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Abstract: An inter-system differencing model between two Global Navigation Satellite Systems
(GNSS) enables only one reference satellite for all observations. If the associated differential
inter-system biases (DISBs) are priori known, double-differenced (DD) ambiguities between
overlapping frequencies from different GNSS constellations can also be fixed to integers. This can
provide more redundancies for the observation model, and thus will be beneficial to ambiguity
resolution (AR) and real-time kinematic (RTK) positioning. However, for Global Positioning System
(GPS) and the regional BeiDou Navigation Satellite System (BDS-2), there are no overlapping
frequencies. Tight combination of GPS and BDS needs to process not only the DISBs but also
the single-difference ambiguity of the reference satellite, which is caused by the influence of different
frequencies. In this paper, we propose a tightly combined dual-frequency GPS and BDS RTK
positioning model for medium baselines with real-time estimation of DISBs. The stability of the
pseudorange and phase DISBs is analyzed firstly using several baselines with the same or different
receiver types. The dual-frequency ionosphere-free model with parameterization of GPS-BDS DISBs
is proposed, where the single-difference ambiguity is estimated jointly with the phase DISB parameter
from epoch to epoch. The performance of combined GPS and BDS RTK positioning for medium
baselines is evaluated with simulated obstructed environments. Experimental results show that with
the inter-system differencing model, the accuracy and reliability of RTK positioning can be effectively
improved, especially for the obstructed environments with a small number of satellites available.

Keywords: GPS and BDS; inter-system differencing; differential inter-system biases (DISBs); real-time
kinematic (RTK) positioning; medium baselines

1. Introduction

With the existing Global Navigation Satellite Systems (GNSS) being modernized or new being ones
developed (i.e., GPS, GLONASS, BDS, Galileo), many more satellites and frequencies are available for
precise positioning. Combined use of these satellite constellations can enhance the geometric strength
of the GNSS positioning model, and thus has been proven beneficial for improving GNSS precise
positioning performance in terms of accuracy, reliability, availability [1–3], and initialization time [4,5],
especially for applications in obstructed environments [6–8]. As a commonly used precise positioning
technology, real-time kinematic (RTK) positioning based on the short baselines (less than 20 km) or
network reference stations has proven its efficiency and reliability during the past few years. However,
medium-baseline (20–100 km) RTK positioning still has a broad range of applications, such as providing
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precise positioning information in a sparse reference network or in marine areas [9]. With multi-GNSS,
the positioning performance of medium-baseline RTK has the potential to be further improved.

When using the double differenced (DD) observations for RTK relative positioning, mainly two
models can be used. One is the classical loose combination in which each system uses its own reference
satellite with no double differences being formed across systems. This model will be called classical
differencing in this paper. The other one is the tight combination in which two systems use the common
reference satellite and thus utilizes double differencing across different systems [10]. This model will
be called inter-system differencing in this paper. Using the inter-system differencing model can help
to maximize the redundancy if the inter-system biases (ISBs) in range and phase observations can
be handled properly [11]. This is essential for positioning in severe observation environments, such
as urban areas where signals are easily blocked by high buildings or trees [8,12]. In this case, the
number of observed satellites of each single system can be very low. A typical situation is that when
only one satellite is visible for a system, it cannot be used in the classical differencing since no double
differencing can be formed. However, in the inter-system differencing model, it can still be used when
a priori ISB information is available, thus the positioning model can be strengthened.

In relative positioning, only the differenced inter-system biases (DISBs) need to be considered.
For the code DISB, it can be easily parameterized or corrected with a priori calibration due to the
simplicity of the pseudorange equation. For the phase DISBs, if the a priori phase ISB information is
precisely known, the inter-system DD ambiguities can also be fixed to integers for the overlapping
frequencies between two systems (e.g., GPS L1 and Galileo E1) [11,13,14]. Odijk and Teunissen [13,15]
found that the code and phase DISBs between two systems could be cancelled out for baselines with
receiver pairs of the same manufacturer. Paziewski and Wielgosz [14] also reached the same conclusion.
For receivers of different manufacturers, although DISBs cannot be eliminated, their stability in time
has been proven, and thus can be calibrated in advance. Using these characteristics, the obvious
improvement of ambiguity resolution (AR) and positioning with calibrated DISBs for short and long
baseline RTK have been verified, the details of which can be seen in [11,13–16]. For the real-time
estimation of DISBs and application for AR, Tian et al. [12] proposed a particle filter-based method to
estimate GPS L1-Galileo E1 phase DISBs based on the fact that the accuracy of a given DISB value can
be qualified by the related fixing ratio.

