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Abstract: Vegetation recovery monitoring is critical for assessing denudation areas after landslides
have occurred. A long-term and broad area investigation using remote sensing techniques is an
efficient and cost-effective approach incorporating the consideration of radiometric correction and
seasonality variations across multi-date satellite images. This paper investigates long-term vegetation
recovery using 14 SPOT satellite images spanning from 1999 to 2011 over the landslide area of
Mt. Jou-Jou in central Taiwan, which was caused by the Chi-Chi earthquake in 1999. The vegetation
status was evaluated by the Normalized Difference Vegetation Index (NDVI) with radiometric
correction between multi-date images based on pseudoinvariant features, and subsequently a
vegetation recovery rate (VRR) model was empirically established after seasonality adjustment
was performed on the multi-date NDVI images. An increasing tendency of the vegetation recovery in
the landslide area of Mt. Jou-Jou appeared based on the NDVI value rising to 0.367 in March 2011
from −0.044 right after the catastrophic earthquake. The vegetation recovery rate with seasonality
adjustment approached 81.5% for the total area and 81.3% for the landslide area through 12 years
succession. The seasonality adjustment also enhanced the VRR model with a determination coefficient
that increased from 0.883 to 0.916 for the landslide area and from 0.584 to 0.915 for the total area,
highlighting the necessity of seasonality adjustment in multi-date vegetation observations using
satellite images. Furthermore, the association between precipitation and NDVI was discussed, and the
inverse relationship with the reoccurrence of high-intensity short-duration rainfall and yearly heavy
rainfall was observed, in agreement with the on-site investigation.

Keywords: landslide; Normalized Difference Vegetation Index (NDVI); vegetation recovery rate;
seasonality adjustment; multi-date satellite images

1. Introduction

Located in a sub-tropical and seismic area, Taiwan often suffers from the impacts of
earthquakes, typhoons, and torrential rains, which induce a high probability occurrence of landslides.
On 21 September 1999, the Chi-Chi earthquake with ML 7.3, which is the most serious natural
catastrophe in Taiwan of the past century, shocked central Taiwan and significantly changed the
geographical features of the area. Earthquake-induced landslides represent one of the most hazardous
impacts after severe seismic events [1–9]. Thousands of landslide spots induced by the Chi-Chi
earthquake produced a large amount of soil and stones that could turn into debris flow and threaten
the residents and agricultural activities [10–13]. The subsequent intense rainfall following the Chi-Chi
earthquake exacerbated the situation by causing an unexpected increase in the collapse of the terrain
slopes because of the extent of the bare land area in the landslide area. Mt. Jou-Jou was one of
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the most seriously damaged areas. This broad area of the upper hillsides was bare of vegetation,
and dramatically increased the suspended solids in the air causing a serious air quality problem.
Thus, Mt. Jou-Jou was established as a Nature Reserve Area by the Taiwan Forest Bureau in 2000,
while several ecological engineering attempts were implemented to enhance the vegetation recovery
and ecological restoration to stabilize the landslide area.

To evaluate the effect of these ecological restoration projects, a long-term ground observation program
was initiated in Mt. Jou-Jou. The distribution of vegetation, soil composition, water level, and the condition
of spillways and hillsides were observed in field investigations [14]. However, on-site monitoring is
labor-intensive and costly for long-term monitoring over such a broad mountainous region. To determine
the efficacy of ecological restoration projects, an estimate of the vegetation recovery rate using remote
sensing data is more efficient and cost-effective for broad area monitoring [15–19].

