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1 First order time harmonic scattering from an
object with possible radiation induced cen-
troidal motion

For a time harmonic problem at angular frequency w, first order quantities can
be written as

qi(r,t) = R{Q:(r)e !}, (Sla)
p1(r,t) = R{P(r)e "}, (S1b)
pri(r,t) = R{Py(r)e '}, (Slc)
ps1(r,t) = R{ Psy (r)e '}, (S1d)
pp1(r,t) = R{Ppi(r)e **}, (Sle)
pr1(r,t) = R{ P (r)e "}, (S1f)
el (t) = R{Uge w1}, (Slg)
foxeit (1) — RFGCIte—ivt), (S1h)

where capital symbols are the complex amplitudes of the corresponding physical
quantities denoted by lower case symbols. Substituting p; and ¢; into equation
(2.2) yields the Helmholtz equation

(V? + k)P = —Qu, (S2)



where k = w/cy. Substituting pg; into equation (2.8) and integrating over t
gives

PSl(I‘7t) = // dS()n(I‘()) . [PSl(I‘o)VOG(I'|I‘0) - G(I‘|I‘())V0P31(I‘0)]7 (83)

where the frequency domain Green function is G(r|rg) = e*%/(47R). Solution
for Ps; for pressure release or rigid immovable objects can be obtained from
equation (S3|) with boundary conditions

pressure release: Pgy=-P; onS (S4)

rigid immovable: Vg1 -n=-Vp-n onS (Sh)
where Vg1 = (iwpg) 'V Ps; and Vi = (iwpg) "tV Py
For rigid movable objects, Pp; is the same as Ps; for the rigid immovable ob-

ject and PRr; can be obtained from equation (S3|) with Ps; = Pr; and boundary
condition

Vg1 -n=Ug -n, (S6)
where Vi = (iwpg) 'V Pr1,
Uy = [Zn(w) + Z,(w)] T FF, (S7)
and
Fxeit — / /S (P + Ppy)ndS. (S8)
Here Z,,(w) = —iwM is the Fourier transform of z,, and Z,(w) is the Fourier

transform of z,., which is sometimes referred to as the radiation impedance
12 3.

If the rigid movable object is attached to a spring and damper in the direction
of motion, equation (S7|) becomes

Muw? -t
Ua = | Zn(w) + Z,(w) + = 4 2 Mw, | Feeit, (S9)

—iw

where wy, is the (undamped) natural frequency, and ( is the dimensionless damp-
ing ratio.

To find Z,(w), three radiated fields }ADRJ- (w), j = z,vy, z at frequency w need
to be determined from the boundary conditions

Vi, n=U.;-n, for j=uz,y,2 (S10)

where VRJ = (iwpo)’lvppk,j, j = z,y, z, given unit velocities IAJCJ = (1,0,0),
Uy = (0,1,0) and U, . = (0,0,1). These radiated fields can be determined



from the integral equation (S3), in a similar manner as that for Ps;. In terms
of Pr = (Pr¢, PRy, Pr.,z), Z(w) is determined from its elements by

{Z(w)}ij = —/ﬁ niIE’RVj(w)dS, for i,j =z, 2. (S11)
3

As a special case, for a rigid sphere with radius a in an ideal fluid with density pg
and sound speed ¢ , the radiation impedance is { Z,.(w)};; = 4mipocoa®hy(ka) /N (ka)/36;,
where hy is the spherical Hankel function of the first kind, A} is the derivative
of hy with respect to its argument and d;; is the Kronecker delta.
For an object oscillating with centroidal velocity U, = UC,mIAJm7 + UCVyIAJC,y +

UC,ZIA,TC,Z, the radiated field is
Pr(w) = Pr(w) - Uc(w). (S12)

This relation holds in both first and second order.

2 Jones and Beyer’s experiment

Jones and Beyer [4] 5] measured the sum frequency second order pressure due to
an object in water insonified by two perpendicular incident beams at 7 MHz and
5 MHz respectively. The total second order pressure is determined via equations
(50), (59), (77)-(80) as a function of angle at a fixed range about the forward
direction of the 7 MHz beam (figure and found to be consistent with these
measurements as shown in figure 2 of the main text.
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Figure S1: Geometry of the Jones and Beyer measurement, where a rigid sphere
is located at the center of the overlap region of the two incident beams. Not to
scale.

For quantitative comparisons between theory X; and measured data Y; for
second order pressure amplitude at the sum frequency, the correlation coef-
ficients and mean square error are determined, where ¢ = 1,2,--- N for N



angular positions. The correlation coefficient is defined as
N _ _
o Zi:l(Xi *X)(Yi *Y)
o N 7 N o
\/Zi:l(Xi - X)Q\/Zizl(yi —-Y)?

where X and Y are the average values for X; and Y;, respectively. The corre-
lation coefficient rx y is found to be 0.98 for the N = 21 points measured by
Jones and Beyer between £0.2 rad. The mean square error (MSE) is defined in
decibels as

r

(S13)

N 2
i—1(Xi =Y,
MSE = 1010g10 %
2im1 Y

1+ dB, (S14)

which is found to be 0.23 dB.

Since the incident waves used by Jones and Beyer were narrow-band pulses
of 15 us, we use the harmonic wave approximation to estimate the second order
pressure amplitude at the sum frequency. The Pss; component is found to
be dominant, with the Pis; + Psi. amplitude no more than roughly 3% that
of Psgi according to our calculations. This is due to the narrowness of the
incident beams generated by Jones and Beyer’s circular transducers (radius
0.9525 c¢cm) [4], which makes a plane wave a poor approximation to the spatially
varying incident field necessary to calculate Pig; and Pspy by the extended IS
interaction dictated by their experimental geometry. Jones and Beyer, however,
showed that the measured primary scattered fields are an excellent match to
those due to incident plane waves [4] [5], which is consistent with fact that the
object was well within the beams. Given this and the fact that they did not
specify the transducer tapers which determine details of the beams, we use their
suggested equivalent plane wave fields at the object to calculate the primary
scattered fields required for determination of Psgy in figure 2. When evaluating
the volume integrals for Pgg,, Plg, and Pg, of equations (78)-(80), a spatial
step size of 1/20 of the sum frequency wavelength is used to ensure convergence
and accuracy. The amplitudes of the plane waves for SS computations are
made to be consistent with the primary scattered fields reported by Jones and
Beyer, while the amplitudes of the beams for IS and SI calculations are made
to be consistent with measured values (2.45 x 10° Pa and 3.36 x 10° Pa) that
were specified at 0.2189 m from the sources for the 7 MHz and 5 MHz beams
respectively [5], averaged over a 0.2 cm [4] radius to account for the finite receiver
size [6]. Calculations using equation (50) show the second order scattered field
Psa4 be on the order of 1 Pa at the receiver, which is negligibly small compared
to Psg+ (figure 2).



3 Derivation of the second-order field arising
from the nonlinear interaction of plane waves
of arbitrary time dependence

Let the first order incident field be the sum of two incident waves of arbitrary
time dependence, p1(r,t) = R {pra(r,t) + po(r,t)}, then

1 ~ o~ ~ % ~ o~ ~ o~k ~  ~ ~ o~
pi= oR {Prapra + Prapra + Prvpiv + Pivpr, b + R{Prapm + Prapm},  (S15)
and the solution to equation (63) can then be decomposed as

Pt = Pitaa T Pitaa® + Pites + Prises + Piras + Piias (S16)

where each component satisfies

( clgaatZ) Pit.oa = Qig(ftg {ph.} (S17a)
( - 01(2) g;) Pt aa® = 721:%687;%{131(113% (S17b)
(V - cl(%a;> Plie = A 242 8t2 R {5t (S17c)
(V - Cl(%a;> Pliow = 25 2 85':2 R {propr, (S17d)
(V B 01(2)81522> Piiab = _%%%{ﬁlaﬁlb} (S17e)
(V - 01(2)5;2) Piray = AB2 g; R {prapr, (S17f)

where piy 4, ph’aa*, Py and ph’bb* correspond to self-intersections of pr, or
P1b, and pi; ., and pf; . correspond to cross-interactions between pr, and pr,.

Self-interaction component pj; ., for @ = a,b contains sum frequencies of
all frequency components in wave pr,. If pr, is harmonic at frequency w, then
PlLaa contains the double frequency 2w,. Self-interaction component pf; -
for a = a, b contains difference frequencies of all frequency components in wave
pro which will include a zero-frequency component from the difference of each
frequency with itself. If p, is harmonic at frequency w,, then piLaa* is at zero
frequency and it is zero.

The cross-interaction component ph’ab due to prapr, contains sum frequencies
of all frequency components between pr, and pr,. If p1, and py, are harmonic
at frequencies w, and wy respectively, then ph)ab is at the sum frequency w, +
wy. The cross-interaction component pj; - due to prapyy, contains difference
frequencies of all frequency components between py, and py,. If pr, and py, are
harmonic at frequencies w, and wy, then piLab* is at the difference frequency
Wq — Wp.



For the collinear case, we solve for the cross-interactions pf; ., and pj; .« in
section Self-interaction components ph’aa and piLbb can be obtained from
Pit,ap by letting pry, = Pra, and letting pra = pry,, respectively in equation (S33al).
Self-interaction components ph’aa* and ph’bb* can be obtained from ph,ab* by
letting pfy, = pf,, and letting pf, = P}, respectively in equation 1}

For the non-collinear case, we solve for the cross-interactions pj; ap and ju ab”
in section [3.2] Self-interaction components in this case are the same as those in
the collinear case given in section |3.1} Specifically, pfy 4, Py, can be obtained
from equation 1) and ph’aa* and ph)bb* can be obtained from equation
(1IS33b)).

