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Abstract: Estimating animal populations by direct counting is an essential component of wildlife
conservation and management. However, conventional approaches (i.e., ground survey and aerial
survey) have intrinsic constraints. Advances in image data capture and processing provide new
opportunities for using applied remote sensing to count animals. Previous studies have demonstrated
the feasibility of using very high resolution multispectral satellite images for animal detection,
but to date, the practicality of detecting animals from space using panchromatic imagery has not
been proven. This study demonstrates that it is possible to detect and count large mammals (e.g.,
wildebeests and zebras) from a single, very high resolution GeoEye-1 panchromatic image in open
savanna. A novel semi-supervised object-based method that combines a wavelet algorithm and
a fuzzy neural network was developed. To discern large mammals from their surroundings and
discriminate between animals and non-targets, we used the wavelet technique to highlight potential
objects. To make full use of geometric attributes, we carefully trained the classifier, using the
adaptive-network-based fuzzy inference system. Our proposed method (with an accuracy index of
0.79) significantly outperformed the traditional threshold-based method (with an accuracy index of
0.58) detecting large mammals in open savanna.

Keywords: GeoEye-1; wavelet transform; fuzzy neural network; remote sensing; conservation

1. Introduction

Global biodiversity loss is a pressing environmental issue [1]. Populations of a number of wild
animals have been reduced by half over the past four decades [2,3]. Counting wild animals to determine
population size is an essential element of wildlife conservation and environmental management [4].
However, accurate population estimation using ground-based methods remains challenging, requiring
considerable investment in resources and time [5]. Aerial surveys have been used as an alternative
approach to detect large mammal populations and generate statistical estimates of their abundance
in open areas [6]. In developed countries, wildlife such as caribou, elk, deer and moose have been
monitored using aerial surveys [7-9]. For developing nations, where scores of endangered and
threatened fauna are found, such an alternative is not always feasible due to limitations in access,
technology, aircraft availability and skilled human resources [10,11]. It is therefore desirable to develop
alternative approaches for conducting wildlife population counts in such regions.

Advances in satellite technology have provided new avenues in remote sensing for environmental
applications, including the remote counting and mapping of animal populations. Lower spatial
resolution satellite images have proven inadequate to detect and count individual animals [12], but the
availability of commercial satellite images with a spatial resolution of one meter or less (e.g., IKONOS,
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QuickBird, GeoEye and WorldView) has made such an undertaking more feasible [13]. As a result,
studies have been undertaken utilizing satellite remote sensing data to detect animals. For example,
Fretwell et al. [14] successfully estimated the abundance of penguins from fecal staining of ice by using
a combination of medium resolution (15-30 m) Landsat-7 ETM+ and very high resolution (0.6-2.5 m)
QuickBird satellite images, but they did not attempt to count individual birds. Stapleton et al. [15] used
different very high resolution (VHR) satellite images (i.e., QuickBird, WorldView-1 and World View-2)
to track the distribution and abundance of polar bears. Although their findings demonstrated the
potential of remote sensing applications for wildlife detection and monitoring, they also revealed the
need for more automated detection processes to expedite analysis. Yang et al. [16] explored mammal
detection in open savanna country from VHR (0.5-2 m) GeoEye-1 satellite images, using a hybrid
image classification approach. Through a two-step process of pixel-based and object-based image
classification, they were able to demonstrate the feasibility of automated detection and counting of
large wild animals in vast open spaces. However, the method they proposed requires the input by an
expert of a number of parameters, and therefore this method remains subjective and labor-intensive.
Fretwell et al. [17] compared a number of classification techniques endeavoring to automatically detect
whale-like objects. They found that a simple thresholding technique of the panchromatic and coastal
band delivered the best results. Neither Stapleton et al. [15] nor Fretwell et al. [17] made full use of the
multispectral band, while the panchromatic band played an important role in their research. To our
knowledge, there has been no substantial exploration of the feasibility of using a single panchromatic
(black and white) band for wildlife detection. The typical panchromatic band data obtained from
airborne platforms have a much wider spectral range than is utilized by multispectral bands (red,
green, blue) [18], and also have a higher radiometric resolution (number of bits per pixel). Moreover,
panchromatic satellite images have a higher spatial resolution than multispectral images [19].

