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Abstract: Urban areas are a complex combination of various land-cover types, and show a variety
of land-use structures and spatial layouts. Furthermore, the spectral similarity between built-up
areas and bare land is a great challenge when using high spatial resolution remote sensing images to
map urban areas, especially for images obtained in dry and cold seasons or high-latitude regions.
In this study, a new procedure for urban area extraction is presented based on the high-level, regional,
and line segment features of high spatial resolution satellite data. The urban morphology is also
analyzed. Firstly, the primitive features—the morphological building index (MBI), the normalized
difference vegetation index (NDVI), and line segments—are extracted from the original images.
Chessboard segmentation is then used to segment the image into the same-size objects. In each
object, advanced features are then extracted based on the MBI, the NDVI, and the line segments.
Subsequently, object-oriented classification is implemented using the above features to distinguish
urban areas from non-urban areas. In general, the boundaries of urban and non-urban areas are
not very clear, and each urban area has its own spatial structure characteristic. Hence, in this study,
an analysis of the urban morphology is carried out to obtain a clear regional structure, showing the
main city, the surrounding new development zones, etc. The experimental results obtained with six
WorldView-2 and Gaofen-2 images obtained from different regions and seasons demonstrate that the
proposed method outperforms the current state-of-the-art methods.

Keywords: urban extraction; urban morphology; regional feature; line segments; high-level feature;
high spatial resolution; remote sensing

1. Introduction

Urban areas are the main areas of human activity, and they have a great impact on the Earth’s
land-surface change and the ecological environment. An urban distribution map can reflect the
degree of regional urbanization, and is also the most basic geographic data source for urban planning,
development, and change monitoring [1]. In recent decades, remote sensing has been the main
approach to efficient urban land-cover mapping. Considerable efforts have been made to improve the
accuracy of urban land-cover mapping [2–8]. A number of different approaches have been proposed
in recent years for automatically detecting urban areas from remotely sensed images [9,10].

In the early years, only low or medium spatial resolution images were available to the general
public and researchers [11,12]. In these images, the characteristics of urban areas are mainly identified
by impervious surfaces [9] or built-up areas [10]. In previous research, the traditional pattern
recognition and classification methods, such as spectral unmixing [13], artificial neural networks [14],
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support vector machine, random forest [15–17], and so on. However, the results of these (supervised)
methods depend on the quality of the selected training samples. Furthermore, their collection is
a time-consuming task.

Many different indices for impervious surfaces and built-up areas have been presented, including
the urban index (UI) [18], the normalized difference built-up index (NDBI) [19], the normalized
difference impervious surface index (NDISI) [20], the enhanced built-up and bareness index (EBBI) [21],
and the combinational build-up index (CBI) [9]. These indices are quick, simple, and convenient in
practical applications. However, these indices face a variety of challenges. For example, they are
subject to seasonal variation, and it can be difficult to distinguish between built-up and bare land
areas. These indices may also require special bands, or they may be sensor-dependent [9]. In [22],
multitemporal synthetic aperture radar (SAR) data were used to define the built-up index.

With the increase of the spatial resolution of images, the significant spatial structure information
of the land surface can be used to improve the accuracy of urban area extraction [23–25]. Urban scenes
have unique textures when compared to natural scenes, and this can be exploited to classify, i.e.,
gray-level co-occurrence matrix (GLCM) [26], the normalized gray-level histogram [27], and the Gabor
wavelet [28]. Pesaresi et al. [10] proposed a robust built-up area presence index, namely, the PanTex
index, which is an anisotropic rotation-invariant textural measure derived from panchromatic satellite
data. In [29], morphological multiscale operators were used to undertake urban texture recognition.

In all the references reviewed, it was found that most of the image resolutions (e.g., Moderate
Resolution Imaging Spectroradiometer (MODIS), Landsat 8, Landsat Thematic Mapper (TM),
and SPOT-5) used for urban area extraction are lower than 5 m [9,11]. In addition, with the increase of
the resolution, the extraction accuracy of urban areas is reduced [10], for the following reasons. Urban
areas are a complex combination of various land-cover types (vegetation, buildings with different
colors, roads, water, parking lots, etc.), and they show a variety of land-use structures and spatial
layouts. Furthermore, impervious surfaces (buildings, roads, parking lots, and so on) dominate
urban areas. Thus, in low- and medium-resolution images, urban areas are mainly manifested by
impervious surfaces with similar spectral information. With the increase of the image resolution,
the small objects of the non-impervious surface land-cover types, such as vegetation, water, grass,
soil, and so on, are clearly displayed in the images, which brings great challenges to the urban area
extraction, especially for high-resolution remote sensing images containing only four channels (red (R),
green (G), blue (B), and near-infrared (NIR)).