From the above analysis, the current research mainly concerns dealing with the phase DISBs of
overlapping frequencies between different GNSS constellations. However, for GPS and the current
operational BDS-2, there are no overlapping frequencies. For the inter-system differencing with
different frequencies, due to the different wavelengths, the inter-system DD ambiguities still cannot be
fixed to integers even if the DISBs are precisely known. Li et al. [17] proposed using triple-frequency
carrier phase linear combinations to limit the effect of different frequencies on the ambiguity resolution
in inter-system differencing. However, the influence of different frequencies still cannot be eliminated
completely, and the model can only be applied to the triple- or quad-frequency case. Lou et al. [18]
proposed a GPS and BDS inter-system mix RTK model for short baselines, where the single-difference
(SD) ambiguity of the reference satellite is corrected firstly with pseudorange. They verified that
the inter-system model can improve the single-epoch AR performance with high cut-off elevation.
However, the benefit of inter-system model to the positioning reliability needs to be further developed
since the precision of DISB estimators can be improved with fixed ambiguities. The precise DISB
estimators will become useful information to strengthen the positioning model for the subsequent
epochs. In this paper, the time-variant characteristics of L1-B1 and L2-B2 code and phase DISBs will
be analyzed in detail. Using the stability of the DISBs, an inter-system differencing model between
GPS and BDS for medium-baseline RTK positioning is proposed. The dual-frequency ionosphere-free
model is derived with real-time estimation of the code and phase DISBs. The positioning performance
with the proposed model and its comparison with the classical differencing model will be tested using
two sets of medium baselines.
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The rest of this paper is organized as follows: In Section 2, the models for combined GPS and
BDS observations are introduced, including the classical differencing and the inter-system differencing
models. In Section 3, the stability of L1-B1 and L2-B2 code and phase DISBs in time domain is analyzed
with several zero and ultra-short baselines. In Section 4, the positioning performance for medium
baselines and the comparison between the two models are tested. Some discussions and conclusions
will be given in Sections 5 and 6, respectively.

2. Combined GPS and BDS Observation Model

2.1. Intra-System and Inter-System Observation Model

For GPS and BDS, the time difference between GPST and BDST will be eliminated by
between-receiver difference. The small coordinate difference between GPS and BDS can also be
neglected for medium-baseline relative positioning of centimeter-level accuracy [19]. For medium
baselines, the differential atmospheric delays between receivers need to be considered. The
between-receiver SD observation equations for GPS or BDS can be expressed as

∆φs
j = ∆ρs + ∆dt + λj(∆δj + ∆Ns

j ) + ∆Ts − µj∆Is
1 + ∆εs

j
∆ps

j = ∆ρs + ∆dt + ∆dj + ∆Ts + µj∆Is
1 + ∆es

j
(1)

where, ∆ is the between-receiver SD operator; φ is the carrier observation and p is pseudorange
observation; j is the frequency of GPS or BDS; s is the index of GPS or BDS satellites; ρ is the distance
between satellite and receiver; dt denotes the receiver clock error; λ denotes the wavelength at the
corresponding frequency; δ denotes the hardware phase delay, which also contains the initial phase in
the receiver; N denotes the integer phase ambiguity; T denotes the tropospheric delay, and I denotes
the ionospheric delay; µ is the ionospheric scale factor; d denotes the hardware code delay in the
receiver for GPS or BDS; ε and e are the noise for carrier phase and pseudorange measurements,
respectively.

The atmospheric errors, including the tropospheric delay and ionospheric delay, could not
be ignored for medium baselines. The DD tropospheric delay can be corrected with an empirical
troposphere model, e.g., the GPT2w model [20]. If the baseline is longer than 30 km or has a large
height difference between two stations, a relative zenith troposphere delay (RZTD) parameter can
be estimated as a random-walk process to absorb the residual tropospheric biases [21]. For the
ionospheric delay in dual-frequency data, there are usually two processing models. The first one is
to form the ionosphere-free combination to eliminate the first-order ionospheric delay. In this model,
the wide-lane (WL) ambiguities are usually fixed firstly using the geometry-free and ionosphere-free
Melbourne–Wübbena (MW) combination [22,23]. One can easily choose the subset of WL integer
ambiguities to recover the integer property of narrow-lane (NL) ambiguity in the subsequent step
since the MW combination is implemented for each satellite pair. This is particularly important for
BDS due to the existence of satellite-induced code bias and the systematic multipath effects in GEO
satellites [24,25]. The other model is to parameterize the slant ionospheric delay for each satellite (pair),
which is also called the uncombined model. Theoretically, the uncombined model is more rigorous
than the ionosphere-free model since it has more redundancy. However, it also introduces much more
unknowns and needs more complex operations for DISB parameters in the inter-system differencing
model. In this paper, we adopt the ionosphere-free model due to its simplicity. Based on Equation (1),
the SD ionosphere-free observation equations for GPS can be expressed as

∆φs
IF,G = ∆ρs + ∆dt + λNL,G∆δIF,G + λNL,G∆Ns

IF + ∆Ts + ∆εs
IF

∆ps
IF,G = ∆ρs + ∆dt + ∆dIF,G + ∆Ts + ∆es

IF
(2)
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Similarly, the SD ionosphere-free observation equations for BDS can be expressed as

∆φ
q
IF,C = ∆ρq + ∆dt + λNL,C∆δIF,C + λNL,C∆Nq

IF + ∆Tq + ∆ε
q
IF

∆pq
IF,C = ∆ρq + ∆dt + ∆dIF,C + ∆Tq + ∆eq

IF
(3)

where, the subscript ‘G’ and ‘C’ denote GPS and BDS, respectively. s = 1, · · · , mG is the index of GPS
satellites, where mG denotes the number of GPS satellite; q = 1, · · · , mC is the index of BDS satellites,
where mC denotes the number of BDS satellites; the GPS NL wavelength λNL,G, the ionosphere-free
ambiguity NIF,G, the ionosphere-free hardware phase delay δIF,C and hardware code delay dIF,G are
expressed as 

λNL,G = c
f1,G+ f2,G

Ns
IF =

f1,G
f1,G− f2,G

Ns
1 −

f2,G
f1,G− f2,G

Ns
2

δIF,G =
f1,G

f1,G− f2,G
δ1,G −

f2,G
f1,G− f2,G

δ2,G

dIF,G =
f 2
1,G

f 2
1,G− f 2

2,G
· d1,G −

f 2
2,G

f 2
1,G− f 2

2,G
· d2,G

(4)

where c is the light speed in vacuum; λNL,C, Nq
IF, δIF,C, and dIF,C in the BDS observation equations

can be obtained similarly. Based on the above SD ionosphere-free observation equations, the classical
intra-system DD observations can be formed, where the receiver-dependent biases can be eliminated.
If we fix s = 1G as the reference satellite for GPS, we can obtain