Object counting can also be achieved with computer vision techniques, such as local feature-based
subspace clustering algorithms [20,21] and global feature-based saliency detection approaches [22-25].
The conventional clustering method, such as the K-means clustering algorithm, has been used to extract
local features, but its performance relies on finding “similar” records in the training data and could
therefore be highly influenced by noise [21]. Data in a specific category can also be well-represented by
low-dimensional subspace where noise can be reduced [26]. To achieve a good result by eliminating
the influence of errors (e.g., noise, outliers), Peng et al. [20] proposed a graph-oriented learning method,
which applied the L2-Graph for subspace learning and subspace clustering, for facial recognition
and moving-vehicle detection [26]. However, studies on subspace clustering mainly concentrate on
high-dimensional data clustering, such as facial recognition and motion image segmentation. Saliency
detection is a well-researched problem in computer vision. It aims at indicating the saliency likelihood
of each pixel by generating bounding boxes, binary foreground and background segmentation, or
saliency maps [27]. The aforementioned methods have proven to be useful for multi-level features
with multi-band images, but are difficult to apply to a single-band image where the object consists of
few pixels.

Aerial photographs have been used for bird censuses since the 1980s, counting image points
falling below an established threshold [28,29]. Bajzak and Piatt [29] studied the greater snow goose,
contrasting its white plumage against the surrounding mud flats by size and tonal class. Similarly, a
panchromatic image can use thresholding as a simple image segmentation method that divides an
image into objects and background [30-32]. It works well when targets contrast sharply with their
background. However, thresholding methods have their limitations: (1) targets cannot be separated
from ground elements with similar brightness values; (2) gray value thresholding does not make full
use of geometric information; and (3) threshold values are defined manually and depend heavily on
the user’s expertise.

Animal detection using remote sensing then predominantly switched to a two-step process [33]:
(1) highlighting suspected targets; and then (2) classifying them, using geometric information.
Groom et al. [33] proposed a scheme using geometric feature (object-size) filters to count birds against
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a monochromatic background. As targets were visually small and dim, they were not easily discerned
against their background [34]. Using filters and image processing techniques, targets embedded in
the scene could be visualized and detected [35-38]. However, the performance of such filters remains
dependent on the brightness contrast between the target and background [34]. Several studies have
employed wavelet-based techniques to address this concern [39—41]. The discernibility of targets from
the background may vary at different scales, which can be problematic for object detection [19,42].
Wavelet analysis can transform signals into multiple resolutions, using an adaptive window [43], and
thereby latently detect targets in cluttered backgrounds.

After highlighting the targets, the major challenge becomes how to make full use of geometric
features to help separate a target from its surroundings. Spectral characteristics, cluster size, shape
and other spatial features have been used in rule sets for image segmentation [44]. McNeill et al. [45]
analyzed potential regions using shapes, by rejecting those with a compactness greater than a specified
threshold value. Descamps et al. [46] counted large birds by fitting suspected objects (birds) into
bright ellipses surrounded by a darker background. Expert knowledge can also play a critical role
in image classification [16,47,48]. For example, Yang et al. [16] developed a specific rule set using
expert knowledge to remove misclassified objects generated by object-based analysis. In another
study, Wang et al. [47] proposed a hybrid neural network and expert system to quantify understory
bamboo from satellite imagery, and they concluded that integration of a neural network and expert
system appeared to be more efficient than when using either a neural network or an expert system
alone. However, these methods rely on experts’ subjective experience and knowledge, which can be
challenging for practical applications.