The pf; component is given 1n equatlon (61). When py, and py, are plane
waves propagating in directions i i, and i, respectively, the first order velocity is

1 B . ~ .
vi(r,t) = —R {pla(r, t)ig + Piv(r, t)1b} , (S18)

Poco

then
2 1 - o o
v] = V1 V1 = =55 R {Prabra + Prabia + ProPv + Pvdip, )
2pjcg

+ 22 R {PraPrv + Prapip } cos b, (S19)

0C0

where cos = i, - 1y, and

8t oo — 00
aﬁla ~ 8}5;1) ¢ ~
+ ZSR { 5t /_Ooplde + T _OopladT , (S20)

Then components of pj} due to self-interactions and cross-interactions are

pi/I = pi/I,aa + piII,aa* + pgll,bb + pill,bb* + pill,ab + pill,ab*’ (821)



where

7 _ ﬁla(ra t)ﬁla(ra t) . L 8ﬁla(ra t) /t -
pILaa(r7t) - %{ 24 R 24 pIa(raT)dT )

ot e
(S22)
Pralr, t)pr, (v, t 1 Opralr,t) 1 _,
pill,aa* (I‘,t) = _%{I(Q)AI()} %{2141(9(?5)/ pIa(I';T)dT}a
(S23)
o (r, )P, (T, ¢ 1 Opw(r,t) [
Py (r,t) = —%{W} —%{MPI;(;)/ pr(I',T)dT}y
(S24)
(r,t 1 Opw(r,t) [t _,
pnbb* rt %{ Ib pr )} %{Mplba(t )/ plb(r77')d7}7
(S25)

Prrap (T, ) ?R{ pr )(1 +cos¢9)}
1 (Opra(r, t)

8ﬁ1b(1’7 t) t ~
- 54 (at /_Ooplb(r,r)dT—i—T/_@pla(r,r)dr ,

(526)
Pl e (1, 8) = —s | Pralm: DPi(r: )1+ cos )
2A
1 (Opa(r,t) [* .. Opr,(x,t) [t
_%{214 (61& /_Ocplb(rﬂ_)dT"_T/_Oopla(rﬂ—)dT )
(S27)

/! i /!

For the collinear case, pfy .., Pi| aa* P11 b Pry gy Piray and py - for both
self-interactions and cross-interactions appear as plane waves propagating with
the primary plane waves. For the non-collinear case, self-interaction components
Pll.aa and pf} .« for a = a,b are the same as those in the collinear case, while

: : /! 2 : :
cross-interaction components pyj ,;, and PIT,qp*» AT€ NONZETO only in the union of
two primary waves through which intersection occurred.

3.1 Second order field for collinear plane waves of arbi-
trary time dependence, equation (84)

Let pr. and pr, be two collinear plane waves of arbitrary time dependence prop-
agating in the positive i, direction

Pra(r,t) = pra(t — z/co), (S28)
Pib(r,t) = pio(t — 2/co)- (S29)

The second order fields piLab(a:, Zt) =R {ﬁh,ab(x, 2, t)} and piLab* (x,2,t) =



R {ﬁh ap (@, 2, t)} due to cross-interaction must satisfy

? 197N B 2% .
(322 - C(Q)at2> ph,ab(za t) = _Aic%@ [Pra(t — z/co)pv(t — z/co)], (S30a)

2 197\ B "
(822 - (%319) ph,ab*(za t) = _Aic%@ [Pra(t — z/co)Pm,(t — 2/co)] . (S30Db)

Let pra(t) © U,(w) and pry, (1) < Uy(w), so that pra(t—2/co) < /0T, (w),
Prv(t—2/co) & €9/ OWy(w) and iy, (t — 2/co) & €9/ ©0W¥(—w). Fourier trans-
formation of equations (S30al) and (S30b)) leads to the Helmholtz equations

82 WQ D Bw2 iwz/c

(aZQ a > Plrap(z,w) = G e/ Walw) » By(w), (S31a)
32 UJQ D 6(’02 iwz/c *

<822+ c3> Pl () = G/ V(@) « Wi(-w),  ($31D)

where Ij’l'Lab(z,w) & P ap(2t), Pl e (2,0) & Py e (2,1), and * is the convo-
lution over frequency w. The solutions to equations (S31al) and (S31b)) can be
found as

iwp

P{I,ab(z7w) = —m‘l’a(w) * Uy (w)ze /0, (S32a)
pﬁ@b* (z,w) = _%\I/a(w) * U (—w)zel@®/ %, (S32b)

Taking the inverse Fourier transform of equations (S32al) and ([S32b)) and keeping
the real part yields

phranle ) = R{ G 2 le = 2fcn(e - s/} (s330)
P (o) = R{ S 3 Ut = 2/ (e~ /el | (8330)

By adding equations (S26)) and (S27) into equations (S33al) and (S33b)) re-

spectively, we obtain the complete solution for the cross interaction of collinear



plane waves of arbitrary time dependence as

Pri,ab(2,t) = %{214 En [P1a(t — 2/co)pm (t — Z/Co)]}

_ { 2Apla( — /et — z/co)}

{ 8tp1a Z/CO)> /_:Z/CO ﬁlb(T)dT}
{ {4 P z/co)> /t_Z/COﬁIa(T)dT}, (S34a)

— 00

—R
pi1, ab*(2,1) = { [pla (t —z/co)pry,(t — Z/CO)]}
- R

gt = 3/t = 2/co) |
o (i) [ zsfbmdr}
—%{;A (it =/e0)) [ :/C“mmm}, (s340)

When boundary conditions are given, additional homogeneous solutions (plane
waves) need to be added to the above solutions, but these homogeneous solutions
are not due to the nonlinear interactions.

When pr.(t) and pr,(t) are narrow-band plane waves with compact support
between ¢ = 0 and t = T', they can be written as the product of harmonic plane
waves with a real moving window ws (t — z/cq) as

Pralt — 2/co) = Page =7/, (t — z/cy), (S35)
Prv(t — z/co) = Pyoe v t=2/c)yy (t — 2/cp). (S36)

For a sufficiently long and smooth window w;, its time derivatives are neg-
ligible, such that

9 _ : z—w
apla(t — z/cp) & —iwg Pyoe' i(kaz—wa )wl(t —z/co), (S37)
9 ~ : i(kpz—w
aplb(t —z/eg) = —iwy Pyoe (kv bt)wl(t —z/co), (S38)

and the time integrals of pr, and pr, can be approximated by the contributions
from the end point ¢t — z/¢y [7], such that

t Z/Co ) 1 X
/ e e Twy (T)dr = ——wq (t — z/co)eﬂ‘*’“(t*z/co), (S39)
oo —iwg
t Z/CO . 1 .
/ e Ty (T)dr & ——wy (t — z/cq)e Wt/ ), (540)
— 0 —1Wwp



Substituting equations (S37)) - (S40]) into equations (S33a)) and (S33b|) yields

Prab(2z,t) =~ RN _FaoFho iBkyz + i elFz=wsty 24— 2 /c0) b, (S4la)
II,a ) 2A =+ Walh 1 0 9

. w2 1 i
Prab (2, 1) = R {— iBkyz — - } ellh==mw-Dyd (¢ — Z/Co)} -

(S41b)

where the terms linear in z in equations (S41a)) and (S41b)) correspond to Lamb’s
respective sum and difference frequency second order fields caused by the inter-
action of two collinear harmonic plane waves [g].

By setting pr, = pra in equations (S33a) and (S33B) then dividing the re-
sults by two, we can obtain the self-interaction components piiqq and piy gq*
respectively. Similarly by setting pr, = prp, in equations (S33a)) and (S33bf) then
dividing by 2, we can obtain the self-interaction components pry gy, and pyy pp~,
respectively. It can be seen that all self-interactions components are non-zero
only inside the compact support of the corresponding primary waves.

3.2 Second order field for non-collinear plane waves of ar-
bitrary time dependence, equation (86)

Let pra and prp be two non-collinear plane waves of arbitrary time dependence
propagating in i, and i,, directions respectively,

Pralx, 2’ t) = Pra(t — z/co) (S42)
f)lb(l‘, Z/, t) = ﬁlb(t — Z,/Co), (843)

where 2/ = xcosf + zsinf and 6 # 0 is the angle between i, and i,
The second order fields py; (2, 2/, 1) =R {ﬁh,ab(x, 2, t)} and pyy (@, 2/, 1) =

R {ﬁh a2, 2, t)} due to cross-interactions must satisfy

2 1 82 ~/ / 5 62 ~ = 4
Ve — 292 pILab(xaz 1) = T AZ o2 [Pra(t — x/co)p(t — 2"/ co)],
0 0
(S44a)
2 1O e B O e eV (b= o
(72~ 32 ) P () = =1 o il = 2/l o).
(S44b)

Let pra(t) © ¥o(w) and pip(t) < Uy(w), it follows that pfy (t) & ¥*(—w).
Fourier transformation of equations (S44a)) and (S44b|) leads to the Helmholtz

10



equations

w2
<V2 2 ) PII ab(x 2z W) =
0

sz 1 > 1Qx/c0 i(w—0)2"/co
e T, (e Up[(w — 2)]dQ, (S45a)
0
w2
(V2 2 > PH w (2,2 w) =
0
Bw21 ooi:r:c i(w—Q)2z" /¢ *
Az /ooy, (Q)el @D /g (w — Q)]dQ, (S45b)

where PII ab(@, 2 W) & Pl gy (2,2, 1), Py e (2,2, W) & Pry o (7,27, 1), and the
convolution theorem is used. Equatlons (S45a) and 1) can be solved ana-
lytically. Spatial Fourier transformation of (S45a)) and (S45b]) leads to