Remote sensing techniques have been recognized as a useful tool for the processing and display of
spatial data and have been variously employed to provide an effective assessment of remedial measures
and aided in decision analyses [20–22]. Remote sensing data from the Advanced Very High Resolution
Radiometer (AVHRR) sensor on the National Oceanic and Atmospheric Administration’s (NOAA’s)
operational series of meteorological satellites were previously used to monitor vegetation dynamics
for Africa over a 19-month period [23]. As the AVHRR sensor continues operating, Harris et al.
(2014) [24] used 25 years of GIMMS (Global Inventory Modelling and Mapping Studies) AVHRR-NDVI
data to investigate vegetation cover persistence across southern Africa. Digital remotely sensed
images acquired from a wide series of sensors have proven to be effective sources of information to
explore and monitor the earth’s surface over the last two decades [25–29]. The combination of the
multi-spectral optical SPOT-4 and the airborne CARABAS-II very-high frequency (VHF) synthetic
aperture radar (SAR) has also proved useful for standwise stem volume estimations in forestry
applications [30]. Lin et al. (2002) [31] used remote sensing and GIS (geographic information system)
techniques to assess landslides and debris flows. An extensive bibliography of works is available on
the use of differential SAR interferometry (DInSAR) and multi-interferograms SAR interferometry
(A-DInSAR) for landslide monitoring and integrating with in situ monitoring instrumentation [32–34].
A series of Landsat satellites have provided numerous opportunities in earth surface observations [35].
For instance, Landsat-5 thematic mapper (TM) imagery was applied to study post-fire vegetation
recovery in North-East Victoria [36]. Landsat-7 enhanced thematic mapper plus (ETM+) satellite
imagery was used to identify spectrally anomalous locations with a 98% overall accuracy for rangeland
management [37]. A combination of the Landsat 8 satellite and SAR imageries change detection
method has been proposed for landslide mapping in vegetated areas [38]. Remotely sensed data
extracted using the fuzzy c-mean algorithm and GIS, coupled with sediment yield estimation and
vegetated buffer strip models, were used to evaluate the efficiency of erosion control for land use
changes from cultivated to reforested land [39]. One other significant advantage of remote sensing
and GIS techniques over the traditional numerical methods is their capability of visually displaying
the results of spatial assessments and with relative ease. However, for a long-term remote sensing
observation, image sources from different satellite sensors may cause a systematic error on multi-date
images. A series of SPOT satellite sensors could be a possible solution to provide a more consistent
imaging system for a study period of more than a decade.

Based on a couple of previous reports using satellite images for observation purposes,
the vegetation of Mt. Jou-Jou was claimed to recover its vegetation by 47% in 2000 [40], 59% in
2001 [17], 66% in 2002 [41], and 86–89% in 2005 [19,42]. However, the on-site vegetation recovery
of Mt. Jou-Jou was observed to be less than the projected vegetation recovery rate (VRR) based on
previous studies due to several possible reasons. First of all, a very limited number of satellite
images used for evaluating vegetation status may statistically mislead a regression model with
deficient representativeness. Secondly, the projected VRR of previous studies established based
on short-term observations could be insufficient for a long-term trajectory prediction. Moreover,
natural seasonal effects affecting vegetation variation should be taken into account when evaluating
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the vegetation recovering status. Therefore, in order to precisely assess the vegetation restoration
condition of Mt. Jou-Jou after the Chi-Chi earthquake, this study applied the Normalized Difference
Vegetation Index (NDVI) derived from 14 SPOT satellite images with radiometric correction based on
pseudoinvariant features. Additionally, the vegetation status was evaluated for the landslide area and
the total area separately across multi-date images spanning from 1999 to 2011. Moreover, a seasonality
adjustment was used to accommodate seasonal variations among multi-date images to fairly represent
a long-term vegetation recovery. Furthermore, since high-intensity short-duration rainfall events have
been considered as the main triggering factors for shallow slope failures [14,43,44], the vegetation
recovery rate affected by the corresponding precipitation was analyzed to quantitatively reveal the
impact of high-intensity short-duration rainfall on the vegetation variation in Mt. Jou-Jou.