∆φ
1Gs
IF = ∆φs

IF − ∆φ
1G
IF = ∆ρ1Gs + λNL∆N1Gs

IF + ∆T1Gs + ∆ε
1Gs
IF

∆p1Gs
IF = ∆ps

IF − ∆p1G
IF = ∆ρ1Gs + ∆T1Gs + ∆e1Gs

IF
(5)

For BDS, the intra-system DD observation equations with q = 1C as the reference satellite are

∆φ
1Cq
IF = ∆φ

q
IF − ∆φ

1C
IF = ∆ρ1Cq + λNL∆N1Cq

IF + ∆T1Cq + ε
1Cq
IF

∆p1Cq
IF = ∆pq

IF − ∆p1C
IF = ∆ρ1Cq + ∆T1Cq + e1Cq

IF
(6)

The DD inter-system observation equations between GPS and BDS can also be built in a similar
way, but the hardware delays cannot be eliminated. The corresponding models can be expressed as

∆φ
1Gq
IF = ∆φ

q
IF − ∆φ

1G
IF = ∆ρ1Gq + λIF,C∆δIF,GC + (λIF,C∆Nq

IF − λIF,G∆N1G
IF ) + ∆T1Gq + ∆ε

1Gq
IF

∆p1Gq
IF = ∆pq

IF − ∆p1G
IF = ∆ρ1Gq + ∆dIF,GC + ∆T1Gq + ∆e1Gs

IF
(7)

where, the phase DISB ∆δIF,GC and code DISB ∆dIF,GC between GPS and BDS are expressed as{
∆δIF,GC = ∆δIF,C −

λNL,G
λNL,C

∆δIF,G

∆dIF,GC = ∆dIF,C − ∆dIF,G
(8)

From Equation (7) we can see, because λjC
6= λjG

, the DD ambiguities between GPS and BDS
cannot be estimated directly. We can reparameterize the phase equation in Equation (7) as

∆φ
1Gq
IF = ∆ρ1Gq + λIF,C∆δIF,GC + λIF,C∆N1Gq

IF + (λIF,C − λIF,G)∆N1G
IF + ∆T1Gq + ∆ε

1Gq
IF (9)

where ∆N1Gq
IF = ∆Nq

IF − ∆N1G
IF . The mixed observation in Equation (9) is rank-defective, as it is

impossible to simultaneously estimate any two of the differential phase ISB parameter, the inter-system
DD ambiguities, and the SD ambiguity of the GPS reference satellite. Referring to [15], we can further
change the form of the DD ambiguity as follows

N1Gq
IF = (Nq

IF − N1C
IF ) + (N1C

IF − N1G
IF ) = N1Cq

IF − N1G1C
IF (10)
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By Equation (10), we can reparameterize the inter-system DD ambiguities into ambiguities relative
to the BDS reference satellite, plus the ambiguity of the BDS reference satellite with respect to the GPS
reference satellite. This last ambiguity and the SD ambiguity of the GPS reference satellite are then
estimable jointly with the differential phase DISB. Therefore, we can get the full-rank inter-system
observation model between GPS and BDS as

∆φ
1Gq
IF = ∆ρ1Gq + λIF,C∆δIF,GC + λIF,C∆N1Cq

IF + ∆T1Gq + ∆ε
1Gq
IF

∆p1Gq
IF = ∆ρ1Gq + ∆dIF,GC + ∆T1Gq + ∆e1Gs

IF
(11)

where, δIF,GC = δIF,GC + N1G1C
IF + (1− λNL,G

λNL,C
)N1G

IF . In Equation (11), the estimable DD ambiguities

∆N1Cq
IF are still the intra-system ambiguities among BDS satellites. The difference between the

inter-system model and the intra-system is the DISB terms, i.e., ∆δIF,GC and ∆dIF,GC, which are
eliminated in the intra-system model. If the DISB parameters can be assigned with prior information,
we can expect better positioning performance with the inter-system model.

From Equation (11), we can see that the new integrated phase DISB parameter is tightly related
to the GPS reference satellite and BDS reference satellite. Thus, in a real-time estimation process
from epoch to epoch, when the reference satellite of GPS or BDS changes, besides the estimable
DD ambiguities, the integrated phase DISB parameter in the filter also needs to be transformed
correspondingly, so that the phase DISB can be updated continuously. Assuming that no cycle slips
occur between two consecutive epochs t and t + 1, when the reference satellite of GPS changes from
1G to s, the phase DISB parameter can be transformed as follows

∆δIF,GC(t) = ∆δIF,GC + ∆N1G1C
IF + (1− λNL,G

λNL,C
)∆N1G

IF

∆δIF,GC(t + 1) = ∆δIF,GC(t)−
λIF,G
λIF,C

∆N1Gs
IF = ∆δIF,GC + ∆Ns1C

IF + (1− λIF,G
λIF,C

)∆Ns
IF

(12)

Similarly, when the reference satellite of BDS changes from 1C to q, the phase DISB parameter can
be transformed

∆δIF,GC(t) = ∆δIF,GC + ∆N1G1C
IF + (1− λNL,G

λNL,C
)∆N1G

IF

∆δIF,GC(t + 1) = ∆δIF,GC(t) + ∆N1Cq
IF = ∆δIF,GC + ∆N1Gq

IF + (1− λIF,G
λIF,C

)∆N1G
IF

(13)

By Equations (12) and (13), when the pivot satellite of GPS or BDS changes, the phase DISB
estimator can be transformed to be always consistent with the current epoch, so that the continuous
parameter estimation can be carried out.

