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Abstract: The Meteosat Second Generation (MSG) geostationary platform equipped with the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) instrument provides observations of the Earth
every 15 min since 2004. Based on those measurements, we present a new method called North
African Sandstorm Survey (NASCube) to: (i) generate day/night remote sensing images in order
to detect sandstorms over the Sahara and Saudi Arabia; and (ii) estimate day and night aerosol
optical depth (AOD). This paper presents a method to create true color day and night images from
the SEVIRI instrument level 1.5 products and the complete operational data processing system to
detect sandstorms and quantify the AOD over the desert areas of North Africa and Saudi Arabia.
The designed retrieval algorithms are essentially based on the use of artificial neural networks (ANN),
which seems to be well suited to this issue. Our methods are validated against two different datasets,
namely the Deep Blue NASA moderate-resolution imaging spectroradiometer (MODIS) product
and AErosol RObotic NETwork (AERONET) acquisitions located in desert areas. It is shown that
NASCube products deliver better estimations for high AOD (>0.2) over land areas than Deep Blue
products. The open-public web platform will help researchers to identify, quantify and retrieve the
impact of sandstorms over desert regions.

Keywords: SEVIRI; sandstorm; day and night AOD retrieval; North Africa; Saudi Arabia

1. Introduction

Aerosols have an impact on the total radiative forcing [1] by scattering the shortwave solar
radiation, absorbing long wave terrestrial radiation [2] and also by modifying indirectly cloud
properties [3–6].

Mineral dust is one of the major aerosol types affecting our environment as it has one of the
deepest boundary layers on the planet during the summer months [7]. More particularly, the Sahara
is the largest source of mineral dust aerosols in the world (e.g., [8]). Slingo et al. [9] have estimated
the increase of the reflected shortwave radiation during a dust storm event by as much as 100 W·m−2.
Each year, about 400 to 700 million tons of dust particles are transported from the Sahara and about
40 million tons are deposited on the Amazon River basin [10]. Such dust storms also have a key impact
on the ecosystems and their functioning (See [11] and references therein). Mineral dust is mainly
composed of ferric oxides, which absorb at the short wavelengths [12,13], and phosphorous [14]. The
aerosols impact can be seen on ecosystems even distant from the source regions, by providing nutrients
for oceanic microorganisms [15,16] or by fertilizing the Amazon rainforest [17,18]. Furthermore, dust
particles impact the air quality. In Spain, Escudero et al. [19] have shown that the dust contribution of
particulate matter (PM10) ranges from 44% to 100% in summer, when exceeding the daily limit value
of 50 µm/m3 (1993/30/CE European directive). Gobbi et al. [20] drew similar conclusions (63–68%)
over Roma.
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In this contact, there is a real need to monitor sandstorms with a very high temporal revisit
time. The AErosol RObotic NETwork (AERONET) network (see the references on the AERONET
webpage [21]) provides aerosol optical depth (AOD) estimations with a very good accuracy for
hundreds of measures during the day. Unfortunately, the limited number of geographical areas for
AERONET stations does not allow the monitoring of sandstorms at a global scale. On the contrary,
remote sensing is a powerful tool to derive dust information such as the identification of dust source
regions [22,23], their distribution and intensity (e.g., [24,25]), and the mechanisms associated with dust
emission (e.g., [8,26]). Products such as the Deep Blue moderate-resolution imaging spectroradiometer
(MODIS) data [27] (see also Deep Blue NASA website [28]) give access to a global monitoring of
sandstorm events, over bright desert surfaces, but the reduced number of observations, almost two per
day for MODIS remains a strong drawback. The high temporal resolution sensor Spinning Enhanced
Visible and Infrared Imager (SEVIRI) has opened the way to map sub daily scale variability of dust
presence [24,29,30]. The methods based on structure functions [31] make possible the detection of dust
events by using the Infrared Difference Dust Index (IDDI) but do not allow retrieving the corresponding
AOD. An alternative solution was proposed by Klüser et al. [32], and Schepanski et al. [24,29] who
suggested to use the high acquisition frequency of a geostationary instrument, Meteosat Second
Generation (MSG-SEVIRI), to map the detection of aerosols with a strong sub-daily revisit time.
However, the reproducibility of these results is constrained not only by the fact that the interpretation
of the dust signal in the images is subjective, but also because the analysis is very computer-time
intensive. Therefore, Ashpole et al. [30], proposed a method to automate the detection process from
SEVIRI but on a reduced basis of a single case study in June 2010. However, their short-time study
bypasses the real difficulties of the sandstorm detection method, as it does not take into account the
extreme seasonal day/night variabilities of the input measurements, which makes it precisely very
difficult to define any aerosol detection threshold. Other recent attempts [33–35] to detect mineral dust
from the MSG-SEVIRI measurements, perform with reasonable success in daytime for specific events,
but do not link the detection to AOD values. Brindley et al. [36] and Romano et al. [37] were among
the few to estimate dust AOD values from a look-up-table, and to apply it to a reduced number of
datasets. None of the published methods offers a detection in nighttime.