2. Materials and Methods

2.1. Study Site

The pronunciation of “Jou” is the same as “9” in Mandarin, and 99 means numerous in Chinese; the
special landscape of numerous peaks on Mt. Jou-Jou is shown in Figure 1. Mt. Jou-Jou, with a watershed
area of 4396 ha, is located on the north shore of the Wu Stream in Nan-Tou County (Figure 1). The gravel
layer with high hydraulic conductivity within the area of Mt. Jou-Jou is 1000 m thick. The slope ranges
from 50◦ to 85◦ and over 50% of the slope area lies between 60~70◦ [45]. The main hillslopes of Mt. Jou-Jou
are characterized as raised-straight and double-raised shapes. The geology of Mt. Jou-Jou is dominated
by Pliocene and Pleistocene rocks. Mt. Jou-Jou is mostly comprised of Toukoshan formations consisting
of three layers: an upper layer of bulk gravel rocks, a middle layer of sand, clay, and, gravel interbeds,
and a lower layer of sand, shale, and thin gravel interbeds [14]. The surface of Mt. Jou-Jou is rugged,
with many deep gullies due to the consolidated gravel layer under dry conditions. The surface geologic
formation erodes into the deeper layers during the rainy season. Nearby Mt. Jou-Jou are the Shuang-dong
and Chelongpu faults, the latter of which triggered the Chi-Chi earthquake. Mt. Jou-Jou has a mean
annual rainfall of about 1800 mm with a non-uniform temporal and spatial distribution. After the Chi-Chi
earthquake, a five-year on-site monitoring program was conducted and revealed that 80.2% of the annual
rainfall on Mt. Jou-Jou occurs during the rainy season (April–September), compared to 19.8% during the
dry season (October–March) [14]. Shallow failures frequently occurred on Mt. Jou-Jou in response to
high-intensity and short-duration rainfalls, as well as earthquake events.
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In response, the Council of Agriculture in Taiwan designated an 1198-ha area of Mt. Jou-Jou
as a nature reservation for a vegetative succession study based on the Taiwan Cultural Heritage
Protection Law. The vegetation is comprised of woody plants, such as Trema orientalis, Ficus erecta
Thunb, Koelreuteria henryi Dumm, Cyclobalanopsis galuca, Arundo formosana, Pinus taiwanensis Hay, Pinus
morrisonicola Hay, and Arundo formosana (the dominant species on Mt. Jou-Jou) [16].

2.2. SPOT Satellite Images

Fourteen SPOT 1, 2, and 4 satellite images with a 20-m spatial resolution were collected from 1999
to 2011 (Table 1). The image taken on 1 April 1999 covers the pre-earthquake area of Mt. Jou-Jou and
represents the original pre-earthquake condition. The image taken on 27 September 1999 was recorded
immediately after the Chi-Chi earthquake and represents the environment at its most damaged
condition. The other 13 sequential images demonstrate the subsequent recovery in the vegetation
condition after the earthquake until 2011, when the missions of SPOT 1, 2, and 4 satellites terminated
in 2002, 2009, and 2013, respectively.

Table 1. NDVI values derived from SPOT satellite images. Image date is provided in yyyy/mm/dd
format.

# Image
Date

SPOT
Satellite

Time after Chi-Chi
Earthquake

NDVI

Total Area Non-Landslide Area Landslide Area

1 1999/04/01 2 −0.47 0.523 0.524 0.518
2 1999/09/27 1 0.02 0.278 0.367 −0.044
3 2000/04/18 4 0.58 0.331 0.390 0.119
4 2001/01/02 1 1.28 0.286 0.340 0.090
5 2001/11/10 1 2.14 0.352 0.393 0.201
6 2002/10/17 2 3.07 0.387 0.419 0.272
7 2003/02/27 4 3.44 0.453 0.490 0.321
8 2003/07/10 2 3.80 0.467 0.511 0.309
9 2004/07/12 2 4.81 0.384 0.408 0.297

10 2005/11/24 2 6.18 0.411 0.439 0.312
11 2006/01/09 2 6.31 0.443 0.476 0.324
12 2008/03/09 2 8.47 0.424 0.448 0.337
13 2010/11/03 4 11.13 0.411 0.423 0.367
14 2011/03/13 4 11.48 0.431 0.448 0.367

Note: NDVI values of pre-and post- Chi-Chi earthquake were marked in bold.

Multi-temporal satellite images are often used in long-term programs of the earth’s surface
monitoring and change detection under the assumption of similar imaging conditions. In addition
to geometric corrections, a radiometric correction has a critical influence on the analysis of multi-date
satellite imagery. Due to the differences in the imaging environments for the different acquisition dates,
radiometric correction is needed to eliminate the effects of these variations. Both deterministic and
empirical methods can be used for radiometric correction; however, various imaging conditions must
be considered with deterministic radiometric correction, such as the radiometric differences induced
by the incidence angle of the sun; solar elevation; atmospheric absorption and scattering; variations
in scan angle; and system noise, in addition to the reflectance of the objects. The empirical method is
therefore more popularly used, and was adopted in this study. Pseudoinvariant Features (PIFs), which are
possible “dark” and “bright” reference points with constant radiance, such as buildings, roads, and water,
can be used as temporally-independent reference points on satellite images [21,46–48]. In this research,
an aerial photograph with a better spatial resolution was used as a ground truth for reference to identify
the locations of PIFs. The radiometrical correction was performed band by band using the 10 July 2003
image as the reference satellite image. A total of 93 pseudoinvariant features (bright and dark reference
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points) were selected on satellite images (Figure 2). A linear regression model can be established between
the corrected and reference images to reduce the radiometric differences as:

