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Abstract: A Probabilistic Weighted Archetypal Analysis method with Earth Mover’s
Distance (PWAA-EMD) is proposed to extract endmembers from hyperspectral imagery (HSI).
The PWAA-EMD first utilizes the EMD dissimilarity matrix to weight the coefficient matrix in
the regular Archetypal Analysis (AA). The EMD metric considers manifold structures of spectral
signatures in the HSI data and could better quantify the dissimilarity features among pairwise pixels.
Second, the PWAA-EMD adopts the Bayesian framework and formulates the improved AA into
a probabilistic inference problem by maximizing a joint posterior density. Third, the optimization
problem is solved by the iterative multiplicative update scheme, with a careful initialization from the
two-stage algorithm and the proper endmembers are finally obtained. The synthetic and real Cuprite
Hyperspectral datasets are utilized to verify the performance of PWAA-EMD and five popular
methods are implemented to make comparisons. The results show that PWAA-EMD surpasses all
the five methods in the average results of spectral angle distance (SAD) and root-mean-square-error
(RMSE). Especially, the PWAA-EMD obtains more accurate estimation than AA in almost all the
classes of endmembers including two similar ones. Therefore, the PWAA-EMD could be an alternative
choice for endmember extraction on the hyperspectral data.

Keywords: probabilistic weighted archetypal analysis; earth mover’s distance;
endmember extraction; hyperspectral imagery

1. Introduction

Hyperspectral imagery (HSI) processing is a hot topic in the field of remote sensing because the
collected data has great potentials in differentiating distinct materials on the earth surface, using its
hundreds of narrow spectral bands [1,2]. Particularly, spectral unmixing is a significant step of HSI data
processing [3,4], and it correlates closely with realistic applications including land cover mapping [5],
mine exploration [6], precision agriculture [7] and marine monitoring [8] and so on. The phenomenon
of spectral mixture mainly results from limited spatial resolutions of imaging spectrometer (<30 m)
and homogeneous mixture of distinct materials, and it refers to that the observed spectral reflectance
at each pixel is physically a spectral mixture of several pure materials or called endmembers [9,10].
Spectral unmixing is to estimate spectral signatures of endmembers and meanwhile to quantify the
fractions of each endmember (i.e., abundance) present in the mixed pixels [11,12].
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Endmember extraction is a key but preliminary work for spectral unmixing, either for its linear or
nonlinear spectral mixture model [3,10]. Proper endmembers bring accurate abundance estimation
at each pixel and greatly benefit the spectral unmixing in realistic applications mentioned above
and vice versa. Generally, spectral signatures of endmembers can be estimated from two divergent
schemes [13,14]: (1) the reference-endmembers are manually measured on the ground or in the library
using the field spectrometer, and (2) the image-endmembers are estimated from the HSI data using
endmember extraction methods. Unfortunately, because of different collecting conditions (e.g., image
sensors, atmospheric effects and scattering conditions) between hyperspectral imaging and the field
spectrometer, the spectrum of reference-endmembers usually disagrees with those of image pixels [15].
Accordingly, complicated spectral calibration is mandatorily requiring for spectral matching between
reference-endmembers and the image pixels. In contrast, the image-endmembers are directly estimated
from the image scene and simpler procedures bring them more popularity in spectral unmixing [16].

Numerous image-endmember extraction methods have been presented in current literatures of
remote sensing, and they can be grouped into two main aspects with opposite assumptions [10,17]:
(1) the pure pixel scheme; and (2) the non-pure pixel scheme. The pure pixel scheme assumes that
at least one pure endmember exists in the image scene and it finds pure pixels that contain only one
material at the pixel [18]. It expects the volume of the inflating simplex composed by the HSI data
to be as large as possible and then finds vertices of the convex simplex. The benchmark method
of pixel purity index (PPI) iteratively projects each spectral vector onto skewers that are defined
as a large set of random vectors, and it chooses the extreme pixels with highest accounting scores
as the final endmembers [19]. N-FINDER estimates pure endmember signatures that correspond
to a set of pixels defining the largest volume by inflating a simplex inside the HSI dataset [20].
The alternative volume maximization (AVMAX) maximizes the volume of the simplex defined by the
endmembers with respect to only one endmember at one time [21]. The vertex component analysis
(VCA) determines endmembers from the extreme of the projection that has the random direction
orthogonal to the subspace spanned by the identified endmember signatures at each iteration [22].
More recent representative methods are the hierarchical clustering based on rank-two nonnegative
matrix factorization (H2NMF) [23], recursive nonnegative matrix factorization (RNMF) [24], subspace
vertex pursuit (SVP) [25] and self-dictionary multiple measurement vector (SDMMV) [18].

The non-pure pixel scheme presumes that no pure pixels exist in the image scene and it seeks
“artificial” pure pixels or “virtual” endmembers for the HSI data. In this paper, we focus our topic
in non-pure pixel scheme because the HSI scenarios of non-pure pixels are more realistic and the
estimated “virtual” endmembers are more closely associated with physically meaningful spectral
signatures of true materials in the spectral library. The non-pure pixel estimation methods can
be summarized into three main classes: (1) the geometrical methods, (2) the matrix factorization
methods and (3) the statistical methods. The geometrical methods find a “virtual” endmember set that
minimizes the volume of the simplex it defines. Representative algorithms are convex analysis-based
minimum volume enclosing simplex (MVES) [26] and minimum volume simplex analysis (MVSA) [27].
The matrix factorization methods formulate an optimization problem of blind source decomposition
with many additive constraints (e.g., sparsity, low rank or positivity) to simultaneously estimate all
the endmembers. Representative algorithms include sparse nonnegative matrix underapproximation
(SNMU) [28], multilayer nonnegative matrix factorization (MLNMF) [29], robust nonnegative matrix
factorization (RNMF) [30] and constrained nonnegative matrix factorization [12]. The statistical
methods transform endmember extraction into a statistical inference problem and aim for the highly
mixed hyperspectral image scenarios, with typical examples of independent component analysis
(ICA) [31] and Bayesian algorithms such as normal endmember spectral unmixing [32] and the
hierarchical Bayesian algorithm [33]. Unfortunately, all the above methods still have their own
drawbacks or disadvantages. The MVSA considers vertices of the minimum-volume enclosing simplex
of the HSI dataset as good endmembers, but noisy observations in the hyperspectral images would
bring about bad proximity of endmembers to their true spectral signatures [34]. The convergence of
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matrix factorization methods highly depends on the initialization of endmembers [35]. Moreover, it
could not provide clear geometrical or physical explanations for the estimated endmembers [36]. The
abundance fractions of ICA are supposed to be sampled from mutually independent sources and it
contradicts with the case of the HSI data and could not guarantee good estimations of endmembers [31].
Therefore, significant improvement can be made to explore the endmember extraction problem from
the non-pure pixel assumption.