An urban place can be regarded as a spatial concentration of people whose lives are organized
around nonagricultural activities [30]. Urban areas are created through urbanization, and are
categorized by urban morphology as cities, towns, conurbations, or suburbs. “Built-up area” is a term
used primarily in urban planning, real estate development, building design, and the construction
industry. It encompasses the following: firstly, a developed area, i.e., any land on which buildings are
present, normally as part of a larger development; and, secondly, a “gross building area” (construction
area). Impervious surfaces are mainly artificial structures (pavements, roads, sidewalks, driveways,
and parking lots) that are covered by impenetrable materials such as asphalt, concrete, brick, and stone.
It is clear that urban areas partly equate to built-up areas, and impervious surfaces are not equivalent
to urban areas, which also contain green spaces. Due to one pixel covering a large area of ground in
low- and medium-resolution images, and the fact that impervious surfaces dominate urban zones,
urban areas and impervious surfaces have similar spectral information. The extraction of urban areas,
built-up areas, and impervious surfaces is indistinguishable when using low- and medium-resolution
images. However, in all the references reviewed, we found that these concepts of urban areas, built-up
areas, and impervious surface are usually not distinguished in high spatial resolution imagery [10,31].

The aim of this paper is to extract urban areas from high spatial resolution images, and to
simultaneously analyze the spatial structure distribution of the urban areas. This task is faced with
many challenges:
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Firstly, urban areas contain various land-cover types (vegetation, buildings, roads, water bodies,
parking lots, green spaces, bare soil, shadow, etc.) at microscopic (local spatial units) spatial
extent, and complex combinations of the many land-cover types can be clearly seen in high spatial
resolution images.

Secondly, many of the impervious land-cover types of urban areas, such as buildings, have similar
spectral information to the impervious land-cover types of non-urban areas, such as bare land, sand,
or rock, especially for the images obtained in dry and cold seasons or high-latitude regions.

Thirdly, urban morphology shows diversity in the macroscopic spatial extent. Urban areas are
categorized by urban morphology as cities, towns, conurbations, or suburbs, which show a wide
variety of land-use structures and spatial layouts. Furthermore, with the development of urban
planning, the greening of urban areas is becoming more common, which can result in confusion with
rural areas.

Wilkinson [32] and Li et al. [33] demonstrated that new algorithms can improve the accuracy of
land-cover and land-use mapping, but the improvement is limited. Gong et al. [34] suggested that
more effort should be made to include new features to improve the accuracy of land-cover mapping.
In addition, recent studies of deep learning have demonstrated that a combination of low-level features
can form a more abstract high-level representation of the attribute categories or characteristics, and can
significantly improve the recognition accuracy [35,36].

The aim of this study is to extract the urban areas from high spatial resolution images. In
order to solve the above problems, a new approach is proposed based on small spatial units and
high-level features extracted from the primitive features, such as regional features and line segments.
This approach is much easier than the fusion of features at the land-use level. Classification and urban
spatial structure analysis are then performed for all the non-overlapping small spatial units of the
entire image (the flow chart of the proposed approach is shown in Section 3). The contributions of this
paper are as follows:

(1) The proposed method has the advantage of strong fault tolerance. The multiple high-level
features, which are extracted from the primitive features in microscopic spatial extents, are used
to describe the complex spectral and spatial properties of urban areas.

(2) Line segments and their spatial relationship with regional features are used to describe the
urban area.

(3) Urban morphology analysis is undertaken at a macroscopic spatial extent, based on morphological
spatial pattern analysis (MSPA).

The rest of this paper is organized as follows. The study areas and remotely sensed data are
introduced in Section 2. Section 3 introduces the proposed method, including the low-level feature
extraction, the chessboard segmentation of the entire image into non-overlapping small spatial units,
the high-level feature extraction, the random forest classification, and the spatial structure analysis.
The results of the experiments are reported in Section 4. Finally, a discussion and conclusions are
provided in Sections 5 and 6.

2. Study Areas and Data

In order to test the robustness of the proposed method, six different test sites in China were
selected, for which the data were obtained by different satellites and in different seasons. The images
are denoted as R1–R6, and are shown in Table 1 and Figure 1. The images comprise two WorldView-2
images with a 2-m resolution (R1 and R2) and four Gaofen 2 (GF-2) images with a 4-m resolution
(R3–R6). All the images have four bands, namely, R, G, B, and NIR.
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Table 1. The parameters of the images.