DN′ = mDN + k (1)

in which DN’ and DN are the digital numbers on the corrected and reference images, respectively;
m and k are constants for each band of all satellite images, and can be calculated using a
least-squares difference of PIFs that appear both on the reference image and the corrected images.
Through this equation, the multi-temporal images were then radiometrically corrected by examining
the band-to-band scatter-grams in which the pixels display little variation between the imaging dates.
The radiometrically corrected false color images are shown in Figure 3.
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2.3. The Normalized Difference Vegetation Index (NDVI)

The extent and localization of the vegetation recovery were estimated by using the Normalized
Difference Vegetation Index (NDVI). Based on the characteristic of chlorophyll absorption decreasing at
red wavelengths and increasing in the infrared wavelengths, the spectral response of living vegetation
can be measured by the band ratio of reflected red over infrared wavelengths [49]. Because chlorophyll
exhibits high reflectance in the near-infrared range and low reflectance in the red range, a high NDVI
value represents an area covered with healthy vegetation. Recently, NDVI was adopted as an index to
identify the inundated terrain and damaged areas where vegetation was seriously destroyed by the
Sumatra tsunami [26]. With the aid of probability theory, an alternative methodology for assessing
VI (vegetation index) efficiency was also developed for vegetation variation [50]. To quantify the
growth of vegetation, NDVI was analyzed to give an overview of the vegetation before and after the
earthquake [51]. NDVI can be calculated as:

NDVI =
NIR− RED
NIR + RED

(2)

in which NIR is the brightness of the near infrared band, and RED is the brightness of the red band.
Theoretically NDVI ranges between possible values of −1 and 1.

2.4. Landslide Area Extraction

In order to evaluate the vegetation status for the same denudation location, this study extracted
the landslide area by referencing the maximum denudation area from a series of radiometrically
corrected images corresponding with negative NDVI values and excluding areas with a slope of
less than 10 degrees to avoid the misclassification of river banks/channels. In addition, total and
non-landslide areas were extracted from satellite images of Mt. Jou-Jou for comparison. The areas of
the total, non-landslide, and landslide areas are 30.4 km2, 24.5 km2, and 5.9 km2, respectively.
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2.5. Seasonality Adjustment

A simple seasonality adjustment was employed to accommodate seasonal variations among
multi-date images. The present study assumed that the spatial distribution of natural seasonal
influence is uniform across an image. The non-landslide area, which was only affected by seasonality
and not the earthquake, was taken as a reference area. Specifically, the NDVI across all pixels of
the non-landslide area was extracted from each image and averaged to provide a reference baseline.
The differences between the reference baseline and NDVI values of the reference area for each image
were calculated and utilized as offset values for seasonality adjustment. After adjusting the landslide
and total areas NDVI using the offset values, the adjusted NDVI can be obtained and the modified
VRR can be consequently estimated for each image. Thus, the modified VRR can be used to monitor
the timing of vegetation recovery and provide insight into the post-earthquake vegetation response.

2.6. Estimation of Vegetation Recovery Rate (VRR)

NDVI variation can be used to express the level of vegetation recovery in damaged areas.
Identified by the field investigation and aerial photographs, pixels with positive NDVI values were
considered as areas covered by vegetation, and were then included in binary vegetation maps. Based on
the difference of vegetated area between these thematic maps derived from the pre-earthquake image
and the post-earthquake images, a vegetation recovery rate (VRR) can be calculated at any specific
time point, as follows:

VRR =
N2 − N1

N0 − N1
× 100% (3)

in which N0, N1, and N2 represent the number of pixels of the area covered by vegetation as derived
from the satellite images acquired before the earthquake, right after the earthquake, and at a specific
time point after the earthquake, respectively. A positive VRR means that the vegetation condition is
recovering and reaches full recovery as the VRR approaches 100%.