2.2. Wide-Lane AR

From Equation (4), we know that for both GPS and BDS, the estimable DD ambiguities with the
ionosphere-free combination do not have integer property. In order to recover the integer property of
ambiguities, WL ambiguities are usually resolved firstly using the MW model, e.g., for GPS it reads

∆N1Gs
WL = ∆φ

1Gs
WL −

1
λWL,G

·
f1,G∆p1Gs

1 + f2,G∆p1Gs
2

f1,G + f2,G
(14)

Then with the integer WL ambiguities, the estimable DD NL ambiguities can be derived

∆N1Gs
1 = ∆N1Gs

IF −
f2,G

f1,G − f2,G
∆N1Gs

WL (15)

The DD NL ambiguities of BDS can be derived similarly. Due to the larger noises of pseudorange
measurements, the single-epoch estimators of WL ambiguities with Equation (14) cannot be reliably
fixed to their correct integers. Therefore, the WL ambiguities are usually fixed by rounding their
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average values over some epochs. In real-time processing, an individual filter can be set for the WL
AR, so that the WL ambiguities can be updated flexibly along with the variation of elevations and
the change of the reference satellite. Besides, the precision σ∆NWL of each WL ambiguity can be easily
obtained from the diagonal elements of the corresponding variance-covariance matrix. Denoting the

distance of the float WL ambiguity ∆N̂WL to the nearest integer ∆
^
NWL as b∆NWL =

∣∣∣∣∆N̂WL − ∆
^
NWL

∣∣∣∣,
the widelane ambiguity fixing is conducted by checking both b∆NWL and σ∆NWL . Given the thresholds

bm and σm, one can fix ∆N̂WL to its nearest integer ∆
^
NWL if

b∆NWL < bm, and σ∆NWL < σm (16)

In [26], the two thresholds were recommended to be critically set as bm = 0.2 and σm = 0.1.
These values will also be adopted in this paper.

2.3. Ambiguity Fixing Strategy for NL AR

As we can see from Equations (2), (3) and (15), the estimable DD NL ambiguities only have the
wavelengths of 10.70 cm and 10.83 cm for GPS and BDS, respectively. Such short wavelengths are
easily affected by the residual atmospheric errors, observation noises, and other errors. This is more
difficult for the new-rising satellites, the ambiguities of which usually need longer convergence time
after they first become visible. In the AR search strategy under ILS condition, if some estimated float
ambiguities have large residuals, the validation process (e.g., Ratio test [27]) will reject the ambiguity
fixing due to biases. Actually, for combined GPS and BDS, not all the ambiguities must be fixed in
simultaneously since there are sufficient satellites available. Thus, a partial fixing strategy will be used
in this paper. A simple criterion involving the satellite elevation angle and the continuous tracking
number is employed. If a satellite is under a threshold of the elevation or continuous tracking number,
the NL ambiguity of the satellite will not be fixed and is pending as a float value. In this paper, the
threshold of the elevation to fix ambiguities is set as 20◦. The continuous tracking number depends on
the sampling interval (e.g., 300 for the 1-s sampling interval, 50 for 15-s sampling interval, and 20 for
30-s sampling interval).

Another strategy employed to the NL ambiguity fixing in this paper is the ‘fix and hold’ mode [28].
This strategy takes the concept of feeding information derived from the current epoch forward to
subsequent epochs one step further. At first, float ambiguities are resolved in the usual way but
once the integer solutions are verified by the validation process at a certain epoch with enough high
reliability, the tight constraint to the integer solutions is introduced into the next update of the filter.
A fixed ambiguity is held to an integer value until a cycle-slip occurs or the filter diverged with large
residuals. The biggest advantage of this strategy is that other parameters (e.g., unfixed ambiguities,
DISBs) can be improved with fixed solution, and thus will be beneficial for the subsequent epochs.
Besides, it can also protect the fixed ambiguities from being disturbed by the new-rising satellites of
other errors in the next epochs.

During the data processing in this paper, the least-squares ambiguity decorrelation adjustment
(LAMBDA) method [29] is used for integer ambiguity resolution. In order to ensure the AR reliability,
the solved integer ambiguities at each epoch will be validated with Ratio and ambiguity dilution of
precision (ADOP) [30] with strict thresholds of 3.0 and 0.12 (corresponds to an ambiguity success rate
larger than 99.9%), respectively.

Besides the observation equations, AR model, and fixing strategies above, additional processing
options used in this paper are listed in Table 1.
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Table 1. Additional data processing models and strategies used in this paper.