An alternative approach to using an expert system is machine learning: a data analysis technique
that automates model building through algorithms that iteratively learn from a given dataset.
Though different classifiers based on machine learning generate varying levels of accuracy for
different datasets [49], the most recent machine-learning techniques have a proven ability to solve
complex problems [50]. For example, convolutional neural networks (CNNs) [51] have emerged
as state-of-the-art models for image classification and object detection [52-57]. Local connections,
shared weight, pooling and multiple layers are four architectural factors that make CNNs excel in
processing natural signals [58]. However, the human involvement level is high when tailoring the CNN
algorithm to a specific task [59], and large data sets are required for training purposes to ensure a high
quality output [60]. Another major limitation of CNNSs is their intrinsic black-box nature: their internal
workings are hidden and not easily understood [61], so the models they generate are unexplainable [62].
The fuzzy neural network (FNN) is an alternative model that incorporates both the explicit knowledge
representation of an fuzzy inference system (FIS) and the learning ability of an artificial neural
network [63,64]. The McCulloch-Pitts model [65] was one of the earliest applications to use fuzzy sets
with a neural network concept. Since the 1990s, Takagi and others have developed a solid foundation
for the fuzzy neural network [66]. In 1993, Jang proposed the adaptive-network-based fuzzy inference
system (ANFIS) [67]. This algorithm has been widely employed in applied mathematics [68-71], and,
unlike traditional expert systems, does not require a high level of expert knowledge when developing
decision rules.

This study aims to detect and count large mammals in open spaces from a single, VHR GeoEye-1
panchromatic image, using a novel semi-supervised object-based scheme that combines a wavelet
algorithm and a fuzzy neural network.

2. Materials and Methods

2.1. Study Area and Animal Species

The study area is located in the Maasai Mara National Reserve (also known as Maasai Mara or
the Mara), a large game reserve in the Great Rift Valley in the southern part of Kenya (Figure 1).
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Figure 1. Location of the Maasai Mara National Reserve in Kenya and the three pilot study areas on a
natural color composite of a GeoEye-1 image, acquired on 11 August 2009.

The reserve’s topography is mainly open savanna (grassland) with clusters of acacia trees along
the southeastern area of the park [72]. The reserve not only protects the habitat of resident species, but
also preserves a critical part of the route used by wildebeests and zebras during the great migration
that traverses the Maasai Mara via the Serengeti National Park. The wildebeest is the dominant
species of the Maasai Mara, and herd sizes can range from a few individuals to many thousands [73].
Serengeti wildebeests migrate seasonally, and are seen intermittently in the Mara between August and
November [74]. The sheer numbers of animals that congregate during migration make the wildebeest
an ideal candidate species to map through the use of satellite technology.

2.2. Satellite Images

We acquired two GeoEye-1 satellite images of part of the Maasai Mara National Reserve through
the DigitalGlobe Foundation (www.digitalglobefoundation.org/), each covering an area of 25 km?.
Both images are cloud free, and include one panchromatic (0.5 m) and four multispectral (2 m) bands.
The image captured on 11 August 2009 depicts large numbers of animals. The other image, without any
large animals present, was captured on 10 August 2013. To address our research objective, we carefully
selected three small pilot study areas from the first image, each covering an area of 120 x 120 m
(Figure 2). These pilot study areas were chosen to represent different levels of complexity regarding
three criteria: (a) complexity of the landscape; (b) abundance of animals; and (c) feasibility and
reliability of the visual interpretation of target animals. Pilot area No. 1 represents low complexity,
with a few dozen animals viewed against a uniform background; Pilot area No. 2 represents moderate
complexity, with more than one hundred animals viewed against a slightly less uniform background;
and Pilot area No. 3 represents high complexity, with several hundred animals viewed against a
non-uniform background.


www.digitalglobefoundation.org/
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Pilot area No. 1 Pilot area No. 2 Pilot area No. 3

Figure 2. The panchromatic band of the GeoEye-1 image taken on 11 August 2009, showing large
mammals in the Maasai Mara National Reserve. Pilot area No. 1 represents low complexity regarding
animal numbers and uniformity of background; Pilot area No. 2 represents moderate complexity; and
Pilot area No. 3 represents high complexity. The rectangle visible in the top-left corner of Pilot area
No. 3 is a white vehicle.