Image Satellite Size Acquisition Time Resolution (m) City

R1 WV-2 9050 × 3560 20 September 2011 2 Harbin, Heilongjiang
R2 WV-2 8810 × 3720 14 September 2011 2 Harbin, Heilongjiang
R3 GF-2 7300 × 6908 23 January 2015 4 Guangzhou, Guangdong
R4 GF-2 7300 × 6908 8 May 2015 4 Urumqi, Xinjiang
R5 GF-2 7300 × 4077 10 November 2014 4 Lhasa, Xinjiang
R6 GF-2 7300 × 6908 12 February 2015 4 Wuhan, Hubei
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Figure 1. The six test images: (a–f) R1–R6, respectively.

The two WorldView-2 (WV-2) images, denoted as R1 and R2, cover Harbin, Heilongjiang province,
and were acquired in September 2011 during the autumn (Figure 1a,b). Harbin features the highest
latitude and the lowest temperature of all of China’s big cities, and has a temperate continental
monsoon climate. There is less than 5% overlap between the R1 and R2 images. The vegetation in the
R1 and R2 images is very lush. The R1 image mainly contains city center and the surrounding towns,
regions under development, and some rural areas. A small area of urban area, sparsely scattered
villages, and large tracts of farmland comprise image R2.
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Image R3 (Figure 1c) mainly covers the Tianhe and Huangpu districts of Guangzhou, Guangdong
province, and was acquired in January 2015, during the winter. Guangzhou is a rapidly developing
city, and image R3 contains many bright patches of bare land that have been prepared for building.
Guangzhou is a hilly area that is located on the coast. The climate is subtropical monsoon.

Images R4 and R5 (Figure 1d,e) are of Wulumuqi and Lhasa, Xinjiang province. Urumqi is the
world’s farthest city from the ocean, and features a temperate continental arid climate. Image R4 was
obtained in May 2015, during the early spring, and both the farmland and hills feature bright dry soil
with sparse vegetation, which is difficult to separate from the Urumqi city areas. The bare hills feature
a distinctive and unique texture characteristic, as shown in the right part of Figure 1d. Image R5 covers
the city of Lhasa and its surrounding hills. The climate in this area is temperate semi-arid monsoon.
Image R5 was obtained in November 2014, during the winter. As a result, the image contains bare
vegetation, gravel, and dry soil, which have similar spectral characteristics to the buildings and roads
in the city areas.

Image R6 is of Wuhan, China. The image was obtained in February 2015, during the winter.
Wuhan is a humid subtropical monsoon climate zone. The Yangtze River and the Han River intersect
in the center of the city of Wuhan, and many lakes and water bodies are found on both sides of the
Yangtze River. It can be seen from Figure 1f that this image is very challenging and contains very
complex and diverse land-cover types, e.g., water, river, old city with dense old buildings, newly
developed areas, blocks of paddy fields, bare land, vegetation, areas to be developed with bright bare
soil, and so on.

In general, images R3 and R6 contain much more complex land-cover and land-use types than
the other test images. Clearly, images R4 and R5 are similar, containing large areas of bare mountain
and bare soil, covered with very little vegetation. Lush vegetation is found on most of the non-built-up
areas of images R1, R2, R3, and R6. The many patches of bright bare land with bright soil found in
images R1, R2, R3, and R6 have a negative impact on the urban area extraction.

3. Methodology

Urban areas are complex compositions of multiple objects of multiple material types, especially
in the impervious areas, which often leads to confusion with non-urban areas. This complexity of
the urban areas not only refers to the spectra of the urban objects, but also the size, spatial structure,
and layout, especially in high spatial resolution images. The spatial layout and the relationship
between buildings and vegetation reflect the essential characteristics of the city.

Therefore, in this study, a new approach is proposed to extract urban areas in high spatial
resolution images. The flow chart of the proposed approach is shown in Figure 2. The primitive
features reflecting the characteristics of buildings (building regions), vegetation, and line segments are
first extracted.
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In this study, the morphological building index (MBI) and the NDVI are used to represent the
regional features of buildings and vegetation. However, the NDVI cannot always detect vegetation
areas correctly, due to seasonal variations. The bare land is then mistakenly extracted as buildings,
and is considered as an urban area. The line segments are used to solve this problem. The line segment
characteristics of urban areas are significant, due to the dominant urban objects, such as buildings and
roads, having regular shapes. Because it is quick and easy to implement, a chessboard segmentation
algorithm is used to segment the entire image to obtain non-overlapping small spatial units. In each
spatial unit, high-level features are abstracted from the MBI, the NDVI, and the line segment map.
The random forest (RF) classifier is then employed for the classification of each spatial unit. Then,
based on the spatial units, the spatial structure of the urban area is analyzed. The following sections
describe the details.