( k2 — )// PH w (@, 2 w)etFe otk g g, —

21 ; : / —_—
%7 // / €1Qm/cowa(9)e1(w—ﬂ)z /CO\I/b[(w _ Q)]dQelk“x+lkzzd$dZ,
0 4T — —00

2 o]
2 2 W B/ / ikoztiks 2 _
<—kw — kI + 02) // Py e (2,2 w)e dzdz =
0 —oo

ﬁw2 1 > > iQx/c i(w—Q)2"/coy* ikyx+ik,z
125 e U, (Qe Uy [—(w — Q)]dQe =TT dxd .
Cp 2T oo J —00
(S46b)

(S46a)

Dividing by (—k2 — k2 +w?/c2) and taking the inverse spatial Fourier transform

of equations (S46a)) and (S46b)) leads to

oo 00 iQ i(w—Q)z" /e
. ” Bw? 1 eifw/cog  (Q)el@=D2 /oy, [(w — Q)]dQ
/ pil,ab(x7 2/7t) fdt = A 2 / 2 ( ) 2 b[( 2)} 2p’
oo T oo wW?2 = [Q+ (w—0Q)cosb]? — (w—N)%sin“ 0
(S47a)
o) . 1 0 in/co‘II O i(w—Q)z//CO\I,* _ — MO
/ ﬁil b (l‘, Z/, t)elwtdt 60‘) / € a( )6 b[ (w )]d2 .
oo A 2 ) w2 Q2+ (w—02)cosb]? — (w—Q)2sin“ 0
(S47b)

11



With the aid of partial fractions, the above expressions become

0 X weiwz'/co
/ Priap(, 2, t)etdt = o

oo 2A(1 — cos9)
. / 1 1
- iQ(z—2")/co _ -
X o e U, (Q)¥(w—Q) (Q + oo Q) s, (S48a)
o) iwz’/co
~/ / iwt _ Bwe
[mplli(xv z at)e dt = 2A(1 — oS 0)

17 e@—/w S 1,1
X2T[me V)~ - )] (5 + == ) A2 (348b)

Taking the inverse Fourier transform and keeping the real part yields

ig 0
pil,ab(xﬁzlvt) =R { 2A(

]fﬂﬁ@mWszﬂ+ﬂR@A@@,(M%)

’ / iﬁ 0 (1) / (2) ’
. = — [} I 4
Prrape (2,251) %{QA(lcose) E)t[ @ 2 )+ L, 2 )] 5, (S49b)
where
(1) 1 > 19(1: 2")/co v (Q) 1 /OO —iw(t—2"/co)
1 — — = Up(w—Q Q
oy (@, 2 1) =5 - O o ) p(w Je dw| dS,
(S50a)
(2) 1 > 1Q(:c 2")/co 1 /OO \I/b(w — Q) —iw(t—2"/co)
1 — U, () |— _— Q
a (@:2,8) = 21 J_ oo ()|:27T o w— ¢ du| S,
(S50D)
(1) 1 > 1Q(r 2")/co \IIG(Q) 1 /OO * —iw(t—2"/co)
I — — | — Ui —(w—=9 Q
o (@, 251 =5 - ) o | = (w )]e dw| dS2,
(S50c)
(2) 1 > 1Q(m—z’)/co 1 /oo ‘I’Z[_(w — Q)] —iw(t—2"/co)
sl v, ) |— [ DZW=il Q,
apr (8:2,) = 27r/ (@) 21 J_ oo w-0 dw| d
(S50d)

after switching the order of the integrations.

The bracketed integrals in equations 1' and m are inverse Fourier
transforms that can be written as e =2 =='"7¢) 5y (t—2' /co) and e~ *2E=="/co) . (1 —

z'/ep), respectively. Then T (llj) and I, 1) become

13 (@, 2 1) = puo(t — 2/ feo) Ja(t — 2/ co), (S51a)
Iéil( 2 t) = ph(t — 2" o) Ju(t — x/co), (S51b)

where
Tt =afer) = 5 [~ Bt aleoag (52)

12



is the inverse Fourier transform of ¥,(Q)/Q, evaluated at ¢t — x/cy. It follows

from the integration property of Fourier transforms [9] that
iv,(0) (953)

Pra(T)dT + 5

t—xz/co

It~ afer) =i [

and the time derivative of J, is
0 .
Eja(t —x/cy) = —ipra(t — z/co). (S54)
The procedure to simplify Ig))(t) and Isil (t) is similar. Substituting n =
w — 2 in the bracketed integrals of equations (S50b)) and (S50d)) leads to
2) 1 > —i —x/c 1 o \Ijb(n) —in(t—z"/c
1D, 2 1) = [%/ T, (Q)e /O)dQ] [% /m = ey
(Shba)

19 (2,2 1) = {21/ \I/a(Q)ei“(tm/CO)dQ} {21/ \Ijb;_”)ein(tz'/%)dn} :
T J_ s T J_ o
(S55b)
which simplify to
I (2,2 ) = pra(t — x/co) Jo(t — 2' Jco), (S56a)
1) (2,2 1) = Pra(t — x/co) Ty (t — 2/ [co), (S56b)
where
1 y . ,
Jp(t — 2" [co) = 2—/ bnn)e"’(tz /e0) dp, (Sh7a)
(S57b)

00 \*(— . ,
Ty (t _ Z,/Co) — 7/ b( 77) 6*171(15*2 /co)d,'7
T J—oc0 n
It can be seen that J, has the same form as J, in equation (S52) and J; =
—Jp+. With the integration property of Fourier transforms, equations (S57al)

m
1
2

and (S57b|) become
t—ZI/Co \I/ 0
Jy(t — 2" o) = —i/ Prw(7)dT + #, (S58a)
t—z"/co (0
Jpe(t — 2" Jco) = —i/ Py (T)dT + %. (S58b)
The time derivatives of J, and Jp« are

0 -
an(t —2'/co) = —ipw(t — 2’ /co), (S59a)
0 .
&Jb* (t — 2" o) = —ipi, (t — 2" /co), (S59Db)

13



Substituting equations (S51f), (S53)), (SH6) and (S58]) into equations (S49b))
and (S49al) yields particular solutions

i t—x/co .
Piyan(, 25 t) = %{ L [aﬁlb(t - z’/co)} [—i/ Pra(T)dr + W, (0)

2A1—cosf | Ot oo 2

}

lﬁ 1 0 . . t—2"/co B l‘llb(o)

+R {Ml_msg {atpla(t - 33/60)] [—l/oo B (T)dT + —3

e ( piv (t — 2/ S60
AT —cosglll —@/co)Pwlt = =/co) (S60a)

/ ’ i3 1 0 _, / . t==/eo - iv,(0
pHWJ%ZJ):%{QAl—ch{&mdﬁ—zkd}kﬂ/ Pra(r)dr + 2<>}

lﬂ 1 0 - . t—2z"/co » I\IIZ(O)

R {2Al—c059 [&tpla(t - x/co)] [_1/_00 Prp(T)dr + 5

RS 2 ’ S60b
FR AT conp? (!~ /o)t = /co) g (S60b)

The physical solutions for pjy ,,(,2',t) and p ., (x,2,) are obtained by
adding homogeneous solutions R {1/1((12) (t— x/co)} and R {wai) (t— z’/co)} to
equation (S60a)), and R {Q/JS))* (t— :C/CO)} and R {1,/)[(5)) (t— z’/co)} to equation
and (S60b|) respectively, and imposing the causality condition that the second

order field from intersecting plane waves must be zero in space before any wave
arrives there. The homogeneous solutions are determined as

1/13;)(15—:5/00) = —;77&pla(t—x/co), (S61)
Y3 (t—2'fco) = —'fiia;ﬁlb(t — 2 /o), (S62)
WOt~ afegy =~ L QD05 ey, (s63)

@) _ B o
Yoy (t = 2'/co) 241 —cosf 2 8tp1b(t Z/eo), (S64)
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such that the physical solutions for p; ,,(z,2',t) and py; - (2, 2, 1) are

a0 =Ry 2L ] i [
Pryap\T, 25 1) = AT — cosf atplb Z /€ 1 Pra(T)ar

. 1 ) t—z"/co
+ R {211641 osd |:atﬁla(t - .Z'/CQ):| l—i /_OO ﬁIb(T)dT] }
+R {il_lcoseﬁla(t —x/co)pi(t — Z//CO)} ) (S65a)
) ) . 1 9 . , ) t—z/co R
Pit,ab (z,2/,t) =R {;i 1 cosf l:atplb(t -z /CO)] l_l/ pIa(T)dT] }
. 1 9 tfz'/c()
+ R {21{341 mp—" |:8tﬁla(t - :r/co)] li/oo f’fb(T)dT] }
1
+R {il—cos@ﬁla(t — x/co)Pry(t — Z//CO)} . (S65b)

By adding equations (S26]) and (S27) into equations (S65al) and (S65b) re-

spectively, we obtain the complete solution for the cross interaction of non-
collinear plane waves of arbitrary time dependence

prLab(e, 2, t) = R {;4 {1_6%9 _ 1] [;plb(t B z’/co)} [/tw/co ﬁla(f)dTl }

R {2{4 [1_6059 - 1} {;ﬁh@ - x/co)] l / i:/co m(ﬂdr] }

s { o [~ (o cost) e ol = e b (5660
P (2,2,1) = {;4 o] e ] l /[ ﬁlamdr] }

R {;A -] |t o] [ / w/ ﬁi‘b(T)dT] }

{5 [T (o cos)| e afeolinfo = o)} (5000

When boundary conditions are given, additional homogeneous solutions need to
be added to the above solutions, but these homogeneous solutions are not due
to the nonlinear interactions.

