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Abstract: Previous studies have estimated ground-level concentrations of particulate matter 2.5
(PM2.5) using satellite-derived aerosol optical depth (AOD) in conjunction with meteorological
and land use variables. However, the impacts of urbanization on air pollution for predicting
PM2.5 are seldom considered. Nighttime light (NTL) data, acquired with the Visible Infrared
Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP)
satellite, could be useful for predictions because they have been shown to be good indicators of the
urbanization and human activity that can affect PM2.5 concentrations. This study investigated the
potential of incorporating VIIRS NTL data in statistical models for PM2.5 concentration predictions.
We developed a mixed-effects model to derive daily estimations of surface PM2.5 levels in the
Beijing–Tianjin–Hebei region using 3 km resolution satellite AOD and VIIRS NTL data. The results
showed the addition of NTL information could improve the performance of the PM2.5 prediction
model. The NTL data revealed additional details for predication results in areas with low PM2.5

concentrations and greater apparent seasonal variation due to the seasonal variability of human
activity. Comparison showed prediction accuracy was improved more substantially for the model
using NTL directly than for the model using the vegetation-adjusted NTL urban index that included
NTL. Our findings indicate that VIIRS NTL data have potential for predicting PM2.5 and that they
could constitute a useful supplemental data source for estimating ground-level PM2.5 distributions.

Keywords: AOD; PM2.5; linear mixed effect (LME) model; VIIRS nighttime light; Vegetation-Adjusted
NTL Urban Index (VANUI)

1. Introduction

In recent decades, rapid economic development in China has caused severe environmental
pollution, particularly air pollution [1]. As a major air pollutant in many regions of China, fine
particulate matter (aerodynamic diameter < 2.5 µm; PM2.5) is associated with various adverse health
outcomes including cardiovascular and respiratory diseases [2,3] and consequently, it has received
considerable attention [4]. Accurate assessment of air pollution levels and efficacious solutions to
public health concerns require measurement of PM2.5 concentrations at high temporal and spatial
resolutions [5,6].

Measurements of PM2.5 concentrations can be acquired by ground-based monitoring networks
and satellite remote sensing. Although PM2.5 measurements obtained from ground-based monitoring
sites are accurate, such networks are typically sparse, which means the spatial coverage of routine
measurements is limited [5,7,8]. Because of the large spatial coverage and reliability of repeated
measurements, satellite remote sensing provides a potentially cost-effective method for predicting
PM2.5 concentrations where ground-monitoring stations are unavailable or sparsely distributed [7,9,10].
Satellite-derived aerosol optical depth (AOD), which reflects the integrated quantity of particles in
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the vertical atmospheric column [11], has been shown useful for predicting PM2.5 concentrations [10].
Examples of satellite-derived AOD products include the Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) data [10,12], Multiangle Imaging Spectroradiometer (MISR) [7,13],
and Geostationary Operational Environmental Satellite Aerosol/Smoke Product [14,15]. In early 2014,
the MODIS team released the Collection 6 AOD products with reasonably high (3 km) spatial resolution
to provide sufficient data for resolving local-scale aerosol features for air quality applications [16].
The new aerosol product presents expected characteristics such as aerosol plumes but it also reveals
details of small-scale AOD gradients [16]. Thus, the MODIS 3 km AOD products make it possible
to further reduce PM2.5 exposure errors and they have been used successfully for estimating PM2.5

exposure at both regional and national scales [12,17].
Various statistical models have been proposed to establish quantitative relationships between

PM2.5 and AOD (e.g., generalized linear regression, generalized additive models, geographically
weighted regression, and liner mixed-effects model) [4,5,10,13,15,17]. In addition to AOD values,
several studies have also included local meteorological and land use information. Liu et al.
incorporated surface temperature, surface wind speed, and mixing height in a predictive model and
they further pointed out that road length and population density within areas are effective predictors
of PM2.5 [13,15]. Furthermore, a number of useful auxiliary variables such as elevation, source area
of PM2.5 emissions, forest cover, and fire count have also been introduced [5,18,19]. As reported
in previous studies, these parameters influence the relationship between AOD and ground-level
PM2.5 concentrations, and they can be used as additional predictors with which to improve model
performance [15,18].