Options Processing Strategy

Ephemeris GPS and BDS broadcast ephemeris

Signals GPS L1/L2, BDS B1/B2

Elevation cutoff angle 10◦

Troposphere modeling

Corrected using GPT2w model
For the baseline longer than 30 km: RZTD estimated as a random walk
process (Mapping function: GMF [31]; Initial value : 0; Initial variance:
0.1 m × 0.1 m; Spectral density: 10−9 m2/s)

Observation weighting Elevation-dependent weighting [32]
Relative precision of code and phase observations: 100:1

Coordinates of rover station Kinematic: estimated and modeled as a random walk process
Spectral density of coordinates: 102 m2/s

3. Stability Analysis of GPS-BDS DISBs

3.1. Data Collection

Since the ionosphere-free code and phase DISBs are the combination of those on L1-B1 and L2-B2,
we will directly analyze the characteristics of L1-B1 and L2-B2 DISBs. If the L1-B1 and L2-B2 DISBs
are stable, the ionosphere-free DISBs will of course also be stable. Similar to the earlier studies, zero
and ultra-short baselines are used since the atmospheric effects can be ignored. The baselines with the
same or different receiver types were observed on the campus of Curtin University, Australia and the
campus of Southeast University, China. Information of these baselines are shown in Table 2. All the
stations on the campus of Curtin University used the antennas of the same type: ‘Trimble TRM59800’.
The data were collected from DOY 011, 2017 to DOY 016, 2017 with the sampling interval of 30 s.
The baseline ‘SEU1-SEU2’ used antennas with the same type of ‘Harxon-HXCCGX601A’. The data
were collected from UTC 0:00 to 22:00 on DOY 23, 2016 with the sampling interval of 15 s. Of the seven
baselines, the first three use the same receiver types, while the other four use different receiver types.

Table 2. Baselines and the corresponding receiver types in the experiments.

No. Baseline Receiver Type 1 Receiver Type 2 Baseline Length/m Remark

1 CUT0-CUTB Trimble NETR9 Trimble NETR9 4.3 with the same
receiver types2 CUT1-CUAI Septentrio POLARX4 Septentrio POLARXS 8.4

3 CUT3-CUBB Javad TRE_G3TH Javad TRE_G3TH 4.3

4 CUT0-CUT1 Trimble NETR9 Septentrio POLARX4 0
with different
receiver types

5 CUT0-CUBB Trimble NETR9 Javad TRE_G3TH 4.3
6 CUT1-CUBB Septentrio POLARX4 Javad TRE_G3TH 4.3
7 SEU1-SEU2 ComNav-K508 Unicore-UB380 2.9

3.2. Stability Analysis of DISBs

The uncombined DISB estimation model with zero and ultra-short baselines can be easily derived
by simplifying Equation (11). In order to test the variation of DISBs with time, the estimation is carried
out epoch-by-epoch. For the zero and ultra-short baselines with known baseline components, the
intra-system DD ambiguities can be solved reliably ahead of the determination of DISB parameters.
Similar to Equation (11), the estimable phase DISB parameter will absorb not only the DD ambiguity
between the two reference satellites, but also the SD ambiguity of the GPS reference satellite. Thus, the
phase DISB estimators will change as the reference satellite of GPS or BDS changes. For convenience,
we only need to analyze the fractional part of the phase DISBs. The DD ambiguity between the two
reference satellites only affects the integer part. When the BDS reference satellite changes, the fractional
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part of the phase DISB will not be affected. However, the SD ambiguity of the GPS reference satellite
affects both the integer part and fractional part. That is, when the GPS reference satellite changes, the
fractional part of the phase DISB will also change. We set a virtual SD ambiguity ∆Nre f of the GPS
reference satellite to eliminate this influence. Table 3 illustrates the procedures that the GPS pivot
satellite changes from 1G to s, then changes from s to r, where the initial virtual SD ambiguity is set at
0 at the beginning. Then, when the GPS reference satellite changes, it can be transformed accordingly
with the integer DD ambiguity between the two reference satellites from the two consecutive epochs.

With the updated virtual SD ambiguity, the phase DISB estimators ∆δ
GC
j with single epoch can be

transformed to the new phase DISB series ∆δ̃GC
j by absorbing the same SD ambiguity, thus the phase

DISBs with the continuous fractional part can be obtained.

Table 3. The strategy to keep the continuity of the fractional part of phase DISB estimators.

Epoch GPS Reference
Satellite The Virtual SD Ambiguity

Single-Epoch Phase DISB ∆δ
GC
j

and Its Transformed Form ∆δ̃GC
j

t0 1G ∆Nre f (t0) = 0
∆δ

GC
j (t0) = ∆δGC

j + ∆N1G1C
j + (1− λjG

λjC
)∆N1G

jG

∆δ̃GC
j (t0) = ∆δ

GC
j (t0)

t1 s
∆Nre f (t1) = ∆Nre f (t0) + ∆N1Gs

jG
= N1Gs

jG

∆δ
GC
j (t1) = ∆δGC

j + ∆Ns1C
j + (1− λjG

λjC
)∆Ns

jG

∆δ̃GC
j (t1) = ∆δ

GC
j (t1)− (1− λjG

λjC
)∆Nre f (t1)

= ∆δGC
j + ∆Ns1C

j + (1− λjG
λjC

)∆N1G
jG

t2 r
∆Nre f (t2) = ∆Nre f (t1) + ∆Nsr

jG
= ∆N1Gr

jG

∆δ
GC
j (t2) = ∆δGC

j + ∆Nr1C
j + (1− λjG

λjC
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Figures 1 and 3 depict the dual-frequency code and phase DISB time series, respectively, for the
three baselines at Curtin University with the same receiver types. We can see, regardless of the random
terms caused by observation noises, the DISBs estimators are very stable. The amplitudes relative
to the mean value are all within 0.05 cycles, and the standard deviations (stdev) of the phase DISB
estimators for both L1-B1 and L2-B2 are all within 0.008 cycles. The stdev of code DISBs estimators is
much larger than those of the phase due to the pseudorange noise. However, a very stable trend can
still be seen.Remote Sens. 2017, 9, 948  9 of 16 
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Figure 1. L1-B1 and L2-B2 phase differential inter-system bias (DISB) time series for the three baselines
at Curtin University with the same receiver types. The legend is the same for Figures 2–5 below.