All these arguments motivate the development of a new dust detection methodology, NASCube
(North African Sand Storm Survey), with the aim of providing a sandstorm detection that is fully
general, working both day and night and valid for any season of the year. Moreover, for the sake
of distributing the analyzed images acquired by the MSG2-SEVIRI geostationary instrument, a new
visible real color and thermal images are delivered to differentiate at the first glance the main classes of
objects, such as clouds, surfaces, or dusts, composing the images. NASCube provides a 24 h detection
and characterization of sandstorms to track their evolution over North Africa and Saudi Arabia.
This project was originally supported by the African Monsoon Multidisciplinary Analysis (AMMA)
experience [38] and funded by the French institutes Institut Pierre-Simon Laplace (IPSL)/Centre
National de la Recherche Scientifique (CNRS)-Université Pierre and Marie Curie (UPMC)-Université
Versailles Saint Quentin (UVSQ), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) co-PI. The first results have been used in several experiments, as demonstrated by the
website citations in the papers [7,39,40].

In 2011, the FENNEC project (The Saharan Climate System) gave us an opportunity to upgrade
the platform, under the new name NASCube, with several objectives: (1) improve the detection of
sandstorms; (2) retrieve the day/night AOD from sandstorms values; (3) improve the standalone
system that computes and distributes the results in real time.

This paper presents the methodology to create true color visible images from the SEVIRI
instrument level 1.5 product in Section 2.1 and the complete operational data processing system
to detect and quantify the sandstorms in Section 2.2. The retrieval algorithms are based on the use
of artificial neural networks (ANN). Section 3 compares the AOD NASCube retrievals with the Deep
Blue NASA MODIS results and with the AERONET [21,41] AOD in-situ measurements.
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2. Methodology

The NASCube system processes METEOSAT (MSG2) SEVIRI instrument level 1.5 data from
EUMETSAT, expressed in radiance units (W·sr−1·m−2) in only eight of the twelve bands, referenced
by their central wavelength: 0.6, 0.8, 1.6, 3.9, 8.7, 9.7, 10.8, and 12.0 µm (Figure 1).
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Figure 1. Spectral bands of SEVIRI. The data are acquired in real-time every 15 min from the
EUMETSAT satellite and are processed by the EUMETSAT ground processing to deliver the LEVEL1
end products.

The flowchart displayed in Figure 2 is useful to guide the reader through the various stages
of the NASCube algorithm. The first step (Section 2.1) aims at generating in daytime (Section 2.1.1)
a synthetic image close to real visible color composite image. Further, in nighttime (Section 2.1.2),
a pseudo color composite image is built from several infrared and thermal bands. The second step
(Section 2.2) is devoted to the estimation of the AOD during the day and at night. To this end, a cloud
mask is first developed, followed by the detection of the aerosol event with an estimate of its AOD.
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Figure 2. NASCube flowchart. NASCube system is divided in three levels: The first level is devoted
to the data acquisition and is divided in two segments, one receiving the close near real time data
using an antenna for the EUMETCast distribution and the other processing the EUMETSAT archive
query system to go backward in time (one year of results needs to process 4.5 terabytes of data). The
second level computes the different masks of clouds and glitters, creates the color composite images
and computes the AOD fields. Some steps use artificial neural networks (ANN). The third one creates
all the subsets needed by the web distribution and the user specific tasks.
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2.1. Generation of a SEVIRI Image in Pseudo Color

2.1.1. Daytime SEVIRI Image

Traditional SEVIRI images are in artificial colors due to the lack of the blue and green visible
bands [42]. We hereafter describe our methodology, which relies on the use of an ANN to synthetize
the missing bands (0.4 and 0.5 µm) in daytime.

In the first step, the discrimination between night and day is achieved by selecting images acquired
with a solar zenith angle (<84.0◦ for daytime pixels) empirically determined by the quality of the
rendered RGB visible images.