2.7. Rainfall Data

Daily rainfall data were collected from Shuang-dong station, the nearest rainfall station to
Mt. Jou-Jou, from 1999 to 2011. Based on the heavy rainfall definition established by the Taiwan Central
Weather Bureau in 2004, daily rainfall exceeding 130 mm, 200 mm, and 350 mm can be considered as
extremely heavy rain, torrential rain, and extremely torrential rain, respectively. The corresponding
number of days with rainfall exceeding the abovementioned thresholds in Shuang-dong station were
extracted and the 24-h rainfalls above 130 mm were aggregated on a yearly basis for the study period.

3. Results and Discussion

3.1. SPOT Satellite Images

To quantify the vegetation of Mt. Jou-Jou during the consecutive 13 years after the earthquake,
the NDVI was calculated to approximate the vegetation on the 14 frames of SPOT images, because
the spectral vegetation index is highly correlated with the green leaf biomass or projected green-leaf
area. First of all, the radiometric correction was used to eliminate the imaging difference between
multi-date satellite images. By taking the 10 July 2003 image with a solar elevation of 68.7◦ and
an azimuth of 93.3◦ as the reference image due to its lowest shadow influence, a total of 93 PIFs of
Mt. Jou-Jou were selected on all satellite images, as shown in Figure 2. Linear regression models were
established between the reference image and other images for each band to reduce the radiometric
differences. The adjusted multi-date satellite images are presented in chromatic consistency in Figure 3.
The abundant satellite images provide a longer temporal coverage and more spatial information to
better estimate the vegetation status of Mt. Jou-Jou.
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3.2. NDVI Analysis

The NDVI was calculated on a pixel-by-pixel basis for all radiometrically corrected images
(Figure 4). Locations excluding the river channel of the Wu stream with negative NDVI values
were identified as landslide areas and are shown in brown in Figure 4. Approximately 5.9 km2

earthquake-inducing destruction to the vegetation was identified, which was previously a full-grown
forest on Mt. Jou-Jou. For comparative purposes, this 5.9 km2 area was classified as the landslide
area. The NDVI values of the total, non-landslide, and landslide areas were extracted and are
shown in Figure 5, which reveals an overall increasing tendency in NDVI after the earthquake
despite fluctuations due to associated typhoon events. Figure 6 shows that the NDVI value dropped
dramatically immediately after the earthquake for the landslide area and fluctuated in the subsequent
years. By comparing the thematic maps in Figure 4, one can easily identify the significant vegetation
recovery in the landslide areas. One typical site of landslides was observed at close range in the years
2000, 2001, 2004, and 2008 to illustrate the vegetation recovery (Figure 7).

Table 1 illustrates the NDVI values for the total, non-landslide, and landslide areas of Mt. Jou-Jou.
The pre-quake vegetation condition in terms of the NDVI value was excellent, with an average NDVI
value of 0.523 for the whole landscape, whereas those spots where the landslide occurred after the
quake had a slightly lower NDVI value (0.518). The average NDVI value of the landslide area sharply
declined to −0.044 after the earthquake. Twelve years later, the NDVI value on 13 March 2011 had
risen to 0.431, 0.448, and 0.367 for the total, non-landslide, and landslide areas, respectively.

3.3. VRR and Modified VRR

The VRR and the modified VRR, which were calculated using the adjusted NDVI, were estimated
for the landslide and total areas in Mt. Jou-Jou (Table 2) and show a relatively quick growth in the early
periods after the earthquake and then a gradual improvement in vegetation recovery. The modified
VRR of Mt. Jou-Jou in 2011 approached 81.3% and 81.5% for the landslide and total areas, respectively.
In general, the modified VRR in the landslide area is higher than that in the total area in the first two
years due to artificial aerial afforestation right after the earthquake.