Remote Sens. 2017, 9, 948 9 of 16

Remote Sens. 2017, 9, 948  9 of 16 

 

 
Figure 1. L1-B1 and L2-B2 phase differential inter-system bias (DISB) time series for the three baselines 
at Curtin University with the same receiver types. The legend is the same for Figures 2–5 below. 

 
Figure 2. L1-B1 and L2-B2 code DISB time series for the three baselines at Curtin University with the 
same receiver types. 

Figures 3 and 4 depict the dual-frequency code and phase DISB series, respectively, for the three 
baselines at Curtin University with different receiver types. Figure 5 depicts the results for the 
baseline at Southeast University with receiver types of ComNav and Unicore. From these figures, we 
can see the code DISBs still appear generally stable with time. For the phase DISB series, besides the 
random terms, there are also small low-frequency variations (except Septentrio-Javad), even for the 
zero-baseline ‘CUT0-CUT1’ where no multipath effect exists. The standard deviations of the phase 
DISB estimators are obvious larger than those with the same receiver types. These low-frequency 
variations may be caused by the influence of different frequencies, since the inter-system differencing 
suffers not only the inter-system bias but the inter-frequency bias [33,34]. Fortunately, these 
variations are very slow and smooth. The amplitudes of the wave are all within about 0.1 cycle for 
tens of hours to several days. In the real-time estimation of GPS-BDS phase DISB, we can use the 
random walk process with a secure spectrum density (e.g., 20.05 0.05cycle / h× ) to model this slow 
variation. This will also be utilized in the positioning experiments of next section. 

 
Figure 3. L1-B1 and L2-B2 phase DISB time series for the three baselines at Curtin University with 
different receiver types. 

-0.6

-0.5

-0.4

-0.3

 

 

0.1

0.2

0.3

0.4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
-0.2

-0.1

0

0.1

-0.3

-0.2

-0.1

0

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

stdev = 0.008 cyc

Trimble receivers 0.2 cyc

0.2 cyc

stdev = 0.007 cyc

stdev = 0.007 cyc

Septentrio receivers 

stdev = 0.007 cyc

stdev = 0.007 cyc

Javad receivers 

stdev = 0.006 cyc

single-epoch series mean value

ph
as

e 
D

IS
B

 [
cy

c]

L1
-B

1
L2

-B
2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

3.0 m

3.0 mstdev = 0.339 m

Trimble receivers 

stdev = 0.244 m

stdev = 0.197 m

Septentrio receivers 

stdev = 0.199 m

stdev = 0.328 m

Javad receivers 

stdev = 0.245 cyc

co
de

 D
IS

B
 [

m
]

L1
-B

1
L2

-B
2

-0.3

-0.2

-0.1

0

-0.4

-0.3

-0.2

-0.1

-0.3

-0.2

-0.1

0

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

011 012 013 014 015 016 017
DOY

stdev = 0.010 cyc

Trimble-Javad

stdev = 0.009 cyc

stdev = 0.014 cyc

Trimble-Septentrio

stdev = 0.017 cyc

stdev = 0.007 cyc

Septentrio-Javad

stdev = 0.011 cyc

ph
as

e 
D

IS
B

 [
cy

c]

L1
-B

1
L2

-B
2

Figure 2. L1-B1 and L2-B2 phase DISB time series for the three baselines at Curtin University with
different receiver types.
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Figure 3. L1-B1 and L2-B2 code DISB time series for the three baselines at Curtin University with the
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Figure 4. L1-B1 and L2-B2 code DISB time series for the three baselines at Curtin University with
different receiver types.

Figures 2 and 4 depict the dual-frequency code and phase DISB series, respectively, for the three
baselines at Curtin University with different receiver types. Figure 5 depicts the results for the baseline
at Southeast University with receiver types of ComNav and Unicore. From these figures, we can
see the code DISBs still appear generally stable with time. For the phase DISB series, besides the
random terms, there are also small low-frequency variations (except Septentrio-Javad), even for the
zero-baseline ‘CUT0-CUT1’ where no multipath effect exists. The standard deviations of the phase
DISB estimators are obvious larger than those with the same receiver types. These low-frequency
variations may be caused by the influence of different frequencies, since the inter-system differencing
suffers not only the inter-system bias but the inter-frequency bias [33,34]. Fortunately, these variations
are very slow and smooth. The amplitudes of the wave are all within about 0.1 cycle for tens of hours to
several days. In the real-time estimation of GPS-BDS phase DISB, we can use the random walk process
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with a secure spectrum density (e.g., 0.05× 0.05 cycle2/h) to model this slow variation. This will also
be utilized in the positioning experiments of next section.
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Figure 5. L1-B1 and L2-B2 phase and code DISB time series for the baseline at Southeast University
with receiver types of ComNav and Unicore.

4. Experiments of Medium-Baseline RTK Positioning

In this section, we mainly test the accuracy and reliability of combined GPS and BDS RTK
positioning with the developed inter-system differencing model and classical differencing model.
Two medium baselines CUT0-PERT and TG00-TGT0 were tested. The details of the two baselines can be
seen in Table 4. The data of the baseline CUT0-PERT were downloaded from Multi-GNSS Experiment
and Pilot Project (MGEX). The data of the baseline TG00-TG00 were collected in Tianjin, China.

Table 4. Information of the two medium baselines used in positioning experiments.