The impact of urbanization on air pollution in predictions of ground-level PM2.5 concentrations at
the urban scale has received less attention than it deserves. Few studies have incorporated information
concerning urbanization and human activity into PM2.5 prediction models [4,20]. Previous research
has demonstrated that population, economic growth, and urban expansion are the three main driving
forces that impact PM2.5 concentrations [21,22]. Thus, urbanization indicators (e.g., population,
economics, and built-up areas) could potentially be useful predictors of PM2.5 concentrations. However,
it is difficult to obtain an urbanization indictor that includes comprehensive information regarding
urbanization and human activity to help in the prediction of PM2.5 concentrations. In addition,
urbanization data used in existing prediction models cannot satisfy the temporal requirements for
estimations of PM2.5 concentrations because there is a lack of long-term urbanization data. For example,
Ma et al. used urban cover data from the Global Land Cover Map 2009 (GlobCover2009) to estimate
PM2.5 concentrations during 2010–2014 [20]. However, there have been great changes for land cover
from 2009 to 2014. Thus, it is difficult to estimate accurate long-term trends in PM2.5 concentrations.

Surface artificial lighting at night has the unique property of reflecting the extent of human
activity. Thus, nighttime light (NTL) data provided by both the Defense Meteorological Satellite
Program (DMSP) Operational Linescan System (OLS) and the Visible Infrared Imaging Radiometer
Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, have been used
extensively as proxies for the urban geographic footprint of human activities [23,24]. Many previous
studies have revealed strong relationships between NTL data and urbanization [25], population [26],
energy consumption [27], and gross domestic product [28]. The NTL measured by the Day/Night
Band (DNB) on the VIIRS sensor has higher spatial and radiometric resolutions than the DMSP/OLS
and it practically eliminates three critical problems that beset the earlier satellite program: saturation,
blooming, and a lack of onboard calibration. The VIIRS NTL has been shown to be a good indicator of
built-up areas [29], population, and economics [30]; hence, the capability of VIIRS NTL in characterizing
urbanization provides an opportunity to help in estimations of PM2.5 concentrations. However, VIIRS
NTL has not been used before in statistical models for predicting PM2.5 concentrations.

This study developed a mixed-effects model to estimate ground-level PM2.5 concentrations using
the MODIS 3 km resolution AOD products, together with meteorological and VIIRS NLT data. The
objectives of this study were to investigate how NTL data could be incorporated into a statistical model
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for predicting ground-level PM2.5 concentrations, and to assess whether this parameter could improve
PM2.5 prediction accuracy significantly. The remainder of this paper is organized as follows. Section 2
describes the study area and the data used. The method to establish the relationship between AOD
and PM2.5 concentration using NTL data is presented in Section 3. The results of the performance
of the model are given in Section 4, while discussion of the results and the findings is presented in
Section 5. Finally, the derived conclusions are stated in Section 6.

2. Study Area and Data

2.1. Study Area

The study area was the Beijing–Tianjin–Hebei (BTH) region, which is situated in northern China
(Figure 1). It includes Beijing, Tianjin, and eight neighboring cities in China’s Hebei Province. This
area covers the Greater Beijing Economic Hub and its surrounding area, and it is also the core region of
the Bohai Bay Trade Hub, having long been the most important political, economic, and cultural center
of northern China. Following rapid development, the BTH region is also one of the most polluted city
clusters in China [20].
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2.2. Ground PM2.5 Measurements

Hourly PM2.5 concentrations, observed at 79 monitoring stations in the BTH region from 2016,
were obtained from the website of the China Environmental Monitoring Center (http://106.37.208.233:
20035/). We also collected additional data from the website of the Beijing Municipal Environmental
Monitoring Center (http://zx.bjmemc.com.cn/). Overall, data from 114 monitoring sites were included
in the present study (Figure 1). The ground concentrations measured between 10:00 and 14:00 local
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time (LT) at each site were averaged to derive daily PM2.5 concentrations that matched the overpass
time of the MODIS Terra and Aqua satellites. The study period comprised the entire year of 2016,
spanning 366 days.

2.3. Remote Sensing Data

2.3.1. MODIS 3 km AOD Products and Calibration

We obtained MODIS Collection 6 Level 2 aerosol products with 3 km spatial resolution for
2016 from NASA Level 1 and the Atmosphere Archive and Distribution System (accessed at https:
//ladsweb.nascom.nasa.gov/data/search.html). The retrieval algorithm of the higher resolution AOD
product is similar to that of the 10 km AOD product, but it averages 6× 6 pixels in a single retrieval box
rather than 20 × 20 pixels after cloud screening and other surface mask processes [16,31]. The MODIS
3 km AOD products have been validated by ground-based data from six Aerosol Robotic Network
(AERONET) sites in China and the spatiotemporal variations of 3 km AOD showed good agreement
with the AERONET [32].