In order to evaluate the VRR of Mt. Jou-Jou, a trend analysis of VRR in terms of the time after
the earthquake was performed for the total area (Figure 8a) and landslide area (Figure 8b). Both the
VRR without seasonality adjustment and the modified VRR using adjusted NDVI were analyzed.
The coefficient of determination, denoted as R2, and p-values were reported to provide measurements
of goodness-of-fit and significance levels for VRR and modified VRR models, respectively. P-values
from the VRR and modified VRR of the total and landslide area indicate that all recovery rates and
intercept values are significant. Based on the reported R2 values, the model for the landslide area
performs better than that of the total area. For the total area (Figure 8a), the R2 value for the modified
VRR model is 0.915, which is a significant improvement compared to the R2 value for the original VRR
model (0.584). The modified VRR model of the landslide area has a higher R2 value of 0.916, while the
R2 value for the VRR model of the landslide area is 0.883 (Figure 8b).

According to the formula of THE modified VRR model for the landslide area, the vegetation of
the landslide area at Mt. Jou-Jou is estimated to require approximately 68 years to reach full recovery
(Figure 8b). Additionally, for the total area, a relatively low VRR value of 0.031 was observed in
2 January 2001, whereas two relatively high VRR values, 0.715 and 0.772, were observed in 27 February
2003 and 10 July 2003, respectively. After the seasonality adjustment, the relatively low VRR observed
in 2 January 2001 was adjusted upward to 0.393, whereas the two relatively high VRR values observed
in 2003 were adjusted downward to 0.598 and 0.516. In terms of R2 and p-values, the modified VRR
model outperforms the original VRR model without seasonality adjustment for both areas, indicating
that the seasonality adjustment provides a better estimation of the vegetation recovery status.
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3.4. The Relationship between NDVI and Corresponding Precipitation

In addition to seasonal effects, high-intensity short-duration rainfall is another major factor
associated with vegetation recovery and triggering shallow slope failures [14,43,44,52]. According
to the early-warning regulation in Taiwan, the Central Weather Bureau issues a heavy rainfall alert
publically when rainfall exceeds 130 mm in order to minimize possible impacts, such as landslides
and debris flows. To illustrate the relationship between high-intensity short-duration rainfall and
the NDVI, the values for the number of days per year with 24-h rainfall exceeding 130 mm, 200 mm,
and 350 mm were obtained for each year (Figure 9a). The NDVI values in 2001 and 2003 were estimated
by averaging two images in 2001 (2 January 2001 and 10 November 2001) and 2003 (27 February 2003
and 10 July 2003), respectively. In Figure 9a, no rainfall record exceeds 130 mm in 2002 and 2003, and a
large increase in NDVI is observed. Likewise, in the years 2010 and 2011, the total area NDVIs increase
as no heavy rainfall occurs. In 2004, as the number of days of heavy rainfall exceeding 130 mm and
200 mm increases to four and two, respectively, a large drop in the NDVI is observed. Three, two,
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and one days in 2008 had rainfall records above 130 mm, 200 mm, and 350 mm, respectively, and the
corresponding total area NDVI decreased.

Table 2. VRR and modified VRR of the total and landslide areas. Image date is provided in
yyyy/mm/dd format.

# Image
Date

NDVI VRR NDVI
Offset
Value

Adjusted NDVI Modified VRR

Landslide
Area

Total
Area

Landslide
Area

Total
Area

Landslide
Area

Total
Area

Landslide
Area

Total
Area

1 1999/04/01 0.518 0.523
2 1999/09/27 −0.044 0.278 0 0 0.060 0.016 0.338 0 0
3 2000/04/18 0.119 0.331 0.290 0.215 0.037 0.156 0.368 0.346 0.340
4 2001/01/02 0.090 0.286 0.238 0.031 0.087 0.176 0.372 0.397 0.393
5 2001/11/10 0.201 0.352 0.436 0.300 0.034 0.235 0.385 0.540 0.538
6 2002/10/17 0.272 0.387 0.562 0.446 0.008 0.280 0.395 0.651 0.651
7 2003/02/27 0.321 0.453 0.649 0.715 −0.063 0.258 0.390 0.598 0.598
8 2003/07/10 0.309 0.467 0.627 0.772 −0.084 0.225 0.383 0.516 0.516
9 2004/07/12 0.297 0.384 0.606 0.432 0.019 0.315 0.403 0.740 0.740
10 2005/11/24 0.312 0.411 0.634 0.544 −0.012 0.301 0.400 0.703 0.703
11 2006/01/09 0.324 0.443 0.654 0.673 −0.049 0.275 0.394 0.640 0.640
12 2008/03/09 0.337 0.424 0.678 0.595 −0.021 0.317 0.403 0.742 0.742
13 2010/11/03 0.367 0.411 0.731 0.541 0.004 0.371 0.415 0.877 0.877
14 2011/03/13 0.367 0.431 0.730 0.625 −0.021 0.345 0.410 0.813 0.815