To obtain natural colors in the visible bands, the minimum atmospheric correction required is
the compensation for the Rayleigh scattering contribution, to which a correction for ozone aerosols
was added according to the 6S radiative transfer code [43]. Let Lm (W·sr−1·m−2) be the SEVIRI Top Of
Atmosphere (TOA) radiance in band m and ρm the TOA reflectance, calculated as:

ρm = πLm/µsEs, (1)

with µs = cos θs, where θs is the solar zenith angle, and Es is the solar flux at the top of the atmosphere.
The Rayleigh and ozone corrections assuming a Lambert’s law of the surface reflectance defines ρm,c as:

ρm = TO3

[
ρatm +

T(µs)T(µv)ρs
1 − ρs·Salb

]
, (2)

where ρS stands for the surface reflectance and µv = cos θv, with θv the view zenith angle as
defined in the 6S reference manual [43,44]. In Equation (2), TO3 accounts for the light absorption
on the direct downward and upward paths through the stratospheric ozone layer, mainly above the
molecular atmosphere:

TO3 = exp
(
−AO3 ·µO3

·
(

1
cos θs

+
1

cos θv

))
, (3)

where µO3
is the ozone absorber amount for each satellite wavelength, and AO3 is the ozone absorption

coefficient by Shettle et al. [45], tabulated in steps of 200 cm−1 between 13,000 and 24,200 cm−1 and by
steps of 500 cm−1 between 27,500 and 50,000 cm−1.

The other terms of Equation (2) correspond to atmospheric effects and are estimated assuming both
a black surface and a pure molecular atmosphere. ρatm is the atmospheric reflectance that corresponds
to the light directly scattered by the atmosphere. It is computed by the analytical expressions [46] that
reproduce Chandrasekhar isotropic scattering values [47]. T(µs) and T(µv) are the transmission fluxes
of the atmosphere on the path between the sun and the surface, and, respectively, between the surface
and the sensor. Both are estimated from the Delta-Eddington approximation [48], such as

T(µ) =
(2/3 + µ) + (2/3 − µ)·e−τ/µ

(4/3 + τ)
(4)

where µ is the cosine of the solar and/or observational zenith angle and τ is the optical thickness. Salb
is the spherical albedo of the atmosphere. For a pure molecular atmosphere and for some observation
conditions (µs, µv and ρS), numerical figures of ρm were derived directly (independently) from the
“successive orders of scattering” code of Lenoble and al. [49]. By reporting these contributions to
the left-hand side of Equation (2), Salb can be derived, leading to Salb = 0.0497, 0.0198, and 0.0012 for
wavelengths 0.615, 0.810 and 1.64 µm, respectively. Assuming that ρs·Salb(ρs·Salb) � 1 in Equation (2),
the surface reflectance can be computed as:

ρ∗s =

(
ρm/TO3 − ρatm

)
T(µs)T(µv)

. (5)
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from which, the surface reflectance is computed as

ρs =
ρ∗s

1 + Salb·ρ∗s
(6)

Finally, the synthetic bands at 0.4 and 0.5 µm are generated with an ANN. The structure of the
ANN (input, layers, and outputs) was determined empirically using the Stuttgart Neural Network
Simulator (SNNS) [50], until reasonable visible RGB composite images (0.4, 0.5, 0.6 µm) could be
obtained. Thus, the working ANN uses four inputs (three reflectances in bands 0.6, 0.8, and 1.6 µm,
and the ρ0.6,c

ρ0.8,c
ratio) and two hidden layers with 10 nodes each, and yields two outputs, the reflectances

ratios ρ0.6,c
ρ0.4,c

and ρ0.6,c
ρ0.5,c

, used to retrieve the 0.4 and 0.5 µm reflectance values.
As shown in Figure 1, SEVIRI and MODIS have similar spectral bands at 0.6, 0.8 and 1.6 µm.

This spectral overlap is used to train the ANN with MODIS level1B measured reflectances over several
surfaces (ocean, desert, clouds, green regions) with the same Rayleigh and ozone corrections. Although
these spectral bands are not exactly the same between SEVIRI and MODIS, the spectral behavior of
the considered landscapes evolves slowly. This allows us to assimilate the MODIS data products to
generate the SEVIRI ones.

Once the 0.4 µm and 0.5 µm synthetic reflectances are estimated, the final Pseudo Visible
natural-color Composite (PVC) can be built by log-transforming the 0.4, 0.5, and 0.6 µm output
reflectances to 8 bits [0; 255] RGB visible bands (PVC) colors:

PVC(λm) = 256 × log(10, 000 × ρm,c)− min
(max − min)

,

with min = 5.8; max = 9.4 for all three bands. These coefficients were empirically determined from a
few image histograms to obtain good contrasted images.

