilr, interleukin receptor; Tnf, tumor necrosis factor; Tnfrsf, tumor necrosis factor receptor; Adam8, a disintegrin and metallopeptidase domain 8; Casp, caspase; Csfr, colony stimulating factor receptor; Saa, serum amyloid A; Emr1, egf-like module containing, mucin-like, hormone receptor-like 1; Pycard, PYD and CARD domain containing.

	-	-	
	ND	HFD	LU
Tlr1	1.00 ± 0.04	$2.23 \pm 0.06^{***}$	$1.74 \pm 0.01^{\$\$}$
Tlr2	1.00 ± 0.04	$1.66 \pm 0.04^{***}$	1.17 ± 0.02^{888}
Tlr4	1.00 ± 0.04	1.15 ± 0.04	0.82 ± 0.02 §§
Tlr5	1.01 0.05	1.04 0.03	1.25 0.02 ^{§§}
Tlr6	1.00 ± 0.03	$1.61 \pm 0.03^{***}$	1.31 ± 0.02^{888}
Tlr7	1.00 ± 0.06	$1.78 \pm 0.04^{***}$	1.10 ± 0.00 sss
Tlr8	1.01 ± 0.07	$2.21 \pm 0.09^{***}$	1.29 ± 0.02 sss
Tlr13	1.00 ± 0.06	$5.05 \pm 0.46^{***}$	2.66 ± 0.16 §§
Irf5	1.00 ± 0.04	$2.21 \pm 0.09^{***}$	1.55 ± 0.05 §§
Irf8	1.00 ± 0.06	$1.91 \pm 0.13^{**}$	$1.51 \pm 0.05^{\text{\$}}$
Cd14	1.01 ± 0.08	1.10 ± 0.02	0.69 ± 0.01 ss

Table S4. Effect of luteolin on transcriptional pattern of toll-like receptors (TLRs), interferon regulatory factors (IRFs) and Cd antigen 14 (Cd14) in adipose tissue and liver of C57BL/6J mice.

Data shown as means ± S.E. ND vs HFD: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001.

Table S5. Effect of luteolin on transcriptional pattern of Cd antigen families in adipose tissue and liver of C57BL/6J mice.

	ND	HFD	LU
Cd6	1.00 ± 0.01	$1.34 \pm 0.08^{*}$	$1.02 \pm 0.01^{\$}$
Cd9	1.00 ± 0.02	$2.35 \pm 0.17^{**}$	1.39 ± 0.05 §§
Cd14	1.01 ± 0.09	1.10 ± 0.02	$0.69 \pm 0.01^{\text{SSS}}$
Cd22	1.00 ± 0.05	$1.45 \pm 0.04^{**}$	$1.26 \pm 0.03^{\$}$
Cd33	1.00 ± 0.05	1.01 ± 0.02	$0.78 \pm 0.02^{\text{SSS}}$
Cd36	1.00 ± 0.04	1.05 ± 0.05	1.59 ± 0.04^{sss}
Cd37	1.00 ± 0.04	$1.53 \pm 0.09^{**}$	$1.16 \pm 0.02^{\$}$
Cd40	1.01 ± 0.08	$1.47 \pm 0.07^{*}$	$1.25 \pm 0.02^{\$}$
Cd44	1.00 ± 0.01	$3.42 \pm 0.24^{***}$	1.67 ± 0.06 §§
Cd52	1.00 ± 0.06	$2.38 \pm 0.14^{***}$	1.42 ± 0.01 §§
Cd53	1.00 ± 0.07	$2.42 \pm 0.19^{**}$	$1.51 \pm 0.16^{\$}$
Cd68	1.01 ± 0.12	$4.90 \pm 0.43^{***}$	2.42 ± 0.05 §§
Cd72	1.00 ± 0.03	$4.15 \pm 0.40^{***}$	$2.43 \pm 0.11^{\$}$
Cd74	1.00 ± 0.07	$1.68 \pm 0.05^{***}$	$1.10 \pm 0.02^{\text{SSS}}$
Cd83	1.01 ± 0.09	$1.48 \pm 0.11^{*}$	0.88 ± 0.03 §§
Cd84	1.01 ± 0.08	$4.79 \pm 0.34^{***}$	2.60 ± 0.04 §§
Cd86	1.00 ± 0.03	1.08 ± 0.01	$0.83 \pm 0.01^{\text{SSS}}$
Cd93	1.00 ± 0.03	$1.41 \pm 0.03^{***}$	1.12 ± 0.03 §§
Cd163	1.00 ± 0.05	$0.69 \pm 0.05^{*}$	$0.53 \pm 0.01^{\$}$
Cd180	1.00 ± 0.02	$3.10 \pm 0.29^{**}$	1.74 ± 0.03 §§
Cd209a	1.00 ± 0.03	$0.87 \pm 0.03^{*}$	0.66 ± 0.01 §§
Cd209b	1.01 ± 0.07	$0.65 \pm 0.02^{**}$	$0.37 \pm 0.01^{\text{SSS}}$
Cd248	1.00 ± 0.03	1.20 ± 0.09	0.78 ± 0.01 ss
Cd276	1.01 ± 0.07	$1.79 \pm 0.06^{***}$	$1.35 \pm 0.03^{\$\$}$

Data shown as means ± S.E. ND vs HFD: **p* < 0.05, ***p* < 0.01, ****p* < 0.001. HFD vs LU: §*p* < 0.05, §§ *p* < 0.01, §§§ *p* < 0.001.

Table S6. Effect of luteolin on transcriptional pattern of collagen in adipose tissue and liver of C57BL/6J mice.