In this study, Aqua (overpass at ~13:30 LT) and Terra (overpass at ~10:30 LT) MODIS AOD data
at 550 nm were first combined and averaged to improve the spatial coverage. In grid cells that had
both Terra and Aqua AODs, the averaged value represented the mean of the AOD distribution from
10:00 to 14:00 LT. However, there were many days when only one of the two retrievals was available.
Therefore, when combining the two MODIS products, the averaged AOD of a grid cell was biased
toward either the morning or afternoon condition. To overcome this bias, Lee et al. [10] used the
average Terra AOD/Aqua AOD ratio to estimate the missing AOD values. In this study, to exploit the
measurements of both satellites fully, we fitted a simple linear regression to define the relationship
between the daily mean AOD values of Terra and Aqua [6]. The relationship between the Aqua and
Terra AODs for different seasons was found similar and therefore, we built the regression model using
annual data. The derived regression equation was as follows:

τAQUA = 0.8406× τTERRA + 0.0517,

τTERRA = 0.9137× τAQUA + 0.0621,
(1)

where τ is the AOD. A value of R2 = 0.77 was obtained for both regression models. The missing AOD
value was estimated using the above regression equation and then averaged. Consequently, each AOD
grid cell contained a mean value that better represented the average conditions from 10:00 to 14:00 LT.

2.3.2. NDVI Data

We considered the Normalized Difference Vegetation Index (NDVI) in the model development
process because a previous study has reported that forest cover can affect the AOD–PM2.5

relationship [5]. The Terra MODIS NDVI data used in this study constituted the MOD13A2 products,
which are provided every 16 days at 1 km spatial resolution. MOD13A2 data are computed from
atmospherically corrected bidirectional surface reflectance [33]. The 16-day mean values of NDVI were
used as covariates in the PM2.5 model.

2.3.3. VIIRS NTL and Urban Index Based on NTL

In this study, we examined the impact of urbanization on the relationship between PM2.5 and
AOD; the urbanization indicator was expressed by the VIIRS NTL. The VIIRS DNB monthly composites,
as a new generation of NTL image products, have been produced and released by the National Oceanic
and Atmospheric Administration’s National Centers for Environmental Information [34,35]. As a low
NTL detecting band, the DNB can detect NTL within the radiation range of 3.00 nW · cm−2 · sr−1 to
0.02 W · cm−2 · sr−1, with a span from 75◦N to 65◦S, 3000 km swath, and a 12-h revisiting period. The
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spatial resolution is 15 arcseconds (742 m), with a spectral range of 0.5–0.9 µm [36,37]. Monthly VIIRS
NTL values were used in this study.

As the primary purpose of this study was to investigate how/whether NTL data could be used
to improve prediction accuracy of PM2.5 concentrations, an urban index using VIIRS NTL was also
used in the model to compare model performances with different NTL expressions. We selected
the Vegetation-Adjusted NTL Urban Index (VANUI) as another urbanization indicator. Following
Zhang et al., the VANUI was calculated in this study based on both the VIIRS NTL data and the NDVI
data [38]. The equation used for calculating the VANUI is as follows:

VANUI(i,j) = (1− NDVI(i,j))×VIIRSnor
(i,j), (2)

where VANUI(i,j) is the VANUI value for the i-th pixel in the j-th evaluation area, NDVI(i,j) is the
NDVI value for the i-th pixel, and VIIRSnor

(i,j) is the normalized DN value of NTL for the i-th pixel.
VIIRSnor

(i,j) is calculated using the following equation:

VIIRSnor
(i,j) =

VIIRS(i, j)−VIIRSmin
j

VIIRSmax
j −VIIRSmin

j
, (3)

where VIIRS(i, j) is the original DN value of NTL for the i-th pixel in the j-th evaluation area and
VIIRSmin

j and VIIRSmax
j are the minimum and maximum values of NTL for the j-th evaluation area

in the VIIRS NTL data, respectively.
The composite of the mean annual values of the VIIRS NTL data, NDVI, and VANUI for 2016 are

presented in Figure 2. Urban areas and areas with high intensity of human activity have high NTL
values, high VANUI values, and low NDVI values.
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2.4. Meteorological Data