In this paper, inspired by Archetypal Analysis (AA), we present a Probabilistic Weighted
Archetypal Analysis with Earth Mover’s Distance (PWAA-EMD) to extract “virtual” endmembers
for the HSI data. The kernel archetypal analysis (KAA) by Zhao [37] improves from AA and also
aims for solving the nonpure endmember extraction problem in hyperspectral images. However,
its motivation, object function and optimization scheme are different from our PWAA-EMD. The
KAA utilizes nonlinear kernel function (e.g., Gaussian kernels) to replace the linear kernel in the
optimization procedure of AA, and implements a projected gradient scheme to minimize its object
function. Differently, our PWAA-EMD adds the dissimilarity information matrix from EMD into the
AA model to weight the coefficient matrix, imposes the Bayesian framework to formulate the weighted
version of AA into a Bayesian inference problem, and implements the iterative multiplicative update
scheme to optimize the convex problem and estimate the desired “virtual” endmembers. Compared
with other methods, the contributions of PWAA-EMD is in the following two aspects:

(1) The PWAA-MED incorporates the dissimilarity information among pairwise pixels with the EMD
metric to promote the behaviors of AA in selecting different endmembers. The EMD measure
considers the manifold structure of the HSI data and it could fully describe spectral variations of
all the pixels determined by low-dimensional manifolds of the hyperspectral data.

(2) The PWAA-EMD adopts the Bayesian framework and formulates the endmember extraction of
AA into a probabilistic inference problem. The Bayesian framework could represent spectral
variability and accordingly the PWAA-EMD is more suitable for spectral unmixing in the realistic
HSI data.

The rest of this paper is arranged as follows. Section 2 briefly reviews the AA method. Section 3
describes the methodology of PWAA-EMD for endmember extraction in the HSI data. Section 4
lists and discusses experimental results on simulated and real hyperspectral images for endmember
extraction. Section 5 discusses the experimental results from the above Section 4. Section 5 states
conclusions for our paper.

2. Brief Review of Archetypal Analysis

In this section, relevant knowledge of AA will be briefly reviewed. Archetypal Analysis, presented
by Cutler and Breiman [38], is an unsupervised feature extraction or dimensionality reduction method
designed for machine learning problems. It combines the virtues of clustering and the flexibility of
matrix factorization, and aims to find the “extreme” point or archetypes from the principal convex hull
of a dataset.

Consider the HSI data as a high-dimensional point set Y = {yi}N
i=1 ∈ RD×N , where the pixel yi

corresponds to a real vector in the D-dimensional spectral space, D is equal to the number of bands
in the image scene and N is the number of pixels with D � N. Consider the desired endmember
set as M =

{
mj
}r

j=1 ∈ RD×r, where r is the defined number of endmembers with 1 < r < N. AA
assumes that each pixel in the HSI data is approximately a convex combination or linear mixture of all
archetypes, while each endmember or archetypes mj is a convex combination or linear mixture of all
pixels [36],

Y = YBA + E, s.t.,

{
bj ≥ 0 and ‖ bj ‖1 = 1, j = 1, 2, · · · , r
ai ≥ 0 and ‖ ai ‖1 = 1, i = 1, 2, · · · , N

(1)



Remote Sens. 2017, 9, 841 4 of 18

where B =
{

bj
}r

j=1 ∈ RN×r and A = {ai}N
i=1 ∈ Rr×N are two unknown coefficient matrices

respectively, and E ∈ RD×N is the noise term resulting from modeling errors and measure noise.
The constraints ai ≥ 0 and ‖ ai ‖1 = 1 guarantee the convex combination property of each pixel by all
endmembers. The constraints bj ≥ 0 and ‖ bj ‖1 = 1 guarantee the convex combination property of
each endmember by all pixels. The solution of coefficient matrices B and A in AA can be transformed
into the following optimization problem by minimizing a residual sum of squares,

argmin
B,A

‖ Y− YBA ‖2
F, s.t.,

{
bj ≥ 0 and ‖ bj ‖1 = 1, j = 1, 2, · · · , r
ai ≥ 0 and ‖ ai ‖1 = 1, i = 1, 2, · · · , N

(2)

where ‖ · ‖F denotes the Frobenius norm. Both two coefficient matrices B and A tend to have sparse
entries in each column. The sparse coefficient matrices A correspond to abundance fractions of each
pixel in its each line, and the abundances can be estimated from M = YB̃ via the optimized estimation
of B̃. Their geometrical explanations are archetypes of the minimal convex hull containing all the
pixels in the HSI data.

3. The PWAA-EMD Model for Endmember Extraction

In this section, the methodology of PWAA-EMD is proposed. Section 3.1 describes the model of
PWAA-EMD. Section 3.2 presents the solution for the PWAA-EMD model. Section 3.3 summarizes the
procedure of PWAA-EMD for extracting endmembers.