2.1.2. Night SEVIRI Image

In nighttime, an empirical algorithm was developed with the primary aim to keep a visual
day/night white color transition of the clouds. The final night composite is sufficiently sensitive to
show in the video animations the propagation of the thermal changes over the surface. Three SEVIRI
bands 3.9, 8.7, and 9.7 µm radiances are used to build the RGB Pseudo Night Composites (PNC) for
each instrument acquisition. The final image is directly computed using a linear-log transformation of
the corresponding radiance values:

PNC(λi) = 256 × log(10, 000 × (ai − biρi))− mini
(maxi − mini)

,

with the parameters listed in Table 1, which were empirically adjusted to yield the best contrast for the
resulting night images, as illustrated in Figure 3.

Table 1. Parameters for the linear-log transformation to the Pseudo Night Composites.

Band (λi) PNC Channel ai bi mini maxi

3.9 µm R 0.004478 1.308425 7.5 9.5
8.7 µm G 0.001732 1.247040 7.7 9.5
9.7 µm B 0.003362 1.899304 7.5 9.5
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2.2. Aerosols Detection and AOD Estimation

2.2.1. Introduction

The designed AOD retrieval algorithm follows three steps bypassing the use of specific selection
thresholds to detect sandstorms.

In the first step, we create a sandstorm color anomaly using the well-known dust RGB EUMETSAT
composite [51,52] based on three infrared bands, 8.7, 10.8, and 12.0 µm. This has proven to be very
helpful in dust storms detections over desert areas, because mineral dust aerosols have a high variable
transmission and emission between 8 and 12 µm [53]. However, this sole RGB product is not sufficient
to discriminate sandstorms from clouds or background thermal anomalies. To accurately detect
sandstorms, we had, in a second step, to devise not only a reliable cloud mask but also a mean value
background (a 10-day rolling average) as detailed further below. It is noteworthy that a preliminary
version of this step was implemented in 2006/2007 in the first AMMA database.

In the third step, we train an ANN to correlate the DUST 3 bands fluctuations with several years
of AERONET measurements over 10 specific areas to compute AOD values.

2.2.2. Thermal Anomaly Detection

The dust RGB EUMESAT dust composite uses the three Pseudo Thermal Bands (PTB) defined as:

PTB1 = TB(12.0 µm) − TB(10.8 µm)

PTB2 = TB(10.8 µm) − TB(8.7 µm)

PTB3 = TB(10.8 µm)

Unfortunately, this product gives us a qualitative color contrast that encompasses all thermal
anomalies including clouds, land and sandstorm. Thus, an improved algorithm to discriminate clouds
from sand storms is proposed in two steps.
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The first step aims at delivering finer cloud detection. Indeed, as illustrated in Figure 4, it can be
clearly noted that the METEOSAT cloud Mask (CLM) [54] has notable limitations, such as erroneous
cloud detection, assignment of sandstorms as clouds and failure in detecting clouds over dark land.
This motivated the design of a new cloud mask using machine-learning techniques based on ANN
algorithms. Unlike the ANN recently proposed by Taravat et al. [55], that only provides daytime cloud
detection, our platform includes season-specific ANNs:

(a) Empirically, and after several trials and errors, it was chosen to divide the year into eight periods
of approximately 40 days and to separate day and night cases over ocean (2) and land (2).

(b) As a result, a cloud of 40 × 2 × 2 ANNs was computed. All ANNs take seven input data, and are
built with two hidden layers with 10 nodes each, and lead to one cloudy flag output 0 or 1.
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Figure 4. Comparison of NASCube EUMETSAT cloud mask products on the right hand side
(highlighted in magenta) for one slot on 11 April 2015 at 15:15. On the left, several areas are drawn to
highlight the deficiencies of the EUMETSAT cloud mask detection: (A) two areas (yellow rectangles)
showing erroneous cloud detections; (B) one area (blue rectangle) showing that EUMETSAT assigns
sandstorms as clouds; and (C) two areas (red rectangles) illustrating the failure of EUMETSAT cloud
mask in detecting low clouds over dark surfaces.

For the daytime ANN, the seven inputs are the latitude, the three PVC bands, and the three PTB
bands. For the nighttime ANN, the seven inputs are the latitude; the radiances at 3.9 µm, 8.7 µm, and
9.7 µm; and the three PTB bands.

The ANNs were trained with an iterative empirical process, which involves the selection of
several millions of pixels in representative cloudy areas to build the training set, then a subsequent
visualization of the resulting cloud mask, and the correction of potential imperfections by growing the
training input datasets with additional pixels.

Figure 4 demonstrates that our cloud mask corrects some discrepancies of the CLM EUMETSAT
product and is able to accurately distinguish clouds from sandstorms.