It can be seen from equations and that sum and difference
frequency components due to cross-interaction between two intersecting plane
waves pra(t — x/co) and prp(t — 2’ /o) with compact support between ¢ = 0 and
t = T only exist in the region of compact support intersection (purple region

15



in figure , so that no scattering of sound by sound at sum or difference
frequencies is found outside the region of compact support intersection to second
order. There will be a component at the primary frequency of a given plane
wave (pra or prp) due to cross-interaction only where the given primary field
exists and the intersecting plane wave (pr, or pra) has passed through (hatched
region in figure 7 if the intersecting plane wave has a non-zero zero-frequency
component.

There will be non-zero pri,qq and piy 44+ inside the compact support of pr, due
to self-interaction, which gives rise to sum and difference frequency components
from pr,. Similarly, there will be non-zero prrp, and pry g+ inside the compact
support of pr, due to self-interaction, which gives rise to sum and difference
frequency components from py,. There is no scattering of sound by sound due
to cross-interaction or self-interaction of two finite-duration plane waves at any
frequency outside the region of compact support union through which compact
support intersection occurred.

When pr.(t — x/co) and pr,(¢ — 2’ /co) are narrow-band plane waves with
compact support, they can be written as the product of harmonic plane waves
and real moving windows w1 (t — x/cg) or wi(t — 2’ /cp) as

Pra(t — x/co) = Page @alt=2/0)yy (t — x/cy), (S67)
Pt — 2" Jco) = Pboe_iwb(t_zl/%)wl(t —2'/cp). (S68)

For a sufficiently long and smooth window w;, its time derivatives are neg-
ligible, such that

0 ~ : i r—w

Epla(t —x/co) & —iwg Pyoe (haz—wat)y, (t—x/co), (S69)
0 i

Eﬁlb(t —2'/cy) = —iwy Pye! Fo® =woty (£ — 2 Jeg), (S70)

and the time integrals of pr, and pr, can be approximated by the contributions
from the respective end points ¢t — x/co and t — 2’ /¢q [7], such that

t*CE/C[) . 1 .
/ e e Twy (T)dr =~ 0 wy (t — :c/co)eﬂ‘”“(t*z/cg), (S71)
t—2"/co ) 1 ) ,
/ e Ty (T)dT &~ w1 (t — 2’ [co)eiwo(t=2"/co), (S72)
— 00 - b

Substituting equations (S69)) - (S72) into equations (S66al) and (S66b) yields
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PaOPbO [ ﬂ w'z"
)~ ~1 1—cosf
piras(z, 2, 1) %{ 24 |\ 1—cosf Walp " o
x ellhathoz' =0ty (1 g feq Y (t — Z//CO)} : (S73a)
Pao Py [ p w?
. ") a0~ b0 | _ -1 1-— 0
DP11,ab (% Z, ) %{ 24 | 1—cosf WaWp N o

X ei(k“’kbz/*‘”*t)wﬂt —x/co)wi (t — ZI/CO)} : (S73b)

The sum and difference frequency components due to cross-interaction of
two intersecting narrow-band plane wave pulses are again seen to only exist in
the region of compact support intersection of the two plane waves (purple region
in figure , where they agree with Westervelt’s respective sum and difference
frequency second order fields resulting from the interaction of two non-collinear
time-harmonic plane waves [I0]. This shows that a time-harmonic approxima-
tion can be made in the region of compact support intersection for narrow-band
finite-duration plane waves with sufficiently long and smooth windows.

3.3 Collinearity and dispersion relation

For two plane waves with vector wave number k, and k; at angular frequencies
w, and w, propagating in a medium with sound speed ¢y, they satisfy the
dispersion relations w, = |Kk,|co and w, = |kp|co respectively. The sum (w4 =
wq+wp) and difference (w— = |w, —ws|) frequency second order fields due to their
cross-interaction have vector wavenumbers k4 = k, £+ k;. These second order
fields propagate when the dispersion relations are satisfied, i.e. w1 = |ki|co,
which only occurs when the two plane waves are collinear, as illustrated in figure

[S3l
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P1a window Pla window
trailing margin | leading margin
x=co(t—T): x=cot

P1b window
leading margin
2 = cot

P1b window
trailing margin
2 =co(t—T)

L,

Figure S2: Intersecting non-collinear plane waves of compact support duration
T. The pra(t—2/co) wave (blue) is propagating to the right and the pr, (t—2"/cp)
wave (red) is propagating upward. The sum and difference frequency compo-
nents of prrqp and ppp 4+ are only nonzero in the region of compact support
intersection (purple). There are no conditions under which there is second order
sound outside the union of the primary windows. The second order field pir qp
or piy,qp+ Will have primary frequency components where the primary field exists
and the intersecting plane wave has passed through (hatched) if the intersecting
field has a non-zero zero-frequency spectral component. For narrow-band plane
waves with sufficiently long and smooth windows, a harmonic approximation
can be made for the sum or difference frequency field in the region of compact
support intersection.
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(a) sum frequency (b) sum frequency

collinear non-collinear
wt
k| # o
— Yt
kil =2
> ky,
ka kb ka
(c) difference frequency (d) difference frequency
collinear non-collinear
w
kb - co
k, k,

Figure S3: Sum and difference frequency second order fields due to the cross-
interaction of two plane waves propagate only when the two plane waves are
collinear, such that the dispersion relation wi = |ki|co can be satisfied. Here
ki = ka + kb, W4+ = Wq + Wy = (|ka| + |kb|)00.
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4 Fourier transform pairs

The Fourier transform pairs F(w) < f(t) are defined as

/ FB)etdt, (S74)
f@) = o [ F(w)e “tdw. (S75)
For this normalization, the convolution theorem is
f()h(t) & F(w) x H(w), (S76)
F(w)H(w) & f(t) (), (877)

where f(t) & F(w), h(t) & H(w), and x denotes convolution operation which
is different in frequency domain and time domain

1

F(w)* H(w) = /OO F(Q)H(w — Q)dq, (S78)

/ FR(E— )7 (S79)

5 Asymptotic solution for SS interaction, equa-
tion (90)

We begin with a spherical object assumption to illustrate how general asymp-
totic expressions can be obtained for the SS interaction in terms of the far field
scatter functions of any object. For a spherical object, the two scattered fields
can be expressed as

Imax

PSa = aO Z Z almhl k T m(g (b) (S80>
=0 m=—1

Psy(r) = Py Z Z brnhi (ko) Yy (0, ¢), (S81)
k=0 n=—k

where a;,,, and b, are constant coefficients determined by the boundary condi-
tion. The product PSaPS(E) can be expanded in spherical harmonics:

Lmax

Psa(r)P§) (r) = PPy > Z QY (kegr, kyr)YM (6, ), (S82)

L=0 M=—-L

where Q¥* is a quadruple summation involving Clebsch-Gordan coefficients for
every degree L and order M [II]. When the expansions for Ps, and Ps;, are
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truncated at lax and kpax respectively, the expansion for PsaPS(Z) is limited to
Linax = lmax + kmax. The free space Green function can also be expanded as [2]

+(rlro) = ks Z Z (00, d0) YR (0,0)jk (kxr<)hi (kers),  (S83)
K=0 N——K

where ji is the spherical Bessel function of order K, ro = min(r,rg) and
rs~ = max(r,rg). With the orthogonal property of the spherical harmonics,
Piq, in equation (78) can be written as

18k3 Py Pl Lmex L
PS/Sj:(r):_% S vM0.9)
L=0 M=—L
X [mkir) / QM) jy (karo)r2dro + i (kar) / QY by (kro)r2dr)

(S84)

where the first integral represents the interaction within range r and the second
integral represents the interaction beyond range r. Equation (S84) is exact and
can be directly evaluated analytically or numerically, yet the number of terms

in Qy(*) increases dramatically as L.y increases [I1]. To proceed, we define
a range rerr < r and decompose the first integral in equation (S84) into two
integrals: one from a to ryer+ and one from e+ to r, such that

Pésy = P51 + Psg) (S85)
where
P ) = - PR S~ o, gy [ @ ntkan)dn,
a
o (S86)
and

i8k3 PPl
P (r) = - =20 3 v (0, 9)
LM

X [hL(kir) Qf(*)jL(kziro)r?}dro +jL(ki7")/ Qf(*)hL(kiro)r?}dro

(S87)

Tref+

The Pé(sli term of equation 1) can be numerically evaluated because the
integration domain is finite (from a to 7yef+ ). For any finite ryes, Pé(sli falls off

by r~1 as r — oo so becoming small compared to Pé(SQj)E.
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5.1 Spherical wave expansion and approximation to Pé(si

Let 74 and rp be the far field ranges for the primary scattered fields Ps, and Psp
respectively, such that beyond r, and ry, far field approximations [12] apply

S, (;T) eikar

Psa(r) =Py A mat (888)
S fT ikb’r'
Psy(r) = Py bkf: )¢ - (589)

where rq, = ZQ/)\a,b, kqra, kery > 1, 1 is the length scale of the object, A, are
the wavelengths of the incident fields, Py and Py are the amplitudes of the
incident fields, S, and Sj are the far field scatter functions, and i, = r/r.

The product SaSZS*) can be expanded in spherical harmonics with coefficients

qﬁ/[(*) as
o] L
Sa0,0)87(0.0) = > > ar V(0 9). (890)
L=0 M=—L
Comparing equation with equation for r > rier+, we have
ikyr
Qp' = k:eak:ﬂ ' for =01, , Lax. (S91)

When kirer+ > 1 the spherical Bessel and Hankel functions follow their
asymptotic behaviors [I3] for r > et

ei(kir—L‘n'/Z) _ e—i(kir—LW/Q)
Qikir ’
ei(kirfL'n'/Z)

Jr(ker) ~ (S92)

hp(kir) = (S93)

ik‘ir
which are exact for L = 0. For sufficiently small objects such that the L=0 case

completely describes the radial dependence, ¢+ should be taken as the object
radius a.