3.1. The Formulation of PWAA-EMD Model

Endmember extraction is to select proper endmembers that represent all true materials in the
image scene, and the endmembers should have big divergences from each other in the spectrum
signatures [39]. In the AA, the estimated endmembers correspond to vertices of the minimal convex hull
simplex enclosing all the pixels. Unfortunately, the simple nonnegativity and sum-to-one constraints
in coefficient matrices B and A do not involve the dissimilarity information among all the pixels.
It renders that minimizing the convex hull in the spectral observation space could not guarantee
absolutely big divergences among selected endmembers, especially for a relatively large number of
archetypes. Figure 1 shows the necessity of adding the dissimilarity information into the regular
AA. For a high-dimensional HSI dataset in Figure 1a, Figure 1b plots the 10 archetypes of the HSI
dataset from AA. The archetypes 4 and 5 are located close to each other and they might correspond
to two pixels in the image scene with similar or even subtle spectrum divergences. Therefore, the
dissimilarity information between pairwise pixels would be necessary to guarantee good behaviors of
AA in endmember extraction.

Many measures have been proposed to quantify the dissimilarity between pairwise pixels.
These measures can be computed very fast and often give good results of dissimilarity information,
such as the Euclidean distance, Mahalanobis distance, Kullback-Leibler Divergence, Wasserstein
distance [40] and so on. In the HSI data, spectral responses of each ground object change with its
spatial geological or environmental conditions (e.g., soil composition, weather, terrain, hydrologic
conditions). Unfortunately, the above measures could not take into account potential variations
in the spectral signals at each pixel when comparing the spectral signals of pairwise pixels [41,42].
These unmodelled spectral variations may lead to large measure values for changes in the spectral
responses of HSI pixels that are usually perceived to be small.
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In contrast, the EMD presented by Monge [43] provides a powerful perspective for investigating
the manifold structure of spectral signals [40]. The EMD metric has a great potential to describe
spectral variations in different pixels determined by the manifold geometry of HSI data. Earth mover’s
distance, also called the Monge-Kantorovich mass transportation distance, is a cross-bin distance that
mainly resolves the histogram or image matching problems by minimizing the amount of work to
transform one distribution to another. Consider a HSI data set as Y = {yi}N

i=1 ∈ RD×N , where each
column yi represents the source normalized histogram that corresponds to spectral responses of each
pixel, and let spectral vector of another pixel ŷi be the target normalized histogram. The EMD distance
between two histograms yi and ŷi is formulated as a linear programming problem whose goal is to
minimize the total cost in transforming the source spectral signal yi to the target one ŷi, showing as
follows:

EMD(yi, ŷi) = argmin ∑
j,k

fi(j, k)d(j, k),

s.t., fi(i, j) ≥ 0, ∑
j

fi(j, k) ≤ yk,i, ∑
k

fi(j, k) ≤ ŷj,i, ∑
j,k

fi(j, k) = 1 (3)

where fi(j, k) and d(j, k) are the flow amount and flow cost between the j-th bin of the source histogram
yi and the k-th bin of the target histogram ŷi respectively, and the flow cost measures with the L1

ground distance. The constraint ∑
j,k

fi(j, k) = 1 guarantees that the total reconstruction weights on the

same pixel from all the basis vectors sum to 1 and it results from the normalized histogram of each
column vector. The computational complexity of EMD metric scales up to O

(
D3logD

)
, and therefore

we adopt a fast and robust algorithm [44] to speed up the computation of EMD dissimilarity matrix.
The algorithm improves the regular EMD with a thresholded ground distance d(j, k) = min(d(j, k), ε),
where the defined threshold ε > 0. The algorithm reduces the computational complexity of EMD by
an order of magnitude. Moreover, it considers noise distributions of spectral signals in the HSI data,
and assigns different outliers with the same large ground distance to promote the robustness to noise
and outliers.

In Equation (1), the coefficient matrix B determines the estimated abundances via M = YB, and
we accordingly would like to impose the dissimilarity information W =

{
EMDi,j

}
∈ RN×N into the

matrix B. The formulated weighted AA with the EMD dissimilarity information is in the following:

Y = YWBA + E, s.t.,

{
bj ≥ 0 and ‖ bj ‖1 = 1, j = 1, 2, ···, r
ai ≥ 0 and ‖ ai ‖1 = 1, i = 1, 2, ···, N

(4)
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where B and A is coefficient matrices respectively, and E is the noise term. The dissimilarity matrix W
could enhance the sparsity of B and helps selecting proper endmembers with bigger divergences.

The coefficient matrices B and A are unknown, and the solution of Equation (4) is a typical blind
source separation problem. The Bayesian framework is a powerful technique to solve the blind source
separation problem and it builds a probabilistic model to formulate the solution problem in (4) as
a Bayesian inference problem [45]. The Bayesian framework could represent spectral variability in
HSI data and could better cope with the realistic HSI data unmixing [10]. Moreover, the Bayesian
framework could fully incorporate the likelihood and prior distributions of spectrum signals and
fraction abundances into the model. Besides, the Bayesian framework could automatically enforce
other constraints such as sparsity, nonnegativity or sum-to-one constraint to ensure solutions within
physical meaningful ranges and regularize solutions. Setting Θ = YW, the PWAA-EMD model is
formulated to be a joint posterior density function in the Bayesian framework,

P(Θ, B, A|Y) = P(Y|Θ,B,A)·P(Θ)·P(B)·P(A)
P(Y) ∝ P(Y|Θ, B, A)·P(Θ)·P(B)·P(A)

s.t.,

{
bj ≥ 0 and ‖ bj ‖1 = 1, j = 1, 2, ···, r
ai ≥ 0 and ‖ ai ‖1 = 1, i = 1, 2, ···, N

(5)

where P(Θ, B, A|Y) denotes the probability density function of Θ, B, A given Y. P(Y|Θ, B, A) is
the likelihood function depending on the observation model of the HSI data. P(Y) and P(Θ)

are normalized constants. The distributions P(B) and P(A) show prior knowledge about the two
parameters and guarantee physical constraints inherent to the hyperspectral observation model.