Having built a reliable cloud mask, the second issue is to discriminate sandstorm events among
the thermal anomalies. First, a rolling cloudfree average background of the PTB within a period of
10 days (REF_PTB) is computed as a reference for each of 96 time slots at the pixel level, using our new
cloud mask. The choice of 10 days has been fixed empirically, as it seems to be the minimum number
of days to have cloud-free values over the whole area.

REF_PTB1 = <TB(12.0 µm) − TB(10.8 µm)>
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REF_PTB2 = <TB(10.8 µm) − TB(8.7 µm)>

REF_PTB3 = <TB(10.8 µm)>

where <> stands for the average of the REF_PTBi over the free clouds data among the 10 days, every
15 min and the three channels i = 1, 2, 3.

The atmospheric anomalies (sandstorm and clouds) are revealed by the following difference
contrast SAAi = PTBi − REF_PTBi in W·sr−1·m−2. Finally, the sandstorm is detected by filtering the
remaining data which are not cloudy again using our new cloud mask delivering our new sandstorm
detection layer named hereafter SAA (SAnd Anomaly).

2.2.3. SAA Examples

To illustrate magnitude and evolution of SAA values, Figure 5 displays the SAA composite in the
Sahara region for three days, 6, 8, and 9 January 2011: 6 January is free of anomalies, 8 January exhibits
a huge sandstorm during the day and 9 January contains a sandstorm during the night. Figure 5 also
shows the three components of the SAA across two specific transects during daytime and nighttime.
Among the three SAA channels, the green (10.8–8.7 µm) and blue (10.8 µm) pseudo bands are the
ones that fluctuate the most in the presence of a sandstorm, noting that the sign of the deviations
for the blue band changes from daytime to nighttime as a result of the night thermal inversion. This
demonstrates that SAA values can be used to detect sandstorm anomalies.
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Figure 5. Plots of SAA values in Ww·sr−1·m−2 (in red, 12.0–10.8 µm, in green 10.8–8.7 µm, and in blue
10.8 µm) across spatial transects in the Sahara area (marked as bold white lines) for a sandstorm free
day (6 January 2011) and stormy days (8 January 2011) in daytime and (9 January 2011) in nighttime.

2.2.4. Validation of the Pseudo-Color Construction and NASCube Sandstorm Detection

To qualitatively validate the pseudo-color construction and the sandstorm detection, we present
in Figure 6 a comparison of the results with two time synchronized MODIS granules acquisition on
19 February 2011, illustrating the fidelity of the detection on land of a sandstorm over Egypt and the
Mediterranean Sea. Note that the anomaly detection algorithm has only been implemented over bright
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land so far and is thus not able to capture the sandstorms visible neither over the green Nile Delta nor
over Sea.
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2.2.5. AOD Retrieval Method

Our ultimate goal is to retrieve AOD in an operational process by establishing a correlation
between the pseudo-color anomalies SAA and AOD values. For that purpose, we have used AERONET
AOD measurements [41] for several wavelengths (1.640, 1.020, 0.870, 0.675, 0.500, 0.440, 0.380, and
0.340 µm), from 10 sites geolocalized in Figure 7 (Dakar, Banizoumbou, Tamanrasset, Solar_Village,
Malaga, El Arenosillo, Agoufo, Saada, Sede_Boker, and IER_Cinzana) over six-years from 2007 to 2012.
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Figure 7. Localization map of the 10 AERONET sites used in the AOD training.

The first point was to verify whether there is a correlation between the AERONET AOD
measurements and the color patterns in the SAA product. In this context, a binary mask (yes/no) is
built from the difference of the 12.0 and 10.8 µm thermal bands. A threshold value of 0.16 W·sr−1·m−2

is chosen to select the stronger colored events of SAA over the AERONET sites. Figure 8 shows the time
and spatial coincidences between AERONET AOD values and the NASCube sandstorm binary masks
(replaced in the figure by the original SAA RGB values), over Tamanrasset from June to August 2007
and over El-Arenosillo from July to December 2007, when the sandstorm crosses the Mediterranean
Sea. When a sandstorm is detected a blue circle is drawn using as coordinates X the time and Y the
corresponding AOD found by AERONET.

Figure 8 clearly shows a series of measurements associated to the SAA color outputs. It appears
that the SAA values computed at the exact AERONET time (bottom series of snapshots) match the
highest atmospheric optical thickness values measured by AERONET, except when clouds interfere.
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In these cases, the upper snapshots show the first available NASCube snapshot with a high AOD value
within a time window not exceeding two hours.
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Figure 8. Temporal evolutions of AERONET measurements (red dots) for two sites (top: Tamanrasset;
and bottom: El-Arenosillo). A blue circle is drawn when the NASCube sandstorm mask (in the figure
the mask is replaced by the SAA RGB values) detects a stormy point that time-wise and spatial-wise
coincides with AERONET AOD values. Some high AOD events are detected by NASCube with a time
delay not exceeding two hours.