The meteorological data were obtained from the Goddard Earth Observing System Data
Assimilation System Forward Processing (GEOS-5 FP). These data included planetary boundary
layer height (PBLH, m), relative humility (RH, %), wind speed (WS, m/s), and surface pressure (PS,
hPa). The GEOS-5 FP is the latest version of the GEOS-5 meteorological data, with spatial resolution
of 0.25◦ (latitude) × 0.3125◦ (longitude) in a nested grid that covers China, which has been available
since April 2012 [39]. GEOS-5 FP data from 2016 were used in this study for model development and
hourly GEOS-5 FP data from 10:00 to 14:00 LT were averaged as daytime meteorological parameters to
match the satellite overpass times.

All data were re-projected using the Albers equal area conic projection and resampled to spatial
resolution of 3 km. Then, all the data were clipped following administrative boundary data of the
study area. Finally, all variables in 2016 were matched by grid cell and date for model fitting.

3. Method

3.1. Model Development

Previous studies have shown that time-varying parameters such as RH, PM2.5 vertical and diurnal
concentration profiles, and PM2.5 optical properties can influence the PM2.5–AOD relationship [10,17].
Therefore, we developed a linear mixed-effects (LME) model [10] to account for daily variations of the
AOD–PM2.5 relationship. Considering the regional spatial scale of this study, we hypothesize that these
time-varying parameters exhibit little spatial variability and consequently, the PM2.5–AOD relationship
has minimal spatial variation on any given day. Daily variations of the relationship between additional
variables and PM2.5 were not considered in our model because they led to over-fitting of the models.
In addition, whether a predictor should be incorporated needs to be tested in the model. We tested
other meteorological parameters (e.g., air temperature) and land use types not included in the final
models, and no significant improvement was found in the regression performance.

We first fitted three LME models to compare the performances of models with and without NTL
predictors: the LME model only with meteorological data (referred to as the Meteor_LME, Equation
(4)), LME model without VIIRS NTL data (referred to as the NDVI_LME, Equation (5)), and LME
model with VIIRS NTL data (referred to as the NTL_LME, Equation (6)). In addition, we also fitted the
LME model using VANUI (referred to as the VANUI_LME, Equation (7)) instead of NTL and NDVI to
establish the form of urbanization indicator using NTL that benefitted model performance the most.
These models can be expressed as follows:

PMs,t = (b0 + b0,t) + (b1 + b1,t)×AODs,t + b2 × PBLHs,t + b3 × RHs,t

+ b4 ×WSs,t + b5 × PSs,t + ε
(4)

PMs,t = (b0 + b0,t) + (b1 + b1,t)×AODs,t + b2 × PBLHs,t+

b3 × RHs,t + b4 ×WSs,t + b5 × PSs,t + b6 ×NDVIs,t + ε
(5)

PMs,t = (b0 + b0,t) + (b1 + b1,t)×AODs,t + b2 × PBLHs,t+

b3 × RHs,t + b4 ×WSs,t + b5 × PSs,t + b6 ×NTLnor
s,t + b7 ×NDVIs,t + ε

(6)

PMs,t = (b0 + b0,t) + (b1 + b1,t)×AODs,t + b2 × PBLHs,t+

b3 × RHs,t + b4 ×WSs,t + b5 × PSs,t + b6 ×VANUIs,t + ε
(7)

where PMs,t (µg/m3) is the averaged observed PM2.5 concentration at grid cell s on day t; b0 and b0,t
are the fixed and day-specific random intercepts, respectively, bi (i = 1, 2 . . . . . . ) are the fixed slopes
for the predictors, and b1,t is the random slope for AOD at each day; AODs ,t refers to the MODIS
AOD value (unitless) at grid cell s on day t; PBLHs,t (m), RHs,t (%), WSs,t (m/s), and PSs,t (hPa) are the
meteorological parameters at grid cell s on day t (definitions in Section 2.4); NTLnor

s,t (unitless) is the
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normalized value of VIIRS NTL data at grid cell s on day t, NDVIs,t (unitless) is the MODIS NDVI
value at grid cell s on day t, and VANUIs,t (unitless) is the index value obtained by combining the
NTL and NDVI values (definitions in Section 2.3.3) at grid cell s on day t. In these statistical models,
the AOD fixed effect represents the average effect of AOD on PM2.5 for all studied days. The AOD
random effects explain the daily variability in the PM2.5–AOD relationship. These equations were
applied to the entire fitting dataset to generate the fixed effects intercept and slopes for all the days
and the random effects intercept and slopes for each individual day.