3.2. The Solution of PWAA-EMD Model

The joint posterior density can be optimized via the famous maximum a posterior estimator, and
accordingly the problem (5) can be transformed as

argmin
B,A

− (log P(Y|Θ, B, A) + log P(B) + log P(A))

B ≥ 0, and ‖ bj ‖1 = 1, j = 1, 2, ···, r
A ≥ 0, and ‖ ai ‖1 = 1, i = 1, 2, ···, N

(6)

where log(•) represents the logarithmic operation. In the probabilistic theory, the nonnegativity
and sum-to-one constraints on B and A are equal to the Dirichlet distributions in bj and ai, that is,
bj ∼ Dir(1), and ai ∼ Dir(1), where Dir is the Dirichlet distribution. Both terms log P(B) and log P(A)

are constant in Equation (5). On the other hand, considering the quantum nature of light in imaging
spectrometer, the Poisson distribution [46] is adopted to describe the probability density distribution
of (Y|Θ, B, A), showing as

P(Y|Θ, B, A) =
D

∏
k=1

N

∏
i=1

(ΘBA)
(Y)k,i
ki · exp

[
−(ΘBA)k,i

]
(Y)k,i!

(7)

The Equation (5) of joint posterior density can then be transformed into the following
optimization problem

argmin
B,A

(
D
∑

k=1

N
∑

i=1
[−(Y)k,i log(ΘBA)k,i + (ΘBA)ki])

B ≥ 0, and ‖ bj ‖1 = 1, j = 1, 2, ···, r
A ≥ 0, and ‖ ai ‖1 = 1, i = 1, 2, ···, N

(8)

The iterative multiplicative update scheme [47] is implemented to optimize the above equation.
The scheme utilizes a suitably strong regularization parameter to relax the equality constraint. At the t
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+ 1 iteration, coefficient matrices A(t+1) and B(t+1) can be iteratively updated via the following two
closed forms:

A(t+1) = A(t)⊙ ∇−
A(t)

∇+
A(t)

,∇+
Aj,i

= ∑
k,i

Θk,iB
(t)
i,j + λ,∇−Aj,i

= ∑
k

Yk,i ∑i(Θk,iB
(t)
i,j )

∑i,j(Θk,iB
(t)
i,j A(t)

j,i )
+

λ

∑j A(t)
j,i

(9)

B(t+1) = B(t)⊙ ∇−
B(t)

∇+
B(t)

,∇+
Bi,j

= ∑
k,i

Θk,iA
(t+1)
j,i + λ,∇−Bi,j

= ∑
k,i

Yk,iΘk,iA
(t+1)
j,i

∑i,j(Θk,iB
(t)
i,j A(t+1)

j,i )
+

λ

∑i B(t)
ij

(10)

where the operation
⊙

denotes the Hadamard product, λ is a defined regularization parameter, and
the indices i = 1, 2, ···, N, j = 1, 2, ···, r and k = 1, 2, ···, D. The above update procedures are repeated
until satisfying the convergence condition or the number of iterations exceeds the predefined maximal
iteration number T. The convergence condition is set as ‖B(t+1)−B(t)‖∞ ≤ ε and ‖A(t+1)−A(t)‖∞ ≤ ε

and ‖Y−ΘB(t+1)A(t+1)‖∞ ≤ ε, where ε is the defined error tolerance. The estimated endmembers are
achieved via M̂ = YWB(t+1).

Careful initialization of variable B is proven to promote the convergence speeds of Equation
(8). In this paper, we implement the two-stage algorithm [48] to initialize the endmember set M(0)

and estimate the initial coefficient matrices A(0) and B(0). The algorithm has a lower computational
complexity of O

(
D2N

)
and it selects r columns (i.e., corresponds to r pixels) that maximize the volume

of the parallelepiped spanned by the selected columns. The algorithm implements with two stages the
stochastic stage and the deterministic stage, showing as follows:

(1) The stochastic stage: the algorithm computes the VT
r that consists the top r right singular vectors

of Y, and selects O(r log r) random columns of VT
r . The columns are carefully chosen according

to the nonuniform probability distribution that depends on the information in the top-r right
singular subspace of Y.

(2) The deterministic stage: the algorithm applies a deterministic column-selection procedure [49] to
select exactly r columns from the set of O(r log r) columns of VT

r selected from the first stage.
The algorithm finally outputs exactly r columns of the HSI data and we set it to be the initial
endmembers M(0).

3.3. The Summary of PWAA-EMD Model for Endmember Extraction

The PWAA-EMD improves from AA and adds the EMD dissimilarity information to promote the
behavior of AA in selecting endmembers with bigger spectrum divergences. The EMD metric considers
manifold structure of the HSI data and it could describe spectral variations of all the pixels determined
by the manifold geometry of hyperspectral data. Meanwhile, the PWAA-EMD adopts the Bayesian
framework and formulates the endmember extraction into a probabilistic inference problem. The
Bayesian framework could represent spectral variability and it is more suitable for spectral unmixing
in the realistic HSI data. The solution of PWAA-EMD model is formulated into optimizing a joint
posterior density via the maximum a posterior estimator. The iterative multiplicative update scheme is
utilized to optimize the object function and the two-stage algorithm is employed to initialize the two
coefficient matrices. Figure 2 illustrates the procedure of PWAA-EMD in endmember extraction and it
includes the following steps:

(1) Hyperspectral images are transformed from a data cube into a matrix Y ∈ RD×N , where D is the
number of bands and N is the number of pixels, respectively.

(2) The dissimilarity information among all pixels are computed with the EMD measure in (3) and
the dissimilarity information matrix W are obtained.

(3) The coefficient matrix B is weighted by the EMD dissimilarity matrix W and the Bayesian
framework is then utilized to formulate the model of PWAA-EMD in (5).
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(4) The solution of PWAA-EMD is transformed into an optimization problem of a joint posterior
density via the maximum a posterior estimator in (8). The Poisson distribution is utilized to
quantify the prior knowledge of the HSI data from the consideration of quantum nature in
hyperspectral imaging.

