Next Article in Journal
Alike Scene Retrieval from Land-Cover Products Based on the Label Co-Occurrence Matrix (LCM)
Previous Article in Journal
Scale- and Region-Dependence in Landscape-PM2.5 Correlation: Implications for Urban Planning
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(9), 920; https://doi.org/10.3390/rs9090920

Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations

Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
*
Author to whom correspondence should be addressed.
Received: 26 July 2017 / Revised: 25 August 2017 / Accepted: 30 August 2017 / Published: 2 September 2017
(This article belongs to the Section Atmosphere Remote Sensing)
View Full-Text   |   Download PDF [3573 KB, uploaded 2 September 2017]   |  

Abstract

Satellite orographic precipitation estimates exhibit large errors with space-time structure tied to landform. Observations in the Southern Appalachian Mountains (SAM) suggest that low-level clouds and fog (LLCF) amplify mid-day rainfall via seeder-feeder interactions (SFI) at both high and low elevations. Here, a rainfall microphysics model constrained by fog observations was used first to reveal that fast SFI (2–5 min time-scales) modify the rain drop size distributions by increasing coalescence efficiency among small drops (<0.7 mm diameter), whereas competition between coalescence and filament-only breakup dominates for larger drops (3–5 mm diameter). The net result is a large increase in the number concentrations of intermediate size raindrops in the 0.7–3 mm range and up to a ten-fold increase in rainfall intensity. Next, a 10-year climatology of satellite observations was developed to map LLCF. Combined estimates from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and CloudSat products reveal persistent shallower cloud base heights at high elevations enveloping the terrain. The regional cloud top height climatology derived from the MODIS (Moderate Resolution Imaging Spectroradiometer) shows high-frequency daytime LLCF over mountain ridges in the warm season shifting to river valleys at nighttime. In fall and winter, LLCF patterns define a cloud-shadow region east of the continental divide, consistent with downwind rain-shadow effects. Optical and microphysical properties from collocated MODIS and ground ceilometers indicate small values of vertically integrated cloud water path (CWP < 100 g/m2), optical thickness (COT < 15), and particle effective radius (CER) < 15 μm near cloud top whereas surface observed CER ~25 μm changes to ~150 μm and higher prior to the mid-day rainfall. The vertical stratification of LLCF microphysics and SFI at low levels pose a significant challenge to satellite-based remote sensing in complex topography. View Full-Text
Keywords: mountains; clouds; orographic precipitation mountains; clouds; orographic precipitation
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Duan, Y.; Barros, A.P. Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations. Remote Sens. 2017, 9, 920.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top