3.2. Model Validation

To validate the performances of the four models, commonly used statistical indicators between
fitted values from the models and observations were calculated. We calculated the coefficient of
determination (R2) to indicate the degree of agreement of fitting between predicted and observed
PM2.5 concentrations. The mean prediction error (MPE) and the root mean square prediction error
(RMSE) were adopted to evaluate the prediction accuracy of each of the four models. The MPE and
RMSE are defined as

MPE =

n
∑

i=1
|ŷi − yi|

n
, (8)

and

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
, (9)

where ŷi is the predicted PM2.5 concentrations, yi is the observed values, and n is the total number of
observations. The goodness of fit of each model was checked using the Akaike information criterion
(AIC) and the Bayes information criterion (BIC) [40]. Smaller values of the AIC and the BIC indicate
better fitting of the model to the data.

In addition, a 10-fold cross-validation (CV) method was applied to assess potential model
over-fitting [41]. The dataset was first split into 10 folds with approximately 10% of the total data
points in each fold. In each round of the CV, one fold was used as the test data, the remaining nine
folds were used to fit the model, and predictions were made on the held-out test fold. This process
was repeated 10 times until each fold had been tested. Furthermore, the same statistics (e.g., R2, MPE,
and RMSE) were calculated for the cross-validation results.

4. Results

4.1. Descriptive Statistics

The descriptive statistics of the dependent and predictor variables used in the model fitting
are presented in Table 1. There were 3674 matched data records used for the model fitting. The
overall mean PM2.5 concentration is 55.20 µg/m3, which is higher than China’s National Ambient Air
Quality Standard (NAAQS) of 35.00 µg/m3 for annual mean PM2.5, and the standard deviation (SD) is
42.07 µg/m3. The mean value of MODIS AOD is 0.71, although some sites have high AOD values of
>2.00. The normalized NTL for 2016 has a mean value of 0.22 and the mean NDVI value is 0.42, which
means there is relatively high vegetation cover in the BTH region. The RH has a relatively small mean
value of 33%, which implies a relatively dry atmospheric environment. The PBLH (1636.88 ± 623.41 m)
is more variable in comparison with other meteorological variables.
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Table 1. Descriptive statistics summarizing observations for PM2.5 monitoring sites for 2016 (N = 3674).

Parameters Mean SD Min Max

PM2.5 (µg/m3) 55.20 42.07 1.50 304.75
MODIS AOD 0.71 0.48 0.03 3.75

NTL 0.22 0.17 0.00 1.00
NDVI 0.42 0.14 0.00 0.88

VANUI 0.14 0.11 0.00 0.69
WS (m/s) 2.90 1.56 0.14 10.76
PS (hPa) 977.19 31.34 859.94 1032.00
RH (%) 33 14 8 87

PBLH (m) 1636.88 623.41 237.23 3704.75

4.2. Model Fitting and Validation

Table 2 summarizes the fixed effect and random estimates of the four LME models with different
combinations of predictors. Daily AOD–PM2.5 relationships of 203 days were calculated using the
LME models. The fixed terms of the intercept and slopes for the Meteor_LME and VANUI_LME
models are different to these for the NDVI_LME and NTL_LME models, while the standard errors
(SEs) of the fixed terms for the four models are similar. The SEs of the daily specific intercepts and
slopes for the four models are about 23.00 and 26.00, respectively. The fixed effects and random effects
results show all four LME models can reflect the temporal variations of AOD–PM2.5 relationships,
irrespective of whether the predictor variables are different. Table 2 also shows that incorporating the
VIIRS NTL data into the LME model produced the smallest values of the AIC and the BIC, indicating
better model fitting.

Table 2. Fixed effects and random effects for models and model comparisons.