(5) The two-stage algorithm is adopted to initialize the two coefficient matrices and the iterative
multiplicative update rules in (9) and (10) are implemented to optimize the problem.

(6) The coefficient matrix B(t+1) at the stopping iteration is set as the final coefficient matrix and the
proper endmembers are finally estimated from M̂ = YWB(t+1).
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4. Experimental Results

In this section, we will design several groups of experiments on both synthetic and real
Cuprite hyperspectral data to investigate the performance of PWAA-EMD in extracting endmembers.
To make a holistic comparison, five state-of-the-art endmember extraction methods including ICA [50],
MLNMF [29], CONMF [51], RNMF [30] and AA [36] have been implemented and their endmember
results are compared against that of PWAA-EMD. The extracted endmembers are evaluated with two
popular measures, spectral angle distance (SAD) and root-mean-square-error (RMSE). For the j-th pure
endmember, the formulation of SAD is defined as follows:

SADj = arccos

(
mT

j ·m̂j

‖mj‖2‖m̂j‖2

)
(11)

where mj and m̂j are an estimated endmember and the reference endmember respectively, and ‖·‖2 is
the norm operation of one endmember vector. For the j-th endmember, the formulation of RMSE is
defined in the following:

RMSEj =
2

√
1
D
‖mj − m̂j‖2

2 (12)
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where D is the number of bands.

4.1. The Experiments on the Synthetic Data

In this section, synthetic hyperspectral images are utilized to test the performance of PWAA-EMD.
Six endmembers are picked from the spectral library of USGS [52], including asphalt-gds367,
brick-gds350, cedar-gds360, particleboard-gds364, plastic-gds394 and woodbeam-gds363. The initial
spectrum of six endmembers has 2151 bands, ranging the spectrum wavelength from 0.1 to 150 µm.
After spectral resampling, final 108 bands are used in the experiments. Figure 3a plots spectrum
signatures of all the six endmembers, and Figure 3b illustrates the simulated abundance images of
the six spectrums, having the image size of 100 × 100 pixels. The abundance vectors were randomly
generated following the uniform Dirichlet distribution and no pure pixels exist in the image. The
synthetic images follow the linear mixture model with nonnegative abundances summing to one
at each pixel. The particleboard-gds364 and woodbeam-gds363 are similar to each other in spectral
signals, and it is difficult to accurately estimate the two different endmembers.

Remote Sens. 2017, 9, 841  9 of 17 

 

4.1. The Experiments on the Synthetic Data 

In this section, synthetic hyperspectral images are utilized to test the performance of PWAA-
EMD. Six endmembers are picked from the spectral library of USGS [52], including asphalt-gds367, 
brick-gds350, cedar-gds360, particleboard-gds364, plastic-gds394 and woodbeam-gds363. The initial 
spectrum of six endmembers has 2151 bands, ranging the spectrum wavelength from 0.1 to 150 	μm. 
After spectral resampling, final 108 bands are used in the experiments. Figure 3a plots spectrum 
signatures of all the six endmembers, and Figure 3b illustrates the simulated abundance images of 
the six spectrums, having the image size of 100 × 100 pixels. The abundance vectors were randomly 
generated following the uniform Dirichlet distribution and no pure pixels exist in the image. The 
synthetic images follow the linear mixture model with nonnegative abundances summing to one at 
each pixel. The particleboard-gds364 and woodbeam-gds363 are similar to each other in spectral 
signals, and it is difficult to accurately estimate the two different endmembers. 

 
Figure 3. The synthetic hyperspectral data. (a) Spectrum plots of six endmembers in the synthetic data 
(b) The six abundance images of the synthetic HSI data. 

4.1.1. The Experiment on the Synthetic Data without Gaussian Noise 

The experiment is to testify the performance of PWAA-EMD in estimating endmembers from 
the synthetic data without Gaussian noise. For the PWAA-EMD method, using cross-validation, the 
threshold  is set as 1; the error tolerance  and the maximum iteration time  are manually set as 
10−5 and 500 respectively. For the MLNMF method, using cross-validation, the sparsity regularization 
parameters 	and	  are set as 0.1 and 25 respectively; the regularization parameter  for 
abundance sum-to-one constraint is set as 25; and the maximum number of layers  and maximum 
iteration times of each layers  are set as 10 and 400 respectively. For the CONMF method, using 
cross-validation, the maximal iteration  and the relative construction error  are set as 200 and 
10−4 respectively. Using cross-validation, the penalization weight parameter  and the divergence 
shape paramter  in the RNMF are set as 0.1 and 1 respectively; and the maximum iteration time 

 and the error tolerance  are set as 500 and 10−5 respectively. For the AA method, using cross-
validation, the error tolerance threshold  and the maximum iteration time  are set as 10−7 and 
1000 respectively. 

Table 1 lists the comparison in the SAD and RMSE between PWAA-EMD and other five methods 
on the synthetic data without adding Gaussian noise. The CONMF performs the best, and the 
penultimate are ICA and RNMF. The PWAA-EMD is inferior to CONMF but behaves better than 
other four methods including ICA, RNMF, MLNMF and AA. The MLNMF and AA have similar 
performances in SAD and RMSE and they surpass ICA and RNMF. 
  

Figure 3. The synthetic hyperspectral data. (a) Spectrum plots of six endmembers in the synthetic data
(b) The six abundance images of the synthetic HSI data.