2.3. Visual Interpretation to Establish Ground Truth for Large Animals Discerned on GeoEye-1 Imagery

Ground truth is required to calibrate the model, as well as validate the classification result.
Using the panchromatic band of the GeoEye-1 image, large mammals (e.g., wildebeests and zebras) are
visualized as 3—4 pixels long and 1-2 pixels wide [16]. Due to their similarity in size, large animals can
be confused with small ground features such as bushes and termite mounds [75]. To facilitate the visual
interpretation of target animals and avoid the problem of subjectivity, we used one pan-sharpened
GeoEye-1 image with, and one without, the presence of large animals (Figure 3). We invited two
experienced wildlife researchers from Africa as independent visual interpreters. Together we visually
compared the two separate temporal images of the three pilot study locations at multiple scales under
the ArcGIS 10.3.1 environment (ESRI Inc., Redlands, CA, USA). After the observers had discussed their
interpretation results, especially regarding uncertain objects, and had agreed which identified objects
were indeed large mammals, their knowledge was recorded as confirmed animal ground truth points.
In total, we identified 50, 128 and 426 large mammals in the pilot study areas 1, 2 and 3, respectively.

Pilot study area No.1 Pilot study area No.2 Pilot study area No.3

S

10 August 2013

11 August 2009

Figure 3. Visual interpretation of target animals by comparing two pan-sharpened GeoEye-1 images
(0.5 m): one acquired 10 August 2013, without large animals present (top), and one acquired 11 August
2009, with large animals (bottom). The three pilot study areas represent the complexity of the landscape
and the abundance of animals appearing in these images, from left to right: low, moderate and high.
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2.4. Semi-Automatic Animal Detection Algorithm

Large mammals were identified by a series of multistage, semiautomatic techniques in VHR
panchromatic satellite images. Our proposed scheme includes four principal steps (Figure 4): image
preprocessing, preclassification, reclassification and accuracy assessment. Visual interpretation was
incorporated for the purpose of reclassification and accuracy assessment.
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Figure 4. Workflow of the proposed method for counting large mammals from a single, very high
resolution panchromatic GeoEye-1 satellite image.

2.4.1. Image Preprocessing

To highlight large mammals in the panchromatic imagery, we applied a histogram stretch in ENVI
5.2 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA). Due to the limited resolution of
the panchromatic band of VHR satellite images, an individual animal is represented as a cluster of
pixels consisting of no more than eight pixels. To fully use their geometric information, we resampled
the original image. Bicubic interpolation, which uses weighted arithmetic means, was chosen, as
it maintains the quality of detailed information through antialiasing [76]. The image was carefully
resized to eight times the original size, taking the wavelet decomposition performance into account, as
well as memory and computation time, using

I = [airj]mxn (1)

where the original image [ai,]-] mxp 18 @ matrix with m rows and n columns. We describe the resampled
image as

= f(Afa] ) v)

where 17 is the new image, A represents the diagonal matrix of the resized scale and f is the bicubic
interpolation function.
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2.4.2. Wavelet-Based Preclassification

Based on the generally accepted methodology of image decomposition and reconstruction, we
used the wavelet-based method when highlighting suspected large mammals, to enhance their contrast
against the immediate surroundings and to suppress irrelevant background [77,78]. Wavelet transform
(WT) is based on the theory of Short-Time Fourier Transform (STFT) [79]. The WT differs from STFT in
that it replaces infinite triangle function bases with finite decay wavelet bases. The finite decay wavelet
bases, which are stretched (or squeezed) and translated from the mother wavelet, have an average
value of 0 [80]. The WT of a continuous signal is defined as

© t—b

T(ab) = w() [ x(v'(

—o00 a

)dt ©)

where a is scale, b is the position parameter, w(a) is a weighting function and {*( %) is the wavelet
base [81]. If the wavelet base sufficiently corresponds to an input signal, the WT coefficient at this
position is high [82]. The optimal mother wavelet and parameters were selected by comparing the
performance of mainstream wavelet families regarding maintaining geometry features of suspected
targets in our experimental imagery. A Haar wavelet (or db1l wavelet) was selected as it is not
continuous and is therefore able to detect signals containing a sudden transition [83].