As shown in Figure 9 there is a clear correlation between the AOD measured with AERONET
and our SAA product. Thus, this correlation is further modeled using an ANN tool. After many tests,
it appeared that the best AERONET correlation was obtained using an ANN with 10 inputs (three
PTB, three REF_PTB, three SAA, and the AERONET wavelength), two hidden layers with eight nodes
each and as output the AERONET measurement. Figure 9 displays a comparison of the AOD values
predicted by the ANN with the AERONET measurements taken from 2007–2012. The good agreement
across a large number of measurements (from about 10,000 to 150,000) demonstrates the quality of the
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designed AOD SEVIRI retrieval model across all wavelengths. Its validation will be further illustrated
in Section 3.
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Figure 9. Operational neural AOD retrieval model. The mean (dots) and standard deviation of the
NASCube AOD retrievals versus the input AERONET measurements for AOD value split in classes of
0.1 for all wavelengths, for values covering 2007 to 2012.

2.2.6. Validation of AOD Retrieval Method

To fully demonstrate that the AOD retrieval performs well, we select the AERONET AOD values
from the available sites in 2016 (Dakar, Malaga, El Arenosillo, Saada, Sede_Boker, IER_Cinzana).
As we have already shown, the synchronization between the AERONET and SEVIRI measurements
is not perfect, especially near cloudy areas, introducing a slight bias when comparing NASCube to
AERONET data. However, the comparison presented in Figure 10 for year 2016 comforts us in the
quality of the AOD NASCube model, as the results are of similar quality to that used in the training
dataset (see Figure 9).Remote Sens. 2017, 9, 896  12 of 20 
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3. Results and Discussion

3.1. Data Description

There are two types of instruments that provide AOD values; the in-situ instruments as those
implemented by the AERONET network with, a very good accuracy and hundreds of measurements
per day and the satellites retrievals as Deep Blue using the MODIS experiment with large scenes. The
limitations that we are facing are the limited number of geographical areas for AERONET and the
reduced number of images, up to two per day for MODIS. The geostationary MSG-SEVIRI instrument
provides an extraordinary tool with a global vision of the North African and Saudi Arabia deserts and
images every 15 min, which allow following the evolution and trajectories of the sandstorms.

3.2. Selection of Data For The Comparison of AOD Values (NASCube, AERONET, Deep Blue)

The NASCube AOD retrieved values are validated against AERONET and Deep Blue AOD values.
This implies:

(1) Selecting over six years, from 2007 to 2012, of AERONET AOD measurements for several
wavelengths (0.675, 0.500, 0.440 µm), from 10 sites geolocalized in Figure 7.

(2) Over the same time period, we extract the corresponding pixel over land from the Deep Blue
MYD04L2 NASA PRODUCT the AOD at 0.550 µm.

(3) Time and space (±1 pixel around the AERONET site) synchronized NASCube retrievals (0.675,
0.500, 0.440 µm).

3.3. Validation of AOD Retrievals with Respect to AERONET and Deep Blue in Daytime

This validation is achieved in two steps. Firstly, data acquired during daytime are validated by
comparing the results between the three instruments simultaneously for the six years (2007–2012).
To this end, we synchronize the locations and acquisition time of all measurements to compute the
standard deviations for different locations and period of integration time assuming that the AERONET
measurements are the reference. In order to have a maximum number of measurements we use the
wavelengths available for AERONET site: Deep Blue at 0.550 µm, AERONET and NASCube 0.440
µm, 0.500 µm and at Dakar 0.675 µm. Note that AOD values vary smoothly through the 0.4–0.6 µm
spectral region [56], making quantitative comparison across instruments possible.

Figure 11 shows the comparison of the 3 AOD products. For several sites, we compute the mean
AOD and its standard deviation with AERONET, week by week for the six years (Figure 11a) and
synchronized in time (±15 min) with Deep Blue acquisition (Figure 11b). The results clearly show that
NASCube is not accurate over Tamanrasset due to the difficulties to get a stable background reference
(REF_PTB) in this region.

Figure 12 compares the retrieval AOD values for all areas and at coincident times. Deep Blue
shows smaller standard deviations than NASCube, but Deep Blue completely discards AOD values
larger than 2.0, in a range where NASCube and AERONET AOD orders of magnitude match fairly
well. Note that NASCube tends to overestimate small AOD values below 0.3. This is certainly
related to a lack of sensitivity of REF_PTB values. However, this deficiency does not hamper accurate
sandstorm detections.