4.1.1. The Experiment on the Synthetic Data without Gaussian Noise

The experiment is to testify the performance of PWAA-EMD in estimating endmembers from
the synthetic data without Gaussian noise. For the PWAA-EMD method, using cross-validation, the
threshold ε is set as 1; the error tolerance ε and the maximum iteration time T are manually set as
10−5 and 500 respectively. For the MLNMF method, using cross-validation, the sparsity regularization
parameters a0 and τ are set as 0.1 and 25 respectively; the regularization parameter δ1 for abundance
sum-to-one constraint is set as 25; and the maximum number of layers L and maximum iteration times
of each layers Lmax are set as 10 and 400 respectively. For the CONMF method, using cross-validation,
the maximal iteration Tmax and the relative construction error δ2 are set as 200 and 10−4 respectively.
Using cross-validation, the penalization weight parameter λ1 and the divergence shape paramter β1 in
the RNMF are set as 0.1 and 1 respectively; and the maximum iteration time Tm and the error tolerance
ε1 are set as 500 and 10−5 respectively. For the AA method, using cross-validation, the error tolerance
threshold ε2 and the maximum iteration time Tt are set as 10−7 and 1000 respectively.

Table 1 lists the comparison in the SAD and RMSE between PWAA-EMD and other five methods
on the synthetic data without adding Gaussian noise. The CONMF performs the best, and the
penultimate are ICA and RNMF. The PWAA-EMD is inferior to CONMF but behaves better than
other four methods including ICA, RNMF, MLNMF and AA. The MLNMF and AA have similar
performances in SAD and RMSE and they surpass ICA and RNMF.
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Table 1. The contrast in SAD and RMSE of all the six methods on the synthetic data without
Gaussian noise.

Criteria
Endmember Extraction Methods

ICA MLNMF CONMF RNMF AA PWAA-EMD

SAD 0.1275 0.0374 0.0074 0.2629 0.0349 0.0188
RMSE 0.1042 0.0404 0.0063 0.1016 0.0410 0.0137

4.1.2. The Experiment on the Synthetic Data with Gaussian Noise

We further testify the robustness of PWAA-EMD and other five methods in resisting Gaussian
noise by changing the levels of signal-noise-ratio (SNR) of the synthetic data. The Gaussian white
noise is added to the synthetic data with zero-mean and the SNR is defined as follows:

SNR = 10 log10
E
[
yT

i yi
]

E
[
eT

i ei
] (13)

where yi and ei are spectrum observation and noise of pixel i, and E[·] denotes the expectation operator.
In the experiment, the SNR of the synthetic data changes between 10 dB and 60 dB with a step interval
of 10 dB. Parameter configurations of all the involved methods are the same with their counterparts in
the previous experiment on the noiseless synthetic data.

Figure 4 shows the plots of SAD and RMSE from all six methods when varying the noise levels
of the synthetic data. In the figure, the RNMF and CONMF improves much more greatly in the SAD
and RMSE with the rising levels of SNR respectively. Especially, the CONMF promotes the SAD
from 0.7765 to 0.0092 and its RMSE from 0.1613 to 0.0065, and it behaves best among all the methods
when having the SNR level over 60 dB. In contrast, the other four methods ICA, MLNMF, AA and
PWAA-EMD have more robust behaviors in terms of Gaussian noise, although their curves of SAD and
RMSE are falling down with the changing SNR levels. Both ICA and RNMF have similar performance
with a larger SNR over 20 dB but they both are inferior to MLNMF, AA and PWAA-EMD in all cases
of SNR levels. The PWAA-EMD surpasses AA in all SNR levels and it performs better than MLNMF
with a SNR over 30 dB. The MLNMF obtains slightly better or comparable performance to AA in all
SNR levels and that coincides with observations in the previous experiments.
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Moreover, Tables 2 and 3 list the SAD and RMSE results of all the six methods from the synthetic
data with the SNR equal to 30 dB. Figure 5 illustrates the comparison between the PWAA-EMD
endmembers and their references from the USGS library at the SNR equal to 30 dB. We did not list
the comparison results of all the other methods from the consideration of overlarge space. From the
tables, the ICA, CONMF and RNMF have worse performance than other three methods. The MLNMF
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estimates the best endmembers in particleboard-gds364 and plastic-gds394, but it performs worse
than PWAA-EMD in the majority classes of endmember extraction. The PWAA-EMD surpasses
AA in all six endmembers, especially the two similar endmembers including particleboard-gds364
and woodbeam-gds363 have smaller divergences from their reference endmembers. Moreover, the
PWAA-EMD has smaller average SAD and RMSE among all the six methods.

Table 2. The comparison in SAD results from all six methods on the synthetic data with SNR = 30 dB.

Endmembers
SAD

ICA MLNMF CONMF RNMF AA PWAA-EMD

asphalt-gds367 0.1822 0.0694 0.1770 0.1481 0.0340 0.0174
brick-gds350 0.2584 0.0391 0.1921 0.1717 0.0423 0.0257
cedar-gds360 0.3074 0.0200 0.1245 0.1773 0.0412 0.0367

particleboard-gds364 0.0895 0.0129 0.0355 0.0938 0.0479 0.0310
plastic-gds394 0.2043 0.0092 0.3111 0.2545 0.0436 0.0287

woodbeam-gds363 0.0979 0.0547 0.6074 0.1206 0.0376 0.0356

Average 0.1899 0.0342 0.2413 0.1610 0.0411 0.0292

Table 3. The comparison in RMSE results from all six methods on the synthetic data with SNR = 30 dB.