The image was transformed into a series of sub-images: Al (low-frequency image), H1
(high-frequency image in the horizontal direction) and V1 (high-frequency image in the vertical
direction); and then the same procedure was applied to the low frequency image (A1). Such a method
permits multiresolution processing in both directions. After three transformation iterations, nine
sub-images were generated, containing details as well as background. To highlight suspected targets
and suppress background information, a weighted fusion algorithm was used. We then calculated
the mean-square error (MSE) [84] between sub-images (resized to the original) and the original image.
Sub-images containing more high-frequency information yielded higher MSE values. The weight of
each sub-image should be

2
W= = (i,j=1,2,...,n) )
2j-10]
where ij are the serial numbers of the current image, 0y;) is the MSE of the current sub-image, and n is
the total number of calculated sub-images. The weighted fusion algorithm creates a high signal-to-noise
ratio (SNR) image. We then used Ostu’s method [85] in MATLAB (The Mathworks Inc., Natick, MA,

USA), to discriminate between each suspected animal blob and the background.

2.4.3. Selecting Geometric Features

The next concern was how to identify which suspected large mammals were true large mammals.
This entailed deciding which geometric features to use, typically length and area. We also considered
gray value (hue) pixels. We used cross-validation (a model assessment technique) to verify the
performance of classifiers [86]. This basically involves grouping raw data: one group is used as
training set and the other for validation. K-fold cross-validation (K-CV) is a commonly used validation
technique in object detection [86,87]. We divided the data into ten groups, and used each group once
as the training dataset while the other nine groups acted as the validation dataset. We determined the
most suitable combination for this experiment by calculating the average value of the training errors
and checking errors using the dataset mentioned above at situations of different feature combinations.
After employing the K-fold cross-validation multiple times, we decided a combination of feature area,
major axis length, minor axis length and bounding box area was most suitable for this experiment.

2.4.4. ANFIS-Based Reclassification

A total of 100 blobs (or unknown objects) were randomly selected from the database to train the
final model. The distribution of training data was comparable to the distribution of the whole dataset.
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Before we trained these data using ANFIS, a number of rules was decided upon. The Fuzzy C-Mean
(FCM, or Fuzzy ISODATA), which was originally designed by Dunn [88], is a well-accepted clustering
algorithm ideally suited to solving a natural problem [89,90]. As shown in Figure 5, this algorithm
generated 10 cluster centers (corresponding to 10 membership functions for each variable). To limit the
number of feature fields, we used expert knowledge to eliminate redundant classes. Finally, we input
the 100 randomly selected blobs to train ANFIS in MATLAB. With the function /genfis2/, we built an
initial fuzzy inference system (FIS) structure. We then loaded the initial FIS structure into the function
ranfis/ to train the ANFIS and develop the model. A hybrid method, including least-squares and
backpropagation gradient descent, was applied to optimise the model. ANFIS model evaluation was
conducted according to the ‘evalfis” function. Required parameters for the ‘anfis’ function, including
training error goal, initial training step size, step size decrease rate and step size increase rate, were set
to default values (0, 0.01, 0.9, 1.1), which were proven to be adequate for most situations [91]. In order
to avoid overfitting, we set the epoch number to 75 by considering both training error and checking
error (see Appendix A). The adaptive tuning stops when the least-squares error is less than the training
error goal, or has reached the epoch number. By loading all the datasets containing feature values into
the model, all suspected blobs were classified by the inference system into targets and non-targets.

Fuzzy c-mean Rule selection

ANFIS training Model

Figure 5. Flow diagram of the adaptive-network-based fuzzy inference system (ANFIS) based
reclassification system.

2.5. Accuracy Assessment

We assessed the accuracy of the classification results by comparing the number of large mammals
detected by the computer model with the ground truthing, and then calculated the omission error and
commission error [92]. Detection accuracy (DA), which is the most commonly used metric, is highly
inversely correlated (DA + omission error = 1) [93]. The values for both the omission error and the
commission error are always between 0 and 1. The closer their values are to 0, the better the result.

The accuracy index (Al), which was devised by Pouliot et al. [94], was computed as:

N — TP — FN
Al= ———— ®)
where TP (true positive) denotes the number of targets occurring in both the ground truth and our
processing result; FN (false negative) denotes the number of targets that do appear in the ground truth,
but not in our processing result; FP (false positive) denotes the number of targets occurring in our
processing result, but not in the ground truth data; and N is the number of ground truth targets in the
study area. The higher the value of the accuracy index, the better the result.