Figure 13 compares in more details the three AOD products by displaying the time-evolution
of the weekly-integrated AOD values for three areas. A Bezier smoothing function is applied to
eliminate the short time noise. Figure 13a,b illustrates two cases for which all three AOD products
yield very similar AOD time profiles. Over Tamanrasset (Figure 13c), DEEPLUE profiles matches
that of AERONET, while NASCube AOD values are overestimated. We suspect that this discrepancy
might be attributed to difficulties in building the thermal reference over this mountainous area. On the
contrary, over Sede-Boker (Figure 13d), NASCube is in line with AERONET, while Deep Blue AOD
values are overestimated.



Remote Sens. 2017, 9, 896 13 of 19

Remote Sens. 2017, 9, 896  13 of 20 

 

this end, we synchronize the locations and acquisition time of all measurements to compute the 
standard deviations for different locations and period of integration time assuming that the 
AERONET measurements are the reference. In order to have a maximum number of measurements 
we use the wavelengths available for AERONET site: Deep Blue at 0.550 µm, AERONET and 
NASCube 0.440 µm, 0.500 µm and at Dakar 0.675 µm. Note that AOD values vary smoothly through 
the 0.4–0.6 µm spectral region [56], making quantitative comparison across instruments possible.  

Figure 11 shows the comparison of the 3 AOD products. For several sites, we compute the mean 
AOD and its standard deviation with AERONET, week by week for the six years (Figure 11a) and 
synchronized in time (±15 min) with Deep Blue acquisition (Figure 11b). The results clearly show that 
NASCube is not accurate over Tamanrasset due to the difficulties to get a stable background reference 
(REF_PTB) in this region.  

 
(a)

 
(b)

Figure 11. The AOD mean values and standard deviations with respect to AERONET for the 
NASCube (red) and Deep Blue (blue) at nine different locations from 2007–2012: (a) taking into 
account all measurements acquired by each instrument with a week integration time; and (b) the three 
instruments are synchronized to the Deep Blue acquisition time ± 10 min. 

  

Figure 11. The AOD mean values and standard deviations with respect to AERONET for the NASCube
(red) and Deep Blue (blue) at nine different locations from 2007–2012: (a) taking into account all
measurements acquired by each instrument with a week integration time; and (b) the three instruments
are synchronized to the Deep Blue acquisition time ± 10 min.
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Figure 13. Time-evolutions of the AOD mean values at about 0.5 µm averaged over a week for the 
three instruments during 2007–2012 (AERONET in black, Deep Blue in blue, and NASCube in red). 
Four specific AERONET sites have been selected: (a) Saasa; (b) Solar Village; (c) Tamanrasset; (d) 
Sede-Boker. A Bezier function is applied to eliminate short time variations.  

Figure 13. Time-evolutions of the AOD mean values at about 0.5 µm averaged over a week for the three
instruments during 2007–2012 (AERONET in black, Deep Blue in blue, and NASCube in red). Four
specific AERONET sites have been selected: (a) Saasa; (b) Solar Village; (c) Tamanrasset; (d) Sede-Boker.
A Bezier function is applied to eliminate short time variations.

In conclusion, we may infer that Deep Blue and NASCube products are complementary; NASCube
may provide results for high AOD values, whereas Deep Blue has difficulties in particular over
land areas, resulting in discontinuities between land and ocean AOD values, as revealed by several
snapshots of Figure 14. Indeed, for matching time slots, the magnitude of the large Deep Blue AOD
values over the ocean goes along with the NASCube AOD values retrieved over land, while there are
severe ocean/land discrepancies in the Deep Blue AOD values.
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Figure 14. Overviews of Deep Blue (AQUA) (left inset) and NASCube (right inset) AOD values. 
NASCube only predicts AOD values over land. The various snapshots illustrate that Deep Blue AOD 
values are not continuous across land and ocean. On the other hand, the ocean Deep Blue results are 
close to the NASCube land ones. 

3.4. Validation of AOD Retrievals in Nighttime 

Our AOD product is now validated in nighttime. Figure 15 illustrates that there is no significant 
discontinuity in the structures and in the AOD values across the day/night boundaries for the three 
different transects. 
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Figure 14. Overviews of Deep Blue (AQUA) (left inset) and NASCube (right inset) AOD values.
NASCube only predicts AOD values over land. The various snapshots illustrate that Deep Blue AOD
values are not continuous across land and ocean. On the other hand, the ocean Deep Blue results are
close to the NASCube land ones.