Note: Values mark in bold correspond to the discussion in Section 3.3.
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Furthermore, the yearly differences in the NDVI, ∆NDVI, were calculated to investigate the
relationship between the gain/loss of NDVI for the total and landslide areas and yearly heavy rainfalls,
which comprise a total of 24-h rainfall exceeding 130 mm (Figure 9b). In Figure 9b, during years when
the total rainfall ≥130 mm increases, ∆NDVI generally decreases, and vice versa. Likewise, in the
years 2002, 2003, 2010, and 2011, no rainfall record exceeds 130 mm and positive ∆NDVIs are observed.
The largest drop in the NDVI is observed in 2004 with a correspondingly large negative ∆NDVI value,
which was associated with the impacts of Typhoon Mindulle. According to the on-site observations
by Chen and Wu (2006), Typhoon Mindulle brought almost 600 mm rainfall during 2 July 2004 to
5 July 2004 to Mt. Jou-Jou. A peak discharge of 36.9 m3/s with a rainfall intensity of 67.0 mm/h was
observed in the major stream in Mt. Jou-Jou on 2 July 2004 [14]. Such heavy rainfall caused serious
landslides and degraded the vegetation in Mt. Jou-Jou. Based on the abovementioned observations,
the relationship between rainfall and NDVI infers an inverse association.

Additionally, based on the research results of Hsu et al. [53], 2002 to 2004 was identified as the
most severe period of drought in the 21st century in Taiwan with yearly total rainfall and rainfall days
far below normal. In the present study, no rainfall records exceeding 130 mm were observed during
2002 to 2003, which is in good agreement with Hsu et al. and Tsai and Yang [53,54]. Furthermore,
in Figure 9b, the difference between the NDVI values of the total area and landslide area generally
reduces with time, indicating that the vegetation condition of the landslide area is gradually recovering.
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4. Conclusions

In this research, multi-date SPOT 1, 2, and 4 images have proved to be useful for comprehensively
monitoring the spatial and temporal variation of the vegetation on Mt. Jou-Jou after the atmospheric
correction. By using a series of 14 SPOT images of Mt. Jou-Jou spanning from 1999 to 2011, the NDVI
was analyzed and the corresponding VRR model was empirically established. The VRR was analyzed
for the consistent total and landslide areas across multi-date images. To eliminate the influence of
seasonal variations, a seasonality adjustment was performed on the satellite images and the association
between precipitation and NDVI was discussed.

This study supports the notion that radiometric correction is critical for the long-term detection
of change using multi-date satellite images. Relative radiometric correction based on PIFs provides
a simplified method to efficiently adjust the differences in the imaging environments for different
acquisition dates to ensure a comparable intensity reflected by an object with a constant spectrum.
Over 12 years of vegetation succession of Mt. Jou-Jou after the catastrophic earthquake, the NDVI value
had risen from 0.278 to 0.431 and from −0.044 to 0.367 for the total and landslide areas, respectively,
and the modified VRR approached 81.5% for the total area and 81.3% for the landslide area. The fact
that the correlation coefficient of the modified VRR is higher than the original VRR highlights the
necessity of seasonality adjustment in multi-date vegetation observations using satellite images. For the
total area, the modified VRR regression model has an R2 value of 0.915, with a significant improvement
in the VRR model with an R2 value of 0.584. For the landslide area, the seasonality adjustment
enhanced the VRR with an R2 value that increased from 0.883 to 0.916. Furthermore, the association
between precipitation and NDVI was discussed, and the inverse relationship with the reoccurrence
of high-intensity short-duration rainfall and the yearly heavy rainfalls was observed in agreement
with the on-site investigation. Further work should be conducted to constantly monitor the vegetation
recovery by utilizing more up-to-date satellite imagery and different series of sensors for establishing
a reliable regression model of vegetation recovery for Mt. Jou-Jou by considering seasonal change and
environmental impacts.
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