Substituting equations (S91)-(S93)) into equation (S87) yields
PO () = i8k3 Pao Py
S5+ 2Ak kpkyr

ikyr > eiQkiTO M(*)y, M L
X |e dro | > a VL0, )(-1)
Tregx 10 LM

) Tdr ,
seter [1S0 S 6. 0)
Treex 10\ [ ar

_—ikgr > ei2kirod M(*)y]VI 0 594
e o To ZqL L (0,9) : (594)
T LM
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Since >, qy(*)YLM(G, @) = Sa(6, (b)SlS*)(G, @) = Sa(iT)Sé*)(ir) as given by
equation (S90) where i, = r/r, it can be shown, by using the relation PM (—z) =
(—1)L+M pM () for associated Legendre function PM | that > (—1)Lq£/[(*)YLM(07 @) =

LM
So(m—0, 7+ ¢)51§*) (m—0,m+¢) = Sa(fir)Sé*) (—i,). Equation 1) then be-

comes identical to equation (90).

5.2 Stationary phase approximation to Pé(si

Without loss of generality, we choose a spherical coordinate system (ro, 0, Bo)
such that the zenith direction coincides with r. In equation (S , S/(Szj)[ can be

rewritten in this coordinate system as

ﬁk
Ps(szj)[ =-—= /// Ps, To,Oéoﬁo) Sh (To,ao,ﬁo)
|r0‘>7‘refi

1kiR

X e ———r2drg sin agdapdfy. (S95)

where exp(ik+ R) /(47 R) is the free space Green function and R = /72 + 12 — 277 cos ay.
To remove the singularity in the Green function when R = 0, we use R
instead of ag as dummy variable, then

/(2) kL [ 2
PSSi():*MAT rodro ; dno

ref+

[r+7ro]
></| Ps., (70, R, 50)Ps(b (ro, R, Bo) €™+ dR. (596)

r—rol

Assuming kir > kirerr > 1, and PSa and PSb are slow varying functions
in R, we find that the integrand for the &y integral in equation is rapidly
oscillating with a linear function of R in its phase, suggesting that the leading
order contribution comes from the two end points [7] at R = |r — r¢| and

= |r + ro|. Integrating over R then fj yields

o0
ik . * < ik
erEr PSa(To, _IT)PS(b) (’I“(), —17-)6l iTO?"QdT’Q

Tref+

Bky

2
PS(SJ)[( )~ — %NAr

T
— elkir/ PSa(r07ir)PS(Z) (’I“O7i7,)€_lkim7‘0d7“0

Tref+

—efikir/ PSa(ro,ir)PS(;)(ro,ir)eiki”’rodro . (S97)

If rieg+ > 74,7 so that the far field approximations for Ps, and Ps, apply,
substituting equations (S88)) and (S89)) into equation (S97)) yields equation (90).
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6 Dean’s solution

For two spherical waves Ps, and Pgp, given by

eikar eik:br
Ps,(r) = Pyo—— d P =P ,
sa(T) 0 et an b (1) b0 ot

(S98)

Dean [10] provided a solution of the inhomogeneous Helmholtz equation corre-
sponding to equation (3.4) for their cross-interaction outside a sphere of radius
a

lﬁki ) eikir r otk /T‘ eQikiTo
pDean — _ PP, log (=) — e 2iker drol. (S99
+ 2Akyky 0Fb0 Ty 8 (a) € a 0 "o (899)

This solution does not satisfy the Sommerfeld radiation condition [2] in the far
field since

a b e T e2iki’r0
br ( — iki) PP o e™! iT/ dro+0O(r 1) (S100)
or a TO
does not vanish but approaches a finite value as r — oo.

The difference between Dean’s and Baxter’s [14] solutions is a term propor-
tional to the spherical Bessel function jo(k+7). By adding «jo(k+r) to Dean’s
solution, the resulting solution PP + avjo(k4r) satisfies the Sommerfeld radi-
ation condition with constant « given by

Bki () e8] 62iki7“0
=% poP dro. S101
[0 Akakb 0450 /{; o To ( )

The solution PP + ajo(k+7) is then identical to Baxter’s solution.

Dean did not provide any information on how to derive his solution. Here we
present a derivation based on the variation of parameters method [I5]. We con-
sider the inhomogeneous Helmholtz equation for the interaction of two spherical
waves Ps, and Psp, given by equations ,

(V¥4 k) P = —QL(0), (S102)
where
Bk:tpa P(*) eik+r
QQI:(T) = AO X0 L kb,rQ' (8103)

This problem is spherically symmetric. The Helmholtz equation is in fact a
second order inhomogeneous ordinary differential equation. According to the
method of variation of parameter, a particular solution P (r) can be con-

structed from two known linearly independent homogeneous solutions Pj(tl)(r)
and Pf)(r), as [15]

(2) / (1) /
Pl (r) = P& (r) Wdr—@”(m / Wdr (S104)
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where W (r) is the Wronskian of the two homogeneous solutions,

dP?(r dP(r
W) = PO 0 pp ) ($105)

We choose the spherical Hankel functions of the first and second kind as the
homogeneous solutions,

P (r) = hY (ker), (S106)
PP (r) = b (kir), (S107)

and their Wronskian is W (r) = —2i(k+7)~2. Substituting equations (S103)),
(S105), (S106) and (S107) into equation (S104)), and changing the indefinite

integral to a definite integral from a to r, we obtain

dT‘o,

R .5k:tPaOP(*) eik:H“ /T 1 ) ﬁk:tPaOP(*) e—ikir T eZikim
P - _ b0 —d b0 /
L 7% Pl ALy oy e

To

(S108)

which is identical to Dean’s solution in equation (S99). We note that the par-
ticular solution P} obtained by this method is not unique and it depends on

the choice of the homogeneous solutions Pj(tl) and Pf). As we discussed above,

the choice of Pj(tl) = hél) and Pf) = héQ) leads to Dean’s solution that violates
the Sommerfeld radiation condition.

7 Asymptotic solution for IS and SI interactions,
equations (92)-(94)

Consider equations (79) and (80) with incident waves given by equation (66)
and scattered waves given by equation (88) in the far field.

7.1 Forward direction

We first consider the case when the receiver at range r is in the forward direction
of the incident wave and focus on the spherically symmetric scattered waves
(S, = Sp = 1). Generalization to arbitrary scattered waves valid in the far field
are provided later in terms of the their far field scatter functions. We define
a spherical coordinate system (rg, 8y, ¢g) so that the zenith direction coincides
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with i, or i,. Equations (79) and (80) become

: wi BPo P eikvro ik R
%ﬂm0=—+i£b{0]““m% 12 i Bydrodfodso,
0

kb”f’o 4T R
(S109)
N Pa P 1k ro piky R
PS/H_(’I”ib) _ w+ﬁACO b0 /// ikpro cos 6y € k - 64 - ’/’O Sinaod’r‘odﬂodqﬁoy
0
(S110)
% PP e—ikvro pik_R
PI/S_ (Tia) _ w— BACOLO b0 /// ikqro cos 6 € kbro 647TR r sin eod’l’odeodd)o,
0
(S111)
< P Pk lkaTo ik_ R
Ps/If(Tib) W ﬁACO b0 /// —ikpro cos B © k - 64 = ?,.0 Sinaod’f‘odgodd)o.
0
(S112)

In the (rg, 0y, #o) coordinate system, R = /72 + 12 — 2rrg cos 6, 50 7 cos fy =
(r? +r¢ — R%)/(2r), rosinfydfy = RdR/r, and the integrals of (S109) - (S112)

become
PIISJF(Tia) _ _wiﬂﬁgpbo e;k]:;f //D ikq +1k”°+1k+Rder07 (S113)
Pl (i) = _wiﬁﬁgpbo e;’;:rf // ihq roiky 2 +1k+RderO, ($114)
a
f@@@):—wazgf%iggz// ik -mWﬂkawm, (S115)
Pl () = wzﬁﬁ%onfo 672:&';/2 //D eikaro—iky B2 ik RdRdry,  (S116)

where the integration domain is D = {rg,R : |r —ro| < R < |r +r9|;70 > a}

(figure [SH)).

We define a new coordinate system (£1,&2) as a rotation of (rg, R), such that

%(51 +&2), (S117)
R=—(-61+6), (S118)
— R? = 26,&,, (S119)
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Equations (S113]) - (S116)) can be written as

Pl (ria) = =47 ﬁngo e;kbf / /D i (e 552k 52 4y =S1582) e e
(S121)
(S122)

Pis_(ria) = _Wzﬂj(%op;o e;kl:z:f // R %l“;gz)d&dﬁza
(S123)

Py (rib) _ _w%ﬁﬁgopg‘o e—zill;:;m // 51+52 ey 162 4 g *5\1/;52)d§1d£2.
(S124)

Since the leading order contribution comes from the region near the line

segment rg + R = r between ro = a and rq

= r, we approximate domain D in

the (&,&;) coordinate system as D' = {&;,& : &1 < 7/v/2; € > r/+/2}, which
introduces an error proportional to 1/r which rapidly becomes negligible as r

increases. Integrals (S121) - (S124)) can then be evaluated by integrating over

&, first then &. Integrating over & leads to

) ,
w3} BP0 Py ekar/?