3. Results

In Figure 6, the visual results of our semi-automated ANFIS-wavelet approach to detecting large
mammals are compared with the results gained with the thresholding method.
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Pilot study area No. 1 Pilot study area No. 2 Pilot study area No. 3

@ True Positive False Positive ® ralse Negative

Figure 6. Results regarding large mammal detection in the three different pilot study areas.
The columns show images of the three pilot areas: No. 1 is of low complexity, No. 2 of moderate
complexity and No. 3 of high complexity. The first row contains the original panchromatic satellite
images; the second row illustrates results based on the thresholding method; and the third row
illustrates the results obtained using the method proposed in this study (i.e., ANFIS-wavelet). The
green, red and yellow dots indicate true positive, false negative and false positive results, respectively.

The accuracy index regarding the proposed method for the low complexity study area (No. 1)
was as high as 0.86 (Table 1). For the higher-complexity sites, the results also yielded acceptable
accuracy indices: 0.79 and 0.72, respectively, for the moderately (No. 2) and highly (No. 3) complex
sites. As shown in Table 2, the thresholding method produced accuracy indices of 0.64, 0.56 and 0.54,
respectively, for the low, moderate and high complexity areas, with an average accuracy index of
0.58. The average accuracy index of our proposed method, depicted in Table 1, is 0.79, which is 0.21
higher than that of the thresholding method. Also, the calculated omission and commission errors
of our approach (0.09 and 0.12, respectively) are lower than those of the thresholding method (0.15
and 0.24, respectively). It should also be noted that, if the study area is more complex, this does not
necessarily mean that the detection is less accurate. As shown in Figure 6, specific ground features
can introduce inaccuracies, such as the errors appearing in this study close to roads and edges of
forests. In absolute terms of detected targets, the thresholding technique and our semi-automated
ANFIS-wavelet approach showed different accuracies for each pilot study area. The statistical results
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regarding this study area illustrate that a higher detection accuracy is obtained with the ANFIS-wavelet
method than with the threshold-based method.

Table 1. Accuracy assessment of the ANFIS-wavelet method for the three pilot study areas: No. 1,
No. 2 and No. 3, with low, moderate and high complexity, respectively.

Pilot Area No. 1 Pilot Area No. 2 Pilot Area No. 3 Average

Ground truth 50 128 416 198
True positive 47 118 370 178
False positive 4 17 64 28
False negative 3 10 56 23

Omission error 0.06 0.08 0.13 0.09

Commission error 0.08 0.13 0.15 0.12

Accuracy index 0.86 0.79 0.72 0.79

Table 2. Accuracy assessment of the threshold-based method for the three pilot study areas with low,
moderate and high complexity, respectively.

Pilot Area No. 1 Pilot Area No. 2 Pilot Area No. 3 Average

Ground truth 50 128 416 198
True positive 45 105 354 168
False positive 13 33 126 57
False negative 5 23 72 33

Omission error 0.10 0.18 0.17 0.15

Commission error 0.22 0.24 0.26 0.24

Accuracy index 0.64 0.56 0.54 0.58

4. Discussion

The results from this study demonstrate that it is feasible to use VHR panchromatic satellite
imagery to detect and count large mammals in extensive open areas. In comparison with the traditional
thresholding technique, our ANFIS-wavelet method produced a higher accuracy index and less
commission/omission errors.

Although the thresholding method performs adequately when the targets share similar gray
values and are dissimilar to their background, it is less accurate in more complex areas. There are two
main reasons for the higher commission error found when using the thresholding method. Firstly, when
the gray values of suspected objects (animals) are similar to those of the surroundings, they may be
ignored by the threshold-based segmentation. In the ANFIS-wavelet method, the representation of the
target is considered at different spatial scales. Suspected animals that do contrast with their immediate
background, once different spatial scales are considered, will contribute to a higher weighted value in
the preclassification results. Secondly, when animal objects and terrain have similar gray values, they
cannot be altered simply by using thresholds: more information is required before further processing
can be undertaken [32]. We statistically selected four geometric features to distinguish non-target
objects from large mammals in the feature space. This approach proved more accurate than merely
using a simple threshold value.