	ND	HFD	LU
Col1a1	1.01 ± 0.08	$2.03 \pm 0.14^{**}$	1.26 ± 0.02 §§
Col1a2	1.00 ± 0.03	$1.40 \pm 0.05^{**}$	0.97 ± 0.04 §§
Col3a1	1.01 ± 0.09	$2.64 \pm 0.10^{***}$	1.55 ± 0.05
Col4a1	1.00 ± 0.05	$1.34 \pm 0.06^{*}$	$1.07 \pm 0.05^{\text{\$}}$
Col4a2	1.00 ± 0.05	$1.69 \pm 0.08^{**}$	$1.40 \pm 0.03^{\text{s}}$
Col4a5	1.01 ± 0.11	1.27 ± 0.03	$0.85 \pm 0.01^{\rm SSS}$
Col5a2	1.00 ± 0.05	$1.46 \pm 0.10^{*}$	$1.08 \pm 0.05^{\text{\$}}$
Col6a1	1.00 ± 0.06	$1.68 \pm 0.06^{***}$	1.34 ± 0.03 §§
Col6a2	1.01 ± 0.12	$1.95 \pm 0.09^{**}$	1.62 ± 0.05 §
Col6a3	1.00 ± 0.07	$1.74 \pm 0.11^{**}$	1.19 ± 0.02 §§
Col8a1	1.00 ± 0.05	$1.42 \pm 0.07^{**}$	1.00 ± 0.01 §§
Col9a3	1.00 ± 0.04	$1.62 \pm 0.05^{***}$	1.59 ± 0.08
Col12a1	1.00 ± 0.06	$3.27 \pm 0.04^{***}$	2.13 ± 0.05 ss
Col14a1	1.00 ± 0.05	1.07 ± 0.06	0.65 ± 0.01 §§
Col16a1	1.02 ± 0.14	$2.32 \pm 0.04^{***}$	2.47 ± 0.09

Data shown as means ± S.E. ND vs HFD: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: *p < 0.05, **p < 0.01, ***p < 0.001.

Table S7. Effect of luteolin on transcriptional pattern of extracellular matrix (ECM)'s regulator in adipose tissue and liver of C57BL/6J mice.

	ND	HFD	LU
Cd44	1.00 ± 0.01	$3.42 \pm 0.23^{***}$	1.67 ± 0.06 §§

Lum	1.02 ± 0.14	$2.21 \pm 0.10^{**}$	$0.93 \pm 0.02^{\text{SSS}}$
Mmp2	1.02 ± 0.14	$1.86 \pm 0.10^{**}$	1.11 ± 0.02 §§
Mmp3	1.00 ± 0.01	$1.62 \pm 0.05^{***}$	0.93 ± 0.06^{sss}
Mmp9	1.01 ± 0.11	$0.61 \pm 0.01^{*}$	0.62 ± 0.02
Mmp12	1.01 ± 0.08	$15.14 \pm 1.43^{***}$	$9.85 \pm 0.73^{\text{\$}}$
Mmp13	1.01 ± 0.09	$2.03 \pm 0.19^{**}$	$1.44 \pm 0.11^{\$}$
Tgfb1	1.00 ± 0.02	$1.49 \pm 0.02^{***}$	$1.19 \pm 0.02^{\text{SSS}}$
Tgfbi	1.00 ± 0.01	$1.20 \pm 0.04^{*}$	$0.76 \pm 0.00^{\text{sss}}$

Data shown as means ± S.E. ND vs HFD: *p < 0.05, **p < 0.01, ***p < 0.001. HFD vs LU: §p < 0.05, §§ p < 0.01, §§§ p < 0.001. Cd44, CD antigen 44; Lum, lumican; Mmp, matrix metalloproteinases; Tgfb, transforming growth factor beta.

Table S8. Effect of luteolin on transcriptional pattern of cathepsin in adipose tissue and liver of C57BL/6J mice.

	ND	HFD	LU
Ctsa	1.01 ± 0.09	$2.40 \pm 0.12^{***}$	1.60 ± 0.02 §§
Ctsc	1.00 ± 0.06	1.17 ± 0.03	0.86 ± 0.01^{888}
Ctsd	1.00 ± 0.03	$1.43 \pm 0.01^{***}$	1.40 ± 0.04
Ctsh	1.00 ± 0.02	$0.63 \pm 0.02^{***}$	0.92 ± 0.03 ss
Ctsk	1.01 ± 0.07	$4.60 \pm 0.32^{***}$	2.58 ± 0.09 §§
Ctsl	1.00 ± 0.02	$1.82 \pm 0.10^{***}$	1.23 ± 0.05 §§
Ctss	1.01 ± 0.11	$3.74 \pm 0.15^{***}$	$2.63 \pm 0.12^{\$\$}$
Ctsz	1.01 ± 0.07	$1.58 \pm 0.10^{**}$	1.61 ± 0.08
Col12a1	1.00 ± 0.06	$3.27 \pm 0.04^{***}$	2.13 ± 0.05
Col14a1	1.00 ± 0.05	1.07 ± 0.06	0.65 ± 0.01 §§
Col16a1	1.02 ± 0.14	$2.32 \pm 0.04^{***}$	2.47 ± 0.09

Data shown as means ± S.E. ND vs HFD: * p < 0.05, ** p < 0.01, *** p < 0.001. HFD vs LU: * p < 0.05, ** p < 0.01, *** p < 0.001. Cts, Cathpsin.

Figure S1. Effect of high-fat feeding on transcription of TLR5, MKK4/7, p38, JNK and MIG-realted genes in epididymal adipose tissue of C57BL/6 J mice over 24 weeks (HFD vs. ND group). Data shown as means \pm S.D. * p < 0.05 based on wilcoxon t-test. ND: normal diet. HFD: high-fat diet.