Pis(rla) = Ack 2kyr
T T
« lim ¢ : (B YDE e, (3125)
L—oo ,,,/\/5 lk (7 _ ﬁ)
: w3 BPao Py e*er/?
Py (i) = == A 2kar
Lo k(2-d5 | k2t \
x lim ¢ . L VIS e, (S126)
L—oco ’I‘/\/§ lk (7 _ ﬁ)
s WZ_IBP OP* elkar/Q
Pis-(rla) = - Acag S
Lo gika(2-J5) % _ omha(F-J9) %5 4,
x lim € c - (kD2 e, (5127)
L—o0 r/V2 1k (7 _ ﬁ)
N w%ﬁPaOP* e—lk:br/2
P (1) = - Ack . 2k, r
a
L ik(H-2)2%  —ik(H-2)Z% .
x lim C Tt T L AN, (s128)
L=oo Jr/v2 lkb(ﬁ - 72)
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Let & /r —1/4/2 = 1, then dé, = rdn and equations (S125) -

) .
w3 BPao Py ekar/?

Pl (ri,) = —
IS+( Z) AC(Q) 2]€b7’
L/r ikan—= —ikanTz
. e V2 —e V2 ika k. /3 _r_
. nggo ikqn A bfxrwﬁ)”“%
0 a
2 ikyr/2
Pl (ri.) = Wi fPaoPyo ! o7/
ST Ack 2k,r
L/r ikvn—= —ikynZ=
. (& V2 —e V2o ko A/24 kb r
X Lhm = el “erﬂ)(”Hﬁ)rdn,
—oo Jo 1RpT)
2 H .
Plo_ (i) = - =00l 72
I5=417 Ack 2kyr
L/r ikan—= —ikan—T=
. e V2 — e V2 kg
. nggo ikqn AR Td??v
0 a
2 * —ikyr/2
P (ri ) = _wfﬁPaonO e~ ikor/
— z) —
I Ack 2k,r
Ljr —ikyns  ikyn—s
. e vz —e f i(kq
x lim . V2= ) rdn
L—oo Jg —ikyn

which can be written as

Do) — wi 8PPy e*+T Lyr
IS+(T1&) - AC% 2k kb L~>oo
Pl — w2 BPaoPyo eF+7 L/T
SH(”b) - Acg 2k, kp L—>oo
: w2 BP,o Py el L/r
/ . _ —_ a b0
Frs(ria) = A2 ks 0%

N W2 BP, P elk-T Lim e
Ply_ () = - Ob%kwgal

Ac?
Let v2rn = (, then equatlons -

9 .
B w.t,.ﬂPaOPbO etk+r

1\fk+r77 _ el\fkbrn

- dn,
1
1fk+rn _ elfk rn

dn,
in
lfk rn _e—lfkbrn

. dn,
1
1\[k,7‘7} _ elfka'rn

- dn.
—in

) become

l}{)+< lkbc
——d
2k, ky, L—>oo/ G

dC,

dg.

PI/S+ (Tla) == Ac2
0
. w2 BP OPbO 61k+r 1k+(
P (o) = == 3 2kmﬁm/
P/ < o WEBPaOPb* elk_T lk < —lkde
IS_(TIG) - AC(% 2k kb L—>oo C’
0 W%BPaOPbO e
P (1) = - A 2k%Law/
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(S131)
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(S133)

(S134)

(S135)

(S136)

(S137)
(S138)
(S139)

(S140)



The limits in equations (S137)) - (S140|) can be determined analytically with
the cosine integral Ci(z) [13], as

L gikyC _ giknC

L
L L oo oo .
Lo 1—cosky( Lo 1 —coskyC / sink_( / sin ky
=1 lim ——d( —1i lim —d(+ d¢ — d
L—oo Jo ¢ ¢ L—=oo Jo ¢ ¢ 0 ¢ ¢ 0 ¢ ‘
= iLlim [v +log(k+ L) — Ci(kyL)] — iLlim [v + log(kyL) — Ci(kpL)] + 7/2 — w/2
— 00 — 00
— ilog(k+ /ky). (S141)
L ik ¢ _ LikaC
lim W_iedc
L—oo Jg IC
L L 0o .k 5o =
. 1—cosky( . 1 —cosk.(C / sink_( / sin ko C
=1i lim ———d¢ —1i lim —d(+ da¢ — d¢
L=oo Jo ¢ L—=oo Jo ¢ 0 ¢ 0 ¢
= iLlim [v + log(k4+ L) — Ci(kyL)] — iLlim [v +log(koL) — Ci(ko L)) +7/2 — /2
—00 —00
— ilog(ky /ka), (s142)
L ik ¢ _ ,—ikyC
lim [ % dc
L—oo Jg IC
L L 0o 0o -
. 1—cosk_( . 1 — coskpC / sink_( / sin kp(
=i lim ———d( —1i lim —d( + d¢ + d¢
L=oo Jo ¢ L=oo Jo ¢ 0 ¢ 0 ¢
= iLlim [v 4+ log(k_L) — Ci(k_L)] — iLlirn [v + log(ky L) — Ci(kpL)] + /2 4+ /2
—00 —0o0
=ilog(k_/ky) + m, (5143)
L ika¢ _ Lik_C
) e e
), T %
L L o 0o
o 1 — cosk,( - 1—rcosk_¢ / sin kq( / sink_(
=i lim ———d( —1i lim —2d( + d¢ — d¢
L—oo Jo ¢ L=oo Jo ¢ 0 ¢ 0 ¢
= iLlim [v + log(k,L) — Ci(k,L)] — iLlim [v+log(k_L) — Ci(k_L)| + 7/2 — /2
— 00 — 00
= —ilog(k_/ka), (S144)

where v is the Euler-Mascheroni constant [13].
We then obtain the second order nonlinear fields in the forward directions
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due to interaction between a plane wave and a spherical wave, as

PI/S+(Tia) _ wiﬂfcc%)Pbo ;;i*};b :ilog (2)] , (S145)
Py (riy) = _wif ﬁgp"o ;;;b {i log (’Z*ﬂ , (S146)
Pls_(rig) = _w25ﬁgopz§‘o 261;1’% 1 log <Izb> + w] : (S147)
Pélf(rib) = —wZBﬁé)Pb*o 26;:11;&; -—ilog (lza)] . (S148)

As seen in equations - , the IS and SI field magnitudes are constant
with range. Unlike the interaction of collinear plane waves where growth is found
along the propagation path, collinearity between planar and spherical wavefronts
within an equivalent Fresnel area about the forward direction, together with
spreading of the spherical wave, balances out second-order wave growth. For
Pl_, there is an additional contribution from a stationary phase point at range
rky/kq in the forward direction. To see this, we rewrite equation for
Ply_ as

2 w2 BPyo P eikar/2 : forward
Pl (ri,) = — =407 b0 / / ik—reig ™™ (ro.B) g R S149
1S— (riz) Ac% eyt 5 € 7o, ( )
where
. ko2 —R?2 k R
PR (g, R) = T — D0 (8150)

Tk 272 kE_r 1

The stationary phase point can be found by letting (9/0rq)pidrvard = 0 and
(0/OR)ptevard = ) which gives (ro, R) = (rky/ka,7k—/k4). Applying a two-
dimensional stationary phase approximation [16] to equation (S149) for Pfg_
leads to

2 *  Lik_r

P stationary phaSC(Ti ) o 7w—ﬂPaOPb0 € T
o) =

A2 Shaky

o (s151)

which corresponds to the 7 term contribution of the full solution for P/g_ in
equation . The stationary phase points for Pjg,, P, and Pg_ can be
found in the same way but they are outside of the domain D, i.e. they do not
exist in physical domain. The leading order contributions to Py, , P + and
Pg;_ come from an equivalent Fresnel width along the forward path between
the object and the receiver, as found in equations (S145)), (S146) and (S148).
Analytic solutions ((S145)) - are verified by direct numerical integration
of equations - (S112), as shown in figure [S4 We truncate the numerical
integration at radius romax. It can be seen that the numerical results agree very
well with the analytic solutions as long as the integrations are truncated beyond
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the receiver radius 7. It can also be seen the integral for P/q_ has a significant
contribution near 0.67, which corresponds to the stationary phase point at ro =
rky/kq. The physical parameters are w, /27 = 500 kHz, wy, /27 = 300 kHz, a = 1
mm and 7 = 1 m.

6
1 6
510 5 X10
4 2
& a
< ©15
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32 R
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numerical integration| numerical integration|
- - - analytic solution - - - analytic solution
0 0
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 12
/r ro
Omax Omax
(a) IS sum frequency (b) SI sum frequency
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2 x 10 3 x 10
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__ 15 —~
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S | S— 215
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P !
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0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
r_ I ro I
Omax Omax
(c) IS difference frequency (d) SI difference frequency

Figure S4: Verification of analytic solutions (S145) - (S148)) with direct numer-
ical integration of equations (S109) - (S112)). Excellent agreements are found
as long as the integrations are truncated at a range romax that is larger than
receiver range r. The physical parameters are w,/2m = 500 kHz, wy,/27 = 300
kHz, a =1 mm and r = 1 m.

If the scattered waves are not spherically symmetric the solutions in (S145)|)
- (S148) for sufficiently large range become

Pla (i) ~ wiﬂAPCagono ;kk+kb ilog (le ﬂ Sp(ia), (S152)
Py (riy) ~ _wih ﬁngo ;kab i log (IZZ)} Suis), (S153)
Pl () ~ _wzﬁﬁgopfo 26':;];) [1 log (lzb ) + w] Si(ia), (S154)
Pl (riy) ~ _w2ﬁﬁ§Pg@ ;kkkb [ ilog (’Z)] Sulin). ($155)

which are scaled by the corresponding far field scatter functions S, and S, of
the scattered waves in the respective forward directions i i, and i,.
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The second order field components Pis+ and Psi+ due to IS and SI interac-
tions in the forward directions can then be approximated by equations (S152)) -
(S155)) for large range because P/, and Pf. all fall off by r—1.