Models Fixed
Intercept

SE of Fixed
Intercept

Fixed Slopes
of AOD

SE of Fixed
AOD Slopes

SE of the
Random

Intercepts

SE of the
Random

AOD Slopes
AIC BIC

Meteor_LME 24.78 14.95 27.30 2.75 23.24 26.59 33,069.15 33,130.95
NDVI_LME 7.71 15.44 28.55 2.73 23.70 26.15 33,052.28 33,125.97
NTL_LME 8.82 15.45 28.29 2.72 23.76 26.12 33,051.80 33,120.26

VANUI_LME 24.57 15.07 27.33 2.74 23.24 26.58 33,071.13 33,139.12

Figure 3 shows the model fitting and CV results for the different models. For the four model
fittings, the overall values of R2 between the predicted and observed PM2.5 concentrations are all >0.75,
with RMSEs of around 20 µg/m3 and MPEs of around 14.5. The CV R2 values of the four models are
all >0.70, which reflects a decrease of 0.04 compared with the model fitting results. The CV RMSE
values increase by about 1 µg/m3 for the four models, which suggests the models are not substantially
over-fitted. Comparison of the CV statistics of the Meteor_LME model and the NDVI_LME model, by
adding the NDVI predictor to the model, shows the overall prediction accuracy was improved. The CV
RMSPE decreased by 0.06 µg/m3, representing a 0.29% reduction. The NTL_LME fitting and CV R2

values are 0.7512 and 0.7092 (Figure 3c), respectively, which indicate this model performed best of all
the models. Comparison of the other three models (Figure 3a,b,d) with the NTL_LME model (Figure 3c)
shows the NTL model marginally increased the R2 values. The CV results indicate all models have
a trend to overestimate the PM2.5 concentrations in relation to relatively low PM2.5 observations and to
underestimate the PM2.5 values in relation to relatively high PM2.5 observations. The Meteor_LME
model produced the worst model fitting and it yielded greater bias than the other models.

Both the NTL_LME and VANUI_LME models included NTL data but their results are different.
The NTL_LME results improved the performance of the Meteor_LME model, but the VANUI_LME
results had little effect on the Meteor_LME model. This result suggests that the form of the urbanization
indicator using NTL could affect the results of the models, and that NTL as a predictor variable added
to the model directly performed better than using the form of the urban index as a predictor variable.
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4.3. Annual and Seasonal Mean PM2.5 Concentrations

Figure 4 shows the annual mean PM2.5 concentrations predicted by the different models.
The results show that the patterns of PM2.5 estimates from the four models are largely similar. Spatially,
there is a southeast-to-northwest gradient in the predicted PM2.5 distribution. High concentrations
are found in Beijing and the south of Hebei Province, while low concentrations appear in the north of
Hebei Province. From the details of Beijing, highly urbanized and populated areas such as Haidian,
Shijingshan, and Fengtai exhibit higher PM2.5 levels compared with rural areas such as Huairou.



Remote Sens. 2017, 9, 908 10 of 14

Furthermore, higher PM2.5 levels are predicted over southern regions and lower values predicted over
northern and western suburban districts.

Comparison of the PM2.5 concentrations estimated by the different models shows those models
using NTL, either integrated as an urban index (VANUI_LME) or directly as a variable (NTL_LME),
generated greater detail of the predicted surface than those not using NTL data (i.e., Meteor_LME and
NDVI_LME), especially in areas with low PM2.5 values (e.g., Chengde and Zhangjiakou). In this region,
PM2.5 estimates generated from the models with NTL were higher than those estimated from the
models without NTL. In addition, the NTL_LME and NDVI_LME models provided higher predictions
than the Meteor_LME and VANUI_LME models in Shijiazhuang and Baoding.
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Because of limited satellite data in winter (January, February, and December), the data were
grouped into two seasons: warm (15 April–14 October) and cold (15 October–14 April). Figure 5 shows
the two seasonal mean distributions of PM2.5 concentration. The PM2.5 pattern of the BTH region
exhibits distinct seasonal variational characteristics, with the highest pollution occurring in the cold
season and the lowest pollution occurring in the warm season (except for Beijing). The predicted
PM2.5 concentrations within the warm season range from 8 to 190 µg/m3, while the predicted PM2.5

concentrations within the cold season range from 2 to 300 µg/m3. Such seasonal variation can be
attributed to the mixed contributions from meteorological conditions and local emission sources.