Baseline Length/km Duration Sampling Interval Receivers
(Modules) Location

CUT0-PERT 22.4 km 6 days (DOY 001–006, 2017) 30 s Trimble NETR9 Perth, Australia

TG00-TGT0 75.9 km 20 h (UTC 4:00–24:00, DOY 23, 2016) 15 s Trimble BD970 Tianjin, China

The numbers of the visible GPS and BDS satellites for the two baselines with a cut-off elevation of
10◦ are given in Figure 6. We can see with combined GPS and BDS, there are no less than 14 satellites
available at all times for both the two baselines. In order to test the positioning performance with
different satellite visibility, both of the positioning experiments below are carried out with 7–12 and all
satellites, which are chosen in descending order of elevation.Remote Sens. 2017, 9, 948  11 of 16 
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Figure 6. Number of GPS and BDS satellites for the two baselines with a cut-off elevation of 10◦.
(a) CUT0-PERT. (b) TG00-TGT0.

4.1. Positioning Results of the 22.4-km Baseline

In the positioning tests, the initialization was carried out at the beginning of each day. Theoretically,
real-time estimation of DISBs with characteristics of the slow time-variation is beneficial to both AR
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and positioning since additional redundancies are introduced. However, we find that the improvement
for the AR in the RTK initialization period is very small. The average time to first fix (TTFF) of the
two models with different visible satellites is shown in Figure 7. We can see that the TTFFs for the two
models are very close, and just have small difference when a small number of satellites are visible.
The reason is that in the initialization period, the DISB parameters with float ambiguities cannot
achieve high precision, and thus only have small contribution to the convergence of ambiguities.
However, once the ambiguities are correctly fixed for the first time, we can obtain the high-precision
DISB estimators, and these will become useful information to strengthen the positioning model for the
subsequent epochs.
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Figure 7. The average time to first fix (TTFF) of the classical differencing model and the inter-system
differencing model with different visible satellites.

Figure 8 shows the positioning results with seven satellites for the 22.4-km baseline. The top three
panels represent the results with the classical differencing model, while the bottom three represent the
results with the inter-system differencing model. The positioning errors are obtained by comparing
with the known coordinates. The initialization was carried out at the beginning of each day. On the
whole, we can see that the ambiguity-fixed positioning results with the inter-system differencing
model are more stable than those with the classical differencing model. The RMSs of positioning
errors in North/East/Up directions are 1.07 cm/1.18 cm/6.96 cm for the classical differencing model.
While for the inter-system differencing model, they are 0.81 cm/0.95 cm/4.59 cm, which represents an
improvement of 23.9%/19.6%/34.1% in the three directions.
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Figure 8. Positioning errors with seven satellites for the 22.4-km baseline with the classical differencing
model and the inter-system differencing model. The vertical dot lines are the separation between
consecutive initializations.

Figure 9 depicts the theoretical positioning precisions with ambiguity-fixed solutions for the
two models, which are derived from the corresponding diagonal elements of the variance-covariance
matrix at each epoch. Regardless of the actual observations, the theoretical positioning precisions can
directly reflect the strength of the positioning model. We can see that at most times, the theoretical
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positioning precisions with the inter-system differencing model are obviously higher than those with
the classical differencing model. This can also certify that the inter-system differencing model can
strengthen the positioning model.
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Figure 9. The theoretical positioning precisions with ambiguity-fixed solutions for the 22.4-km baseline
with the classical differencing model and the inter-system differencing model.

The RMSs of positioning errors with different number of visible satellites are listed in Table 5.
These values are derived from the positioning errors by comparing with the known coordinates.
We can see that as the number of visible satellites increases, the positioning performances become
generally closer for the two models. Similar results were also derived, e.g., in the work by Paziewski
and Wielgosz [35]. Anyway, the positioning performance with the inter-system differencing model is
always better than that with the classical differencing model.

Table 5. Positioning comparison for the classical differencing model and the inter-system differencing
model with different numbers of visible satellites (22.4-km baseline).

Number of Satellites

RMSs of Positioning Errors (cm) Improvement (%)
Classical Differencing Inter-System Differencing

N E U N E U N E U

7 1.07 1.18 6.96 0.81 0.95 4.59 23.9 19.6 34.1
8 0.91 0.89 4.73 0.77 0.82 4.15 15.9 8.1 12.3
9 0.83 0.77 3.80 0.73 0.74 3.64 11.0 4.0 4.1
10 0.79 0.69 3.38 0.71 0.68 3.28 9.7 2.8 2.9
11 0.75 0.64 2.95 0.68 0.62 2.87 9.5 2.3 2.6
12 0.72 0.61 2.41 0.64 0.60 2.33 11.7 0.8 3.6
All 0.76 0.64 2.15 0.68 0.63 2.13 10.3 0.5 0.9