Endmembers
RMSE

ICA MLNMF CONMF RNMF AA PWAA-EMD

asphalt-gds367 0.1786 0.0500 0.1695 0.0502 0.0187 0.0098
brick-gds350 0.1100 0.0481 0.0741 0.0666 0.0404 0.0207
cedar-gds360 0.1207 0.0342 0.0626 0.0680 0.0421 0.0313

particleboard-gds364 0.0919 0.0319 0.0704 0.0666 0.0596 0.0346
plastic-gds394 0.0898 0.0304 0.1282 0.0988 0.0445 0.0370

woodbeam-gds363 0.0988 0.0627 0.2066 0.1142 0.0544 0.0335

Average 0.1150 0.0487 0.1186 0.0774 0.0433 0.0278
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Figure 5. The PWAA-EMD endmembers on the synthetic data with SNR = 30 dB.
(a) asphalt-gds367; (b) brick-gds350; (c) cedar-gds360; (d) particleboard-gds364; (e) plastic-gds394; and
(f) woodbeam-gds363.
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4.2. The Experiments on the Cuprite Data

In this section, we further investigate the performance of endmember extraction on real Cuprite
hyperspectral data. The Cuprite HSI dataset is a popular benchmarking dataset for testing endmember
extraction methods [11–14,17]. The dataset was collected by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) in 1997, covering the area of Cuprite, Nevada, USA. The original imagery
has 224 bands ranging the wavelength from 370 to 2480 nm and 20 m spatial resolutions. The bands
(1–3, 33, 97, 104–115, 148–170, and 221–224) were removed from the original band set due to water
absorptions and too low SNR, with final 180 bands left for our experiment. Figure 6a shows the
realistic spatial distributions of different materials in the Cuprite data. A smaller dataset in Figure 6b
is manually selected for our experiment, with the image size of 250 × 191 pixels.

Referring from the ground truth of different mineral materials in Figure 6a, twelve different
classes of minerals exist in the image scene of Figure 6b, including Alunite1, Alunite2, Pyrophyllite,
Buddingtonite, Chalcedony, Jarosite, Kaolinite1, Kaolinite2, Montmorillonite, Muscovite1, Muscovite2
and Nontronite. The reference spectral signatures of twelve materials were obtained from the USGS
spectral library [52]. After careful spectrum matching with the wavelength of AVIRIS data, Figure 6c
plots the reference spectrum curves of twelve different materials in the dataset. Similar spectrum
responses exist between Alunite1 and Alunite2, and that increases the difficulty in estimating in
different endmembers for the Cuprite data.
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Figure 6. The Cuprite HSI data. (a) The Ground truth of different mineral materials in the Cuprite
data; (b) the image scene of our experiment dataset; and (c) Spectrum plots of twelve materials in our
experiment dataset.

In the experiment, for the PWAA-EMD method, the threshold ε is set as 1.05 via cross-validation;
the error tolerance ε and the maximum iteration time T are manually set as 10−7 and 1000 respectively.
For the MLNMF method, using cross-validation, the sparsity regularization parameters a0 and τ are set
as 0.15 and 30 respectively, and the regularization parameter δ1 for abundance sum-to-one constraint
is set as 30. Using cross-validation, the maximal iteration Tmax and the relative construction error δ2

in the CONMF are set as 300 and 10−5 respectively. For the RNMF method, using cross-validation,
the penalization weight parameter λ1 and the divergence shape paramter β1 are set as 0.15 and 1.5
respectively; and the maximum iteration time Tm and the error tolerance ε1 are set as 1000 and 10−6



Remote Sens. 2017, 9, 841 13 of 18

respectively. The error tolerance threshold ε2 and the maximum iteration time Tt in AA are set as 10−6

and 800 respectively, using cross-validation. Other parameters unmentioned are the same as their
counterparts in the previous experiments on the synthetic data.

Tables 4 and 5 list the results of SAD and RMSE from all the six methods on the Cuprite data.
Figure 7 plots the comparison in spectrum curves between the PWAA-EMD endmembers and the
reference endmembers on the Cuprite data. We did not list those of other five methods with the
consideration of overlarge space. The CONMF, ICA and RNMF perform worse than other three
methods MLNMF, AA and PWAA-EMD and they have larger SAD and RMSE in almost all classes of
mineral materials. The PWAA-EMD endmembers surpasses those of all the other five methods in the
majority classes of mineral materials, and its averaged SAD and RMSE are smallest among all the six
methods involved in the comparison. The MLNMF behaves better than PWAA-EMD in a few classes
such as Chaledony, but its overall performance is inferior to PWAA-EMD and it is slightly worse than
AA. When comparing PWAA-EMD against AA, the former estimates more accurate endmembers
than the later in almost all classes of mineral materials. Moreover, the PWAA-EMD endmembers has
smaller differences from the reference endmembers on the two similar classes Alunite1 and Alunite2
because of its smaller SAD and RMSE.
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(d) Buddingtonite; (e) Chalcedony; (f) Jarosite; (g) Kaolinite1; (h) Kaolinite2; (i) Montmorillonite;
(j) Muscovite1; (k) Muscovite2; and (l) Nontronite.

Table 4. The comparison in SAD results from all six methods on the Cuprite data.

Endmembers
Endmember Extraction Methods

ICA MLNMF CONMF RNMF AA PWAA-EMD

Alunite1 0.2530 0.1112 0.1370 0.2548 0.1119 0.0651
Alunite2 0.2357 0.1894 0.1338 0.2994 0.1904 0.1724

Pyrophyllite 0.0922 0.1007 0.1325 0.1976 0.0802 0.0776
Buddingtonite 0.1411 0.0845 0.1377 0.2257 0.1112 0.1037
Chaledony 0.1415 0.0820 0.1401 0.2600 0.1186 0.0937

Jarosite 0.2249 0.1846 0.2681 0.2596 0.2242 0.2081
Kaolinite1 0.1858 0.1673 0.2386 0.2912 0.2122 0.1373
Kaolinite2 0.2397 0.2432 0.3855 0.3286 0.2678 0.2105

Montmorillonite 0.2180 0.2846 0.4359 0.3411 0.2497 0.1706
Muscovite1 0.0630 0.1150 0.2923 0.2448 0.0952 0.1231
Muscovite2 0.1359 0.1893 0.4252 0.3846 0.1668 0.1276
Nontronite 0.1122 0.2826 0.6233 0.3851 0.1691 0.1024

Average 0.1702 0.1695 0.2792 0.2894 0.1665 0.1327
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Table 5. The comparison in RMSE results from all six methods on the Cuprite data.