3.4. Validation of AOD Retrievals in Nighttime

Our AOD product is now validated in nighttime. Figure 15 illustrates that there is no significant
discontinuity in the structures and in the AOD values across the day/night boundaries for the three
different transects.
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Figure 15. (a) Overview of day/night AOD retrievals on 9 March 2007; and (b) AOD profiles over 
three transects labeled (1), (2) and (3) across the day/night boundary; the horizontal lines correspond 
to the average values across the transect. 

4. Conclusions, Perspectives and the NASCube Website 

NASCube is the first attempt to provide to the scientific community an operational platform to 
detect sandstorms using SEVIRI measurements, with the ability of being easily tuned to the user 
needs and/or to implement several versions of the algorithm devoted to sandstorm detection. Figure 
2 summarizes the NASCube system and the web service through a flowchart. The system has been 
running on a MAC Power G4 machine type for about 10 years with minimal human maintenance. 
The algorithm is only able to detect sandstorms over land so far; detection over water will be 
proposed at a later stage. The current detection algorithm has difficulties to retrieve AOD values 
below 0.3 and over bright areas such as the Bodele desert where the signal at the source level is so 
intense that it is beyond the algorithm detection. We have identified some sites where the AOD values 
are overestimated, such as Tamanrasset, as discussed in Section 3, and the reasons for this 
discrepancy are presently unclear. The availability of a 10-year database opens the way to extensions 
along the following lines: (1) sandstorm source detection; (2) tracking of sandstorm trajectories; (3) 
prediction of sandstorm trajectories at short time; (4) validating the nighttime AOD retrieval using 
numerous lunar photometer measurements; (5) improving sandstorm detections in mountainous 
areas by fine tuning the REF_PTBrgb reference, which will also help predicting small AOD values 
(below 0.3); and (6) building of a quantitative AOD retrieval over oceans. 

The NASCube database has already been beneficial to several experiments such as the AMMA 
campaign of 2006, the FENNEC campaigns in 2011/2012 and in the ChArMEx campaign of 2012/2015. 

A significant effort was devoted to the creation of a website [57] able to display the whole 
database results since 2006. The website can be regarded as a “blackboard” platform where we can 
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Figure 15. (a) Overview of day/night AOD retrievals on 9 March 2007; and (b) AOD profiles over
three transects labeled (1), (2) and (3) across the day/night boundary; the horizontal lines correspond
to the average values across the transect.

4. Conclusions, Perspectives and the NASCube Website

NASCube is the first attempt to provide to the scientific community an operational platform to
detect sandstorms using SEVIRI measurements, with the ability of being easily tuned to the user needs
and/or to implement several versions of the algorithm devoted to sandstorm detection. Figure 2
summarizes the NASCube system and the web service through a flowchart. The system has been
running on a MAC Power G4 machine type for about 10 years with minimal human maintenance. The
algorithm is only able to detect sandstorms over land so far; detection over water will be proposed
at a later stage. The current detection algorithm has difficulties to retrieve AOD values below 0.3
and over bright areas such as the Bodele desert where the signal at the source level is so intense
that it is beyond the algorithm detection. We have identified some sites where the AOD values are
overestimated, such as Tamanrasset, as discussed in Section 3, and the reasons for this discrepancy
are presently unclear. The availability of a 10-year database opens the way to extensions along the
following lines: (1) sandstorm source detection; (2) tracking of sandstorm trajectories; (3) prediction
of sandstorm trajectories at short time; (4) validating the nighttime AOD retrieval using numerous
lunar photometer measurements; (5) improving sandstorm detections in mountainous areas by fine
tuning the REF_PTBrgb reference, which will also help predicting small AOD values (below 0.3); and
(6) building of a quantitative AOD retrieval over oceans.

The NASCube database has already been beneficial to several experiments such as the AMMA
campaign of 2006, the FENNEC campaigns in 2011/2012 and in the ChArMEx campaign of 2012/2015.

A significant effort was devoted to the creation of a website [57] able to display the whole database
results since 2006. The website can be regarded as a “blackboard” platform where we can implement
new applications following our day-to-day needs or external user recommendations. The user is able
to select and display any color composite over the seven years to near real time and download videos
with the sandstorm inlays. Color code levels ranging from white to deep orange indicate the level of
sandstorms in the calendars and daily sliders. The platform also provides a useful external interface to
download the composite results using command lines either with wget or curl processes [58]. Statistics
of the web access to the NASCube page [59] demonstrate that the older AMMA website was intensively
used during 2007–2012 by French laboratories, while the currently running NASCube platform is
hopefully interesting to English institutions as well.
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