4.2. Positioning Results of the 75.9-km Baseline

For the 75.9-km baseline, the RZTD parameter was estimated from epoch to epoch as a
random-walk process. Figure 10 shows the positioning results with seven satellites. The top three
panels represent the results with the classical differencing model, while the bottom three represent
the results with the inter-system differencing model. We can see that, due to the longer baseline
length and the introduction of the RZTD parameter, the positioning performance seems worse
than that of the 22.4-km baseline, especially in the up direction. The RMSs of positioning errors
in North/East/Up directions are 1.93 cm/1.33 cm/1.25 cm for the classical differencing model.
While for the inter-system differencing model, they are 1.25 cm/0.96 cm/9.90 cm, which represents
an improvement of 35.2%/27.6%/11.9% in the three directions. Particularly, during the period about
23:00–24:00, there are large fluctuations in the positioning errors with the classical differencing model.
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However, this phenomenon does not appear in the results with the inter-system differencing model.
We have checked that the ambiguities are fixed correctly, and the reason is that the satellite geometry is
poor in that period. This can also be seen in Figure 11, where we can see that the theoretical positioning
precisions between 23:00 and 24:00 also present obvious differences for the two models. Similarly
to Figure 9, at most times the theoretical positioning precisions with the inter-system differencing
model are obviously better than those with the classical differencing model. The RMSs of positioning
errors with different number of visible satellites for the 75.9-km baseline are listed in Table 6. Similarly,
conclusions can be obtained from Table 5, namely that the positioning performances become closer for
the two models as the number of visible satellites increases. The positioning performance with the
inter-system differencing model is always better than or at least equivalent with that using the classical
differencing model.
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Figure 10. Positioning errors with seven satellites for the 75.9-km baseline with the classical differencing
model and the inter-system differencing model.
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Figure 11. The theoretical positioning precisions with ambiguity-fixed solutions for the 75.9-km
baseline with the classical differencing model and the inter-system differencing model.
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Table 6. Positioning comparison for the classical differencing model and the inter-system differencing
model with different numbers of visible satellites (75.9-km baseline).

Number of Satellites

RMSs of Positioning Errors (cm) Improvement (%)
Classical Differencing Inter-System Differencing

N E U N E U N E U

7 1.93 1.33 11.25 1.25 0.96 9.90 35.2 27.6 11.9
8 1.49 1.03 8.08 1.05 0.82 6.97 29.7 20.7 13.7
9 1.04 0.78 5.02 0.95 0.74 4.88 8.5 4.7 2.7
10 0.91 0.69 2.77 0.85 0.68 2.71 6.1 2.4 2.2
11 0.77 0.65 2.63 0.72 0.64 2.60 6.2 0.6 1.1
12 0.73 0.56 2.44 0.68 0.56 2.44 6.7 1.5 0.3
All 0.68 0.51 2.27 0.65 0.51 2.27 4.4 0.2 0.0

5. Discussion

In the proposed inter-system differencing model, the GPS-BDS DISBs are real-time estimated
from epoch to epoch. Some recent contributions indicated that a priori calibration of DISBs led to
better AR and positioning performance [11,13–15,35]. Indeed, between GPS L1-Galileo E1 and other
cases with overlapping frequencies, the fractional phase DISB can be easily obtained from fixed integer
ambiguities. If the DISBs are verified to be stable, they can be directly applied to calibrate subsequent
calculation. However, when calculating phase DISB with different frequencies, the influence of
between-receiver SD ambiguity of reference satellite cannot be separated from phase DISB unless the
SD ambiguity can be calculated in advance. The SD ambiguity is usually calculated approximately
using pseudoranges. The error of the SD ambiguity will directly introduce the bias for the phase DISB.
What is more, even though the phase DISB are precisely calibrated, one also needs to face the problem
of SD ambiguity again in the subsequent calculation. Only if the SD ambiguity is precisely solved, can
the DD ambiguities be fixed to integers. Considering that the SD ambiguity is hard to solve precisely
within a short time, we thus adopt the strategy of real time estimation.

Although the inter-system differencing model in this paper is proposed for relative RTK
positioning, we think it can also be similarly used in the un-difference (UD) model, e.g., precise
point positioning (PPP), as long as the UD inter-system biases are verified to be stable. In the UD
model, one can estimate only one receiver clock parameter together with an ISB parameter between
two systems. Then, the ISB parameter can be modelled with some constraints, e.g., as a constant or the
random walk process, and thus the positioning performance could also be improved.

6. Conclusions

In this contribution, we studied the inter-system differencing between dual-frequency GPS and
BDS for medium-baseline RTK positioning. The tightly combined ionosphere-free observation model
with real-time estimation of DISBs was proposed. In the proposed model, the estimable ionosphere-free
phase DISB is reparameterized to absorb not only the DD ambiguity between GPS and BDS reference
satellites, but also the SD ambiguity of the GPS reference satellite. Thus, a full-rank inter-system
differencing model can be obtained.

The stability of dual-frequency (i.e., L1-B1 and L2-B2) phase and code DISBs is analyzed using
several baselines with the same or different receiver types. Our studies find that for the baselines with
the same receiver types, both the phase and code DISBs are very stable. Although the phase DISBs
may have small variations for different receiver types, fortunately, these variations are very slow and
smooth. The amplitudes are within 0.1 cycles for tens of hours to several days. In practical use of the
proposed inter-system differencing model, a random walk process with a secure spectrum density
(e.g., 0.05× 0.05 cycle2/h) is recommended to model this slow variation.
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Compared with the classical intra-system differencing model, although only the same number of
DD ambiguities can be fixed to integers in the proposed model, the stability of the DISBs can still be
used. Once the ambiguities are correctly fixed for the first time, we can obtain the high-precision DISB
estimators. These high-precision DISB estimators will become useful information to strengthen the
positioning model for the subsequent epochs, especially for obstructed environments with few visible
satellites. Our experiments show that for the 22.4-km baseline and the 75.9-km baseline, when only
seven satellites are available, the positioning accuracies in the three directions can be improved by
23.9%/19.6%/34.1% and 35.2%/27.6%/11.9%, respectively, with the proposed model. Generally, as
the number of visible satellites increases, the positioning performances with the two models become
closer. However, the proposed inter-system differencing model always outperformed (or was at least
equivalent with) the classical differencing model.
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