Endmembers
Endmember Extraction Methods

ICA MLNMF CONMF RNMF AA PWAA-EMD

Alunite1 0.1584 0.1282 0.1608 0.1710 0.1383 0.0741
Alunite2 0.1655 0.1711 0.2657 0.1687 0.1056 0.1021

Pyrophyllite 0.1056 0.0791 0.1016 0.1255 0.0746 0.0778
Buddingtonite 0.0697 0.0911 0.1393 0.1551 0.0686 0.0647
Chaledony 0.1326 0.0776 0.1343 0.1296 0.1282 0.0854

Jarosite 0.1290 0.1481 0.1311 0.1439 0.1336 0.1346
Kaolinite1 0.1939 0.1600 0.2320 0.1864 0.1435 0.0946
Kaolinite2 0.1118 0.1553 0.1540 0.1379 0.1151 0.1031

Montmorillonite 0.1545 0.1386 0.1798 0.1677 0.1671 0.1057
Muscovite1 0.0896 0.0723 0.1427 0.1223 0.1420 0.0874
Muscovite2 0.0949 0.1257 0.0933 0.1009 0.1330 0.0876
Nontronite 0.0731 0.0895 0.1222 0.1031 0.0726 0.0673

Average 0.1232 0.1197 0.1547 0.1427 0.1185 0.0904

5. Discussion

The above experiments testify the performance of PWAA-EMD in extracting endmembers on
both the synthetic and Cuprite HSI datasets, and the extracted endmembers are compared against five
state-of-the-art methods including ICA, MLNMF, CONMF, RNMF and AA.

Experimental results on the synthetic data show that all the six methods own improving
performance with the increasing SNR levels from 10 dB to 60 dB. That explains all the comparison
methods are negatively affected from the Gaussian noise. The ICA, MLNMF, AA and PWAA-EMD
have relatively smaller improvements in SAD and RMSE with the rising SNR levels, and therefore
they are more robust to Gaussian noise than CONMF and RNMF. The CONMF performs worse in
the case of low SNR smaller than 40 dB whereas it behaves best of all in the noiseless synthetic data
or with a SNR over 60 dB. For a certain SNR level, the ICA and RNMF always perform worse than
MLNMF, AA and PWAA-EMD. The PWAA outperforms MLNMF when having a larger SNR level over
30 dB. The PWAA-EMD surpasses AA in all six endmembers including the two similar endmembers
of particleboard-gds364 and woodbeam-gds363, regardless of the noiseless or noisy synthetic data.

Experimental results on the Cuprite data also prove the advantage of PWAA-EMD over the AA.
The PWAA-EMD could better identify two similar endmembers Alunite1 and Alunite2 than AA. The
reason for that is the EMD metric considers the dissimilarity information from the manifold structure
of the HSI data and it enhances the sparsity of coefficient matrix B with the dissimilarity weights to
guarantee selecting more different endmembers. Moreover, the PWAA-EMD surpasses the AA in
almost all other endmembers, with a smaller SAD and RMSE. The explanation is that the Bayesian
framework considers the spectral variability of the HSI data and improves the performance of AA in
selecting more accurate endmembers. The RNMF, ICA and CONMF behave worse than other three
methods including AA, MLNMF and PWAA-EMD. The explanation for worse behaviors of ICA is
that its assumption of independent and robust statistics of endmembers could not be satisfied in most
hyperspectral Images including ours [3]. The reason for worse performance of RNMF we guessed is
that the nonlinear mixing assumption in RNMF [30] is not suitable for the synthetic and Cuprite HSI
data we implemented. The shifting behaviors of CONMF endmembers from noiseless synthetic data
to noisy synthetic and Cuprite datasets again demonstrate its severe sensitivity to larger noise levels in
the hyperspectral data [53]. The PWAA-EMD outperforms MLNMF in the majority classes of mineral
materials and it has the smallest averaged SAD and RMSE among all the six methods. That coincides
with the observations of PWAA-EMD on the synthetic data.

Unfortunately, the PWAA-EMD still has some drawbacks and needs careful investigations in
the future work. First, we did not carefully explore the parameter setting of threshold error and
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iteration times in the PWAA-EMD. The automatic setting schemes on the two parameters will be
carefully studied in our following work. Second, the computational complexity of fast EMD is still
too high relative to its peer methods like Euclidean distances and kernel distances. The graphical
processing unit (GPU) computing and parallel computing schemes will be adopted to improve the
computational efficiency of PWAA-EMD in the future. Third, the size problem of endmember set was
not carefully considered in the paper. Some recently proposed schemes such as the statistics of the
indegree distribution (IDD) [54] and the collaborative sparsity [55] will be adopted into the method
to ameliorate the results of endmember extraction. Finally, more real hyperspectral datasets will be
utilized to further verify the performance of the PWAA-EMD and improve it for realistic applications.

6. Conclusions

In the paper, we presented a PWAA-EMD method to investigate the endmember extraction
problem on hyperspectral images. The PWAA-EMD improves the AA by imposing a EMD weighted
matrix into the coefficient matrix to help selecting different endmembers. Compared with other
measures, the EMD metric considers manifold structures of the HSI data and it could better represent
spectral variations of all the pixels in the HSI data. Meanwhile, the PWAA-EMD adopts the Bayesian
framework and formulates endmember extraction into a probabilistic inference problem via optimizing
a joint posterior density function. The iterative multiplicative update scheme is utilized to solve
the optimization problem and the two-stage algorithm is utilized to make careful initialization.
The synthetic and real Cuprite HSI datasets were utilized to testify the performance of PWAA-EMD,
and the results of SAD and RMSE were compared with five state-of-the-art methods including ICA,
MLNMF, CONMF, RNMF and AA. The results show that PWAA-EMD outperforms AA in almost all
the classes of endmembers including similar ones. Moreover, the PWAA-EMD behaves better than
MLNMF, ICA, RNMF and CONMF, having smaller averaged SAD and RMSE.
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