The commission error derived from our method was found to be three percentage points greater
than the omission error, resulting in more non-target objects being incorrectly classified as large
mammals than large mammals being incorrectly omitted. Further analysis revealed that commission
errors always appeared near roads and vegetation. Bushes were confused with large mammals because
of similarities in geometric features. Rough road surfaces or vehicles may result in discontinuous
blobs and may thus also be recognized as large mammals by our method. Two reasons for omission
include targets that are not clearly distinguishable from the background and targets that are too close
to each other.
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The geometric features chosen to distinguish an animal from its background were area, major
axis length, minor axis length and bounding area. These features differ between target animals and
non-targets such as shrubs or boulders. Even though some features were highly correlated, they can
also help us in detecting animals. For example, defining both major and minor axis length can help to
eliminate objects that do not have a correct length-width ratio.

The ANFIS-wavelet method has proved to be a feasible method for detecting animals in
open savanna landscapes. This method is based on wavelet preclassification followed by ANFIS
reclassification. The wavelet-based classification is able to highlight objects and maintain their
geometric features. This is critical because the targets are dim and small, and as much useful
information as possible needs to be retained. By using multiscale analysis, targets can be precisely
located in poorer quality (i.e., low SNR) imagery without information loss. The ANFIS, which combines
the advantages of machine learning and a fuzzy system, makes it possible to learn from data and
concomitantly use existing expert knowledge, resulting in a method that is both efficient and stable.

5. Conclusions

We developed a novel semi-supervised object-based method that combines a wavelet algorithm
and a fuzzy neural network for detecting and counting large mammals (e.g., wildebeests and zebras)
from a single, very high resolution GeoEye-1 panchromatic image in open savanna. To discern large
mammals from their surroundings and discriminate between animals and non-targets, we used the
wavelet technique to highlight potential objects. To make full use of geometric attributes, we carefully
trained the classifier, using the adaptive-network-based fuzzy inference system. We then compared
our method with the traditional threshold-based method. The results showed that our proposed
method (with an accuracy index of 0.79) significantly outperformed the traditional threshold-based
method (with an accuracy index of 0.58) in detecting large mammals in open savanna. The greater
availability of VHR images, and the advances in image segmentation techniques, mean that animal
detection by means of remote sensing technology is a pragmatic alternative to direct animal counting.
Further developments in image processing should eventually make it feasible to detect and monitor
medium-sized and small animals remotely from space as well.

Acknowledgments: Yifei Xue was supported by the China Scholarship Council (CSC) and co-funded by the ITC
Research Fund from the Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente,
the Netherlands. We acknowledge the satellite imagery support received from the DigitalGlobe Foundation.
We also thank Festus Thwagi and Tawanda Gara for their assistance with the visual interpretation of the GeoEye-1
satellite images.

Author Contributions: Yifei Xue, Tiejun Wang and Andrew K. Skidmore conceived and designed the experiment.
Yifei Xue analyzed the data and wrote the paper. All authors contributed to the editing of manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

ANFIS is a hybrid method which combines both least-square and backpropagation algorithms.
The training datasets were used to construct the initial model, and the validation datasets were used
for tuning. The training algorithm stops when either the training error goal value is satisfied, or the
number of training epochs is reached. The training error goal was always being used as default value
0 when solving an unknown problem [91]. After a certain epoch number, the model will overfit the
training data. To avoid overfitting, an optimal epoch number is required, but it is also difficult to
determine. We evaluated the training error and the checking error (also known as validation error)
with increasing the epoch number (Figure A1l). Root-mean-square error (RMSE) is one of the most
used indexes for performance indication [95]. The RMSE of the training data decreases along with the
epoch number, but the tendency is slowed down after around 120 epochs and does not seem to have
an obvious descent after 200 epochs. The RMSE of the checking data decreases along with the epoch
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number until around 75 epochs, and increases rapidly before around 120 epochs. According to this
quantitative analysis, we found that it is proper to set the epoch number to around 75.

0.38
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Training error
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Root mean square error
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Epoch number

Figure Al. Indentification of optimum epoch number based on the root-mean-square error of both
training error and checking error.
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