7.2 Backscatter direction

Now consider the case when the receiver at range r is in the backscatter direction
—i, or —i;, of the incident waves for plane wave and spherical wave interaction.
We define another spherical coordinate system (rg, 0y, ¢g) so that the zenith
direction coincides with —i, or —i,. Equations (79) and (80) become

A Pa P lkb’r'o lk+R
Pl (—riq) = == -5 g 2 / / / —ikarocos00 € C 12 g0 drodfodey,
0

k‘bTo 4R
(S156)
" Pa P 1k ro pik+ R
PS/I+(—T'ib) UJ ﬁACO b0 /// —ikyro cos B © k o 64 7 7"0 Sin90drod90dq’>0,
0
(S157)
2 PP e—ikoro pik—R
Ply (—ri,) = — w2p ACO b0 / / / ~ikaro cos o & e 647TR 72 sin Oy drodfodeo,
0
(S158)
o Pa P lk aTo plk_ R
Pl (—rip) = _W2B ACO b0 / / / ikyro cos 6o © . 64 Rro sin Bodrodfodey.
0
(S159)

In the (7o, 0o, ¢o) coordinate system, R = \/r2 + 12 — 2rrg cos O, so ro cos 90 =
(r2 +r3 — R%)/(2r), rosinfydfy = RAR/r, and the integrals of (S156) -

become

. 23P P —ikqr/2 . e
P{S+(7Tia) _ 701_& a0Lb0 € //D €1k+r¢}’s+k(r0,R)deTO, (8160)

Ac? 2kpr
Py, (—rig) = ~ =5 ﬁgp”o 6211::;/2 / /D R o B g Rdry  (S161)
Pl (—ri,) = —wzﬁﬁg% e;;z:ﬂ / /D kreid™ (0. R qRdry,  (S162)
Pl (—riy) = _wﬁﬁﬁ%oPio e;k]::f //D ik @81 (r0.R) f Rl (S163)

where the integration domain is D = {rg,R : |r — ro| < R < |r +19|;70 > a}
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(figure [SH)), and
kirg — R? kv o R

back

R) = — — = 4 = S164
s (ro, ) ky 2r2 + ki r + r’ ( )

k, T ky 2 —R?> R

back a 0 b o

R —_—— = — — S165
@siy (ro, R) = P + - ( )

ko, r2 —R?> k R
P18 (ro, R) = — 7S S RA - (S166)

k_ 2r2 k_r T

ke To ky, r% —-R?> R
—— 4+ — —. S167
k_r + k_  2r2 + r ( )

P8 (ro, R) =

The stationary points in pp3*, pgack, phack ‘and Bick are
(rkp/ka; =7k [ka) for pask,
ka/ky, —rky /K for (pRack
(TO,R) _ (7“ / by —T +/ b) or (p[S)I+k7 (8168)
(—rky/kq, —rk_/kq) for prg°
(=rka/kp,rk_/kp) for i<,

none of which are inside domain D. Unlike the case in the forward direction, the
phases <plsaik, Lpg?frk, Lp}’sai , and gobaCk also vary along the path between the object
and the receiver in the backscatter direction. The leading order contribution to
the integrals in equations - then comes from the all finite corners
in domain D for k_r > 1 [17]. As shown in figure there are three corners:
(1) (ro,R) = (a,7 4+ a), (2) (ro,R) = (a,r — a), and (3) (r9,R) = (r,0). As
an example, when Psy, is a spherical wave, corner contributions to the integral

(S162)) can be determined via

/ / elh="9E dRdrg
D

2 cot aek-TerE

~
~

a back 9
corners 1,2,3 kQJ“Q[(B%S_ sfB+ %S‘ sin 3)2 — (cot a)2(— a?s_ sin 8 + %S‘ cos 3)2]
(8169)
where the variables being summed are «, f3, cp}[’gfk, ]IOS"J‘Ek /0rg and 8g0baCk /OR,

whose values are listed in Table [S1|for each corner. As r — oo, dpre /dre and
@back JOR behave as r ! as seen in Table|S1} so the integral @ approaches
conbtant magnitude for large r. The backscatter magnitude Pfg_ (—ri,) in equa-
tion then falls off by ! as r — oo. Results for Py, , P&, and P{_ can
be obtained in a similar manner using the formulas in Ref. [I7]. When including
PlL, and Pgry that also fall off by 7~!, the second order field components due to
IS and SI interactions in the backscatter direction have an overall range depen-
dence of =1, which become insignificant for large range because the dominant
component Psgy due to SS interaction has log(r)/r range dependence.
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Figure S5: Integration domain D (blue shaded) in equations -
and - for the IS and SI interactions. For a receiver in the for-
ward direction, the dominant contribution comes from the region near the line
segment between the object to the receiver (corresponding to the red segment).
The difference between domain D and D’ (enclosed by the solid boundary)
become negligible as » — oo. For a receiver in the backscatter direction, the
dominant contribution comes from the three corners, which can be determined
via equation and Table [S1{for Pls_(—ri,).

a 5 L (0/0r0)rg™  (9/0R)prg
corner 1 | 3r/8 1lr/8 Fe 2041 —Rea R Faria g1
corner 2 | 3m/8 137/8 e —2ma g7 Rea R Raroag 1
corner 3 | w/4 0 —Fth — B 1

Table S1: Quantities to determine corner contributions of P/y_(rg) in the
backscatter direction.
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8 More on space-time isolation of sum and dif-
ference frequency field components containing
object information (Appendix E)

For the collinear case, the II overlap region is an infinite slab moving in the
propagating direction of the primary incident waves in 3-D; for the perpendicular
case, it is the intersection of two slabs and it moves diagonally. These II overlap
regions (grey) are projected on a 2-D plane in figure A2 of the main text. The
SS overlap region is a 3-D spherical shell that appears as a 2-D ring (blue) in
the 2-D plane in figure 4 of the main text. IS or SI overlap region is a spherical
cap moving in the direction of the incident wave in 3-D, which is shown as a
circular segment in green in figure A2 of the main text.
The following window function ws (¢) is used in the computation:

%—isin(i—jt), 0<t<t
1, th<t<T—t
wy (t) = Tt 1 . [2m(T—0) Tt e (S170)
t1 27 S t1 ’ 1 >
0, otherwise,

where T = 207 /w_ is the duration of the window, which contains 10 difference
frequency cycles, and t; = 4n/w_ is the duration of the transition regions,
which contain 2 difference frequency cycles.

For the interaction of waves of compact support, time domain Green theo-
rem solutions (68)-(70) are numerically evaluated for piLab*, p/ss,ab* and plg, -
The integrations are over finite volumes in space defined by the compact sup-
port of wyy gp+, Wss ap* and wig 4+ of equations (72)-(74), respectively. These
volumes are functions of time. For example, the volume corresponding to the SS
interaction is defined by wy (t — R/co — ro/co). It is empty for t < rr/co, a line
segment connecting the origin and the receiver for t = rr/cg, a prolate spheroid
for rp/co <t < rr/co + T and a prolate spheroidal shell for ¢ > rg/cy. The
total fields prr qp+, Pssap* and pig qp+are obtained by including pi’lyab*, pgs,ab*
and pig,,~ from equation (61) with appropriate products of the primary fields.

Frequency domain Green theorem solutions (77)-(79) are used in the har-
monic wave approximations. For the II, SS and forward direction IS interactions,
we can either integrate the infinite space where the primary fields exist, or in-
tegrate over a finite space defined by the compact support of wyy g4+, wWgs ap=
and wig 45+ at a time instance ¢ between t = rp/co and t = rr/co + T. The
time ¢ = rgr/co + T/2 was used in our computation, but it is found that the
results are insensitive to the choice of ¢ as long as the window duration T is
sufficiently long and t is at the center of the constant region within the window
wy(t — rr/co). For the backscatter direction IS interaction if the incident and
scattered waves never overlap at the receiver, pig 4+ is generated by the IS in-
teraction that took place earlier between ¢ = 0 and ¢ = T when the incident
and scattered waves overlapped near the object. We have to integrate over the
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finite space defined by the compact support of wig 4+ at time instance ¢ between
t=rg/co and t = rg/co+ T in the harmonic wave approximation. When using
equation for this case, we only sum over the contributions from corners
1 and 2. The total fields Prj—, Pss— and Pig_ are obtained by including P{]_,
PYs_ and P[§_ from equation (61) with appropriate products of the primary
fields.

From the sensing perspective, the prr is undesirable because it contains no
information about the object and it can mask out other field components. If
the receiver is placed near the backscatter directions, as shown in figure Al of
the main text, it is possible to separate the II component. There is, however,
one more constraint that requires attention. Ideally, the time interval between
t =rg/co and t = rg/co+T is arrival time for pss, prs and pga, which is also the
available window for these field components. For a very long window or at very
close range, during the early part of this measuring window, the receiver may
still be inside the IT overlap region. If this is the case, the available measuring
window is reduced to between t = —rg/co + T and t = rg/co + T, with a
duration AT = 2rg/co. To measure steady state response at the difference or
sum frequency, AT should contain at least a few difference or sum frequency
cycles, which imposes a lower limit on the normalized receiver range kirg.
For example if N = 10 difference or sum frequency cycles are desired, then
AT > 27N/wy or kyrg > N

9 Varying Beta in Figures 3-8

Results in figures 3-8 are calculated using § = 3.6, which is a typical value
for water. Special attention is needed to properly scale the results to different
values of 8. As seen in the decomposition in equation (60), p5 is linearly pro-
portional to 3 (i.e. depends on the nonlinear property of the medium), while
ph is independent of 5. The portion of the second order incident field p} and its
associated scattered field can be scaled by 5. The portion of the second order
incident field p§ and its associated scattered field, as well as the effects from the
body-wave interactions (i.e. quadratic terms in the second order boundary con-
ditions (33) and (36) and the quadratic term in the second order wave-exciting
force (39) should not be scaled. Following this scaling principle, results for air
with # = 1.2 and for solid earth with 5 = 1000 can be obtained. Results in
air corresponding to figure 3b are shown in figure [S6] and results in solid earth
corresponding to figure 6¢ are shown in [S7]
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Figure S6: Same as figure 3b in the main text except that the nonlinear param-
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Figure S7: Same as figure 6¢ in the main text except that the nonlinear param-

eter is 8 = 1000.