Comparison of Figure 5 shows the mean PM2.5 estimates generated from models with NTL have
higher values in the cold season and lower values in the warm season than models without NTL.
This indicates that models with NTL exhibit more significant seasonal variation than models without
NTL, especially in northern areas of the BTH region. For example, the average PM2.5 concentration
within the cold season predicted by the NTL_LME model is 54.65 µg/m3, which is higher than the
PM2.5 concentration predicted by the NDVI_LME model (53.09 µg/m3). Conversely, the average PM2.5

concentration within the warm season predicted by the NTL_LME model is 47.95 µg/m3, which is
lower than the PM2.5 concentration predicted by the NDVI_LME model (48.44 µg/m3). In addition,
the differences between PM2.5 concentrations estimated by models with and without NTL are larger in
the cold season than in the warm season. The level of coal and biomass combustion associated with
heating increases in winter, which represents human activities. NTL is used as an indicator of urban
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areas, human activities, and population density. Consequently, the contribution of NTL to predictions
of PM2.5 concentrations is correspondingly higher in winter.
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5. Discussion

This paper evaluated the performance of VIIRS NTL data when used as a predictor for PM2.5

concentration estimations. In brief, it was proven that VIIRS NTL data have considerable potential to
provide additional predictive power for estimations of PM2.5 concentrations.

Our results showed that the incorporation of NTL data as a predictor could improve PM2.5

prediction accuracy, and that NTL data might partially account for PM2.5 variability in the models,
which suggests that elevated PM2.5 levels cannot be explained fully by AOD. The experimental results
also showed that models with NTL exhibited more significant seasonal variation than models without
NTL. Because NTL can reflect human activity, which varies seasonally, the impact of human activity on
the AOD–PM2.5 relationship can account for the seasonal variability exhibited by those models with
NTL. Furthermore, the differences between the PM2.5 concentrations estimated by models with and
without NTL were larger in the cold season than in the warm season. In winter, the main contribution to
elevated PM2.5 concentrations is from coal and biomass combustion for heating. This information might
be not captured by MODIS AOD, whereas NTL as an indicator of human activity can reflect the effect
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of heating to some extent. Thus, NTL data might introduce into the models additional PM2.5 emission
sources missed by MODIS AOD, which could lead to predictions of PM2.5 that are more accurate. As
the impact of human activity on PM2.5 concentrations is more apparent in the cold season than in the
warm season, the differences between models with and without NTL are larger in the cold season.

It should be noted that the form in which NTL data are incorporated within the models could
affect the applicability of NTL data in air pollution monitoring studies. We compared the performances
of models with NTL data and with VANUI, which is an urban index using NTL and NDVI. The model
based on NTL and the NDVI variable appeared to provide better estimation performance than the
model based solely on VANUI. This might be because the VANUI focuses on inner-urban variations
more than on urbanization characteristics [38]. Further research is needed to explore the potential data
fusion approaches for better use of NTL data in statistical models for PM2.5 concentration predictions.

It should also be mentioned that NTL data can be acquired easily and are free to download, while
it is difficult to obtain other urban indicator data such as accurate spatial distributions of population.
In addition, VIIRS can provide data from 2013 to the present, and the DMSP/OLS NTL has a long
historical archive. Our statistical model for predicting PM2.5 concentrations could be further used to
produce long-term time series of serious PM2.5 exposure, which could then be applied in long-term
epidemiological studies. Furthermore, we used high spatial resolution MODIS 3 km AOD data to
estimate high spatial resolution daily average PM2.5 concentrations. Higher resolution data could help
reveal additional local details of the relationship and thus, the acquisition of such data is desirable.

Although the developed LME models with NTL produced promising results, some limitations
remain. We combined Terra MODIS data and Aqua MODIS data to improve the spatial coverage of
the MODIS 3 km AOD products, but there were still a number of missing data. Further studies could
introduce additional estimators to fill the gaps in areas where AOD is not retrieved. Furthermore,
the PM2.5–AOD relationship varies in both space and time, but the LME model used in our study
incorporates only the temporal variation in the PM2.5–AOD association. We will develop new
statistical models with NTL that can include both the spatial and the temporal variabilities in the
PM2.5–AOD relationship.

6. Conclusions

In this paper, we assessed the applicability of VIIRS/DNB NTL data in estimating surface PM2.5

concentrations using an LME model in the BTH region of China in 2016. The results indicated that
NTL data were an effective predictor of PM2.5 concentrations. Of the models examined, the model
incorporating NTL provided better performance and illustrated more detail in the predicted surface,
especially in areas with low PM2.5 values. Our analysis also showed that the introduction of NTL
into PM2.5 prediction models increased the seasonal variability. The results of this study provide
insight into the possibility of enhancing predictions of surface PM2.5 concentrations by incorporating
NTL data. The adoption of our method could help in investigations of the impact of urbanization on
PM2.5 concentrations.
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