10 Noise

10.1 In air

In the air, the 1/3 octave band noise spectrum given in Ref.[I8] is shown in
figure[S8 At 400 Hz, the spectral level is about 8 dB re 20 yPa in Hermit Basin,
Grand Canyon National Park and about 40 dB re 20 uPa in quiet residential
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environments. This is a 93 Hz frequency band between 356 Hz and 449 Hz. If
we assume the spectral density is flat within this band, we can estimate the SPL
for a 40 Hz frequency band centered at 400 Hz to be 4 dB re 20 pPa in Hermit
Basin and 36 dB re 20 pyPa in quiet residential areas.

60 ———r

= = =Hermit Basin, Grand Canyon NP
Quiet residental environment

al
(=]
T

D
o
T

N
o
T

1/3-octave band SPL (dB re 20 uPa)
w
o

[y
o
T

10 107 10° 10
1/3-octave band center frequency (Hz)

Figure S8: Ambient noise spectrum in air, extracted from figure 3 in Ref.[18].

10.2 In water

Figure [S9] shows the nominal high and low ambient noise in the ocean. The
values are extracted from figure 2 in Ref.[I8§].

At 10 kHz, the spectral density level is about 27 dB re 1 pPa?/Hz for the
nominal low noise condition according to figure [S9 The noise level for a 1 kHz
band centered at 10 kHz is estimated to be 57 dB re 1 uPa with the following
formula

9512
101log,, (1027/10 x 108 x /
1

12df> ~ 57 dB re 1 uPa. (S171)
0512

Medical ultrasound imaging experiments are usually conducted in water
tanks. But there are very few noise spectral measurements available for wa-
ter tanks near 10 kHz. One example is shown in Ref.[I9], where the noise floor
for the frequency band between 1 kHz and 50 kHz was measured to be 86 dB
re 1 puPa. According to figure [S9 ocean noise in the same frequency band is
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Figure S9: Ambient noise spectral density in the ocean [18].

between 77 dB (nominal low) and 104 dB re 1xPa (nominal high). The noise
level in Ref.[19] is higher than this low level ocean noise, which may be due to
contamination by other mechanical or urban sources in tank or low sensitivity
hydrophones. We use 57 dB re 1 uPa as an estimation of the noise level in the
ocean as well as in the water tank.

At 100 kHz, thermal noise due to random motion of water molecules becomes
dominant when the environmental noise is low, as shown in the lower right corner
of figure [S9] The power spectral density for the thermal noise increases as 6
dB/octave [20]. At 100 kHz, the spectral density level for thermal noise is about
25 dB re 1 pPa?/Hz. For a 10 kHz band centered at 100 kHz, the thermal noise
SPL is estimated to be 65 dB re 1 yPa with the following formula

1025/10 105125
10log; (10 X / f%if) ~ 65 dB re 1 pPa. (S172)
10 95125

10.3 In solid earth

Figure shows the ambient seismic noise spectral densities from Ref.[21],
which are referred to as the New High Noise Model (NHNM) and New Low Noise
Model (NLNM). The noise in terms of surface velocity for a 1 Hz frequency band
between 9 Hz and 10 Hz is found to be between 7 x 107! m/s and 4 x 1077
m/s. With the plane wave impedance relation and assuming p = 3000 kg/m3
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and ¢g = 3000 m/s, we estimate the seismic ambient noise in pressure (normal
stress) to be between 0.0006 Pa and 4 Pa, or equivalently between 56 dB and

132 dB re 1 p Pa.
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Figure S10: Ambient seismic noise spectral density. The New High Noise Model
(NHNM) and New Low Noise Model (NLNM) are given in terms of surface

velocity square per Hz.

11 Supporting Examples for §5

A number of examples describing applications discussed in §5 of the main text

are provided.
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Figure S13: Same as figure 5 except pgorr is also shown.
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Figure S14: Same as figure 7 except pgary is also shown. pgory is the same as for
the pressure release case but multiplied by a(w_) of equation B21.

42



b
107 ) I “__‘--0
_o'__drr,‘a‘ __9_—0
5 @" o ’x_\_ﬁ_—:i_:j—r
10 _-9c7 P e
-~ 0T TY
‘- - #+
w 7 g% [ -
o 10 1 ot
R " 7
o 9 A
10 5 oss -R2
,* <-ISand Sl -+R2ll
A1 & A-D2 -o-Total
—¢=1 p
¢ 10 . D2l -
10t 10° 10? 10° 10"
wlw, w/w
- n
Figure S15: Same as figure 8 except pgorr is also shown.
o Cebn;er fre?uencyl(élez) 5 Radius (mm)
10°/ (a)k r.=41.9, k a=0.0042 10 107 10°
@k rg=41.9, k a=0. » 3/ (b)k r,=41.9, k r.=4188.8, !
106 e 107 -'R 0'R o
x-—"‘""““»;__‘_o,,‘o | - !
~ 107~ ~=® | |
w PR L !
S 108 —o="£"°— ‘
=, g==8
a 1079 Y e e O L
,
1010 o
-11 . "
107, 02 04 06 08 10t
koa
Receiver range (m) Difference frequency (kHz)
10° 10t 102 10° L 10 102 10°
(c)k a=0.0042, k_a=0.42 107 (d)k,r,=4188.8, k ja=0.42
10° 0 102
«
T 10.3 X_n
P17 £10* e
S N D ~ 107 o - © o ess
100 Al TtalTwe. N 106 *_,:‘g’f‘%‘ﬂ oIS and sl
e T~ O -7 .o~ ,—g‘,
f ~ea < { 10 o .- +S2I1
10711 Sa 108 L4 T a- oTotal
T~a 107 -~ i «1S and Sl (forward)
103 104 10° 108 107 102 103 10*
korR k_rR

Figure S16: Same as figure 3 except psory is also shown. A(Aiditionally, P1s + pst
is shown for a receiver in the forward direction at rg = rgi.,.
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Figure S17: Same as figure 4 except psory is also shown. Agiditionally, P1s + pst
is shown for a receiver in the forward direction at rg = rgi,.
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Figure S18: Same as figure 5 except psorr is also shown. Additionally, pis + psi
is shown for a receiver in the forward direction at rg = rgi,.
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Figure S19: Same as figure 7 except psarr is also shown. Additionally, pis + psi
is shown for a receiver in the forward direction at rg = rgi..
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Figure 520: Same as figure 8 except psorr is also shown. Additionally, pis + psi
is shown for a receiver in the forward direction at rg = rgi,.
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Figure S21: Same as figure 10 but with pig + ps1 in the forward direction also

included for rg = rgi,

46




12 Scattered field from a sphere

The spherical wave expansion is used to calculate the scattered field from a
sphere of radius a. In a spherical coordinate system (r, 0, ¢), the first or second
order scattered field pressure and normal velocity can be written as

0o l
Ps(r,0,0) =Y > amhi(kr)Y™ (0, 6), (S173)
=0 m=—1
n-Vs(r,0,¢) = - > Z am (k) Y™ (0, 6), (S174)
pOCOz 0 m=—1

where ay,, are the coefficients determined by the boundary condition, h; is spher-
ical Hankel function of the first kind of order I, hj is the derivative of h; with
respect to its argument, Y;™ is the Laplace spherical harmonics of degree | and
order m, k = w/cy is the wavenumber, py and ¢y are the ambient density and
sound speed.

When the boundary condition is given in terms of pressure as Ps(a, 0, ¢) =
Ps(6,¢), it is a Dirichlet boundary condition, which includes first and second
order pressure release conditions (20) and (21). We expand the known Pgs (6, ¢)
in spherical harmonics as

¢) =Y am¥"(0,0), (S175)
l,m

where
o — / do / Ps(6, 6)Y7™ (6, &) sin 66, (S176)
2m ™

The coefficients a;,,, for Pg can then be determined by equating (S175) with
(S173)) evaluated at r = a, as

Clm

Um = 4 (ka)”

(S177)

When the boundary condition is given in terms of normal velocity as n -
Vs(a,0,¢) = Vsn(0,9), it is a Neumann boundary condition, which includes
first and second order rigid boundary conditions (21), (22), (37) and (52). We
expand the known function Vs, (6, ¢) in spherical harmonics as

Van(0,0) = > dim Y™ (0, 0) = hi(ka)Y;™ (0, ¢), (S178)

l,m

ipoco

l,m

where

dim = /2 do / Van (0, 0)Y,™* (0, ¢) sin 0d0. (S179)
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The coefficients a;,,, for Ps can then be determined by equating equation (S178|)

with (S174]) evaluated at r = a, as
ipocodim

=, S180

m = " ht (ka) (5180)

The expansion series of equation (S173)) is truncated at l,,,x when evaluating

the scattered fields numerically. An empirical formula I, = ka + 4(ka)1/ 342

[22] is found to give satisfactory convergence for wide range of ka from ka < 1

to ka > 1 in our applications.
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