3.1. Morphological Building Index (MBI)

The state-of-the-art MBI [37,38] building extraction method is used because it is free of parameters,
multiscale, multidirectional, and unsupervised. The MBI has also been proved to be effective for
automatic building extraction from high spatial resolution images [39,40]. The basic principle of the
MBI is that buildings are brighter than their surroundings (especially building shadow). The MBI uses
a set of morphological operators (e.g., top-hat by reconstruction, granulometry, and directionality)
to represent the spectral–spatial regional properties of buildings (e.g., brightness, size, contrast,
directionality, and shape). The calculation of the MBI is briefly described as follows.

Step 1: Brightness image. The maximum value for each pixel in the visible bands is kept as the
brightness, since the visible bands make the most significant contribution to the spectral property
of buildings.

Step 2: Top-hat morphological profiles. The differential morphological profiles of the top-hat
transformation (DMPTH) represent the spectral–structural property of the buildings:

DMPTH = [∆TH(d, s), d ∈ D, s ∈ S],
with, ∆TH(d, s) = |TH(d, s)− TH(d, s− ∆s)|,

(1)

where TH represents the top-hat by reconstruction of the brightness image; s and d indicate the scale
and direction of a linear structural element (SE), respectively; S and D represent the sets of scales and
directions, respectively; and ∆s is the interval of the profiles. The top-hat transformation can highlight
the locally bright structures with a size up to a predefined value, and is used to measure the contrast.

Step 3: Calculation of the MBI. The MBI is defined by Equation (2):

MBI = ∑d ∑s DMPTH(d, s)
Nd × Ns

, (2)

where Nd and Ns are the number of directions and scales, respectively. The building index is defined
as the average of the multiscale and multidirectional DMPTH, since building structures have larger
feature values in most of the scales and directions in the morphological profiles, due to their local
contrast and isotropy.

3.2. Normalized Difference Vegetation Index (NDVI)

The NDVI is used to represent the vegetation components, such as the grass and trees of urban
areas, and farmland and forest in non-urban areas. Its calculation is based on the physical–chemical
characteristic of vegetation, which has a strong reflectance in the NIR channel, but strong absorption in
the red channel:

NDVI =
NIR− RED
NIR + RED

, (3)

The vegetation map is obtained by applying Otsu thresholding [41] to the NDVI index.
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3.3. Line Segments

The linear features are one of the most important characteristics of buildings, and are a good
indicator of the existence of candidate buildings. Many studies have considered shadow as the proof
of the existence of buildings [42,43]. Unfortunately, there are many factors that are beyond the control
of the data user in very high resolution (VHR) satellite image acquisition, such as the sensor viewing
angle, the solar angles, the season, the time, and the atmospheric conditions. Consequently, the shadow
characteristics, such as size, shape, width, and length, are different in different images. Furthermore,
in addition to buildings, many other objects, such as trees, vehicles, garden walls, pools, and bridges,
cast shadows. Thus, the process of building shadow detection and extraction is time-consuming,
and the accuracy of the results is not guaranteed.

Figure 3b shows the MBI and line segment features of Figure 3a. The line segments of the built-up
areas are very different to those of the bare land. Because the bare land spectrum changes slowly,
the MBI features of bare land are generally far away from the line segments. However, due to the
relatively high luminance contrast between buildings and shadow, straight lines always appear on the
sides of buildings in the immediate vicinity of shadow, as shown in Figure 3b. Such a line is called
a dominant line (DL). In general, the length of the DL is similar to the length of the real building,
and its inclination angle is also similar to the orientation of the real building.
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In this study, the line segments are extracted by a fast, parameterless line segment detector named
EDLines [44], based on the grayscale image. The grayscale image is obtained by forming a weighted sum
of the R, G, and B bands of the original image (0.2989 × R + 0.5870 × G + 0.1140 × B [45]). The process
consists of three steps: edge segment detection, line segment extraction, and line validation.

Step 1: Edge segments. Clean, contiguous chains of pixels are extracted by the edge drawing (ED)
algorithm [46], based on the gradient magnitude and direction. The ED algorithm is very quick and
accurate compared to the other existing edge detectors (e.g., Hough transform). The ED algorithm
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comprises four steps: denoising and smoothing of the images by a Gaussian filter, gradient magnitude
and direction extraction for each pixel, detecting anchors which have the local maximum gradient
values, and connecting anchors to obtain edge segments.

Step 2: Line segments. The least-squares line fitting method is used as the straightness criterion to
extract line segments from the edge segments produced in the first step.

Step 3: Line validation. Line validation is adopted based on the Helmholtz principle to eliminate
the false line segments.

Figure 3c–e shows an example of EDLines extraction. Figure 3d shows the ED results of Figure 3c,
where the boundaries of the image are extracted. The boundaries of the interior of building objects are
extracted, and the boundaries are not smooth and neat. Figure 3e shows the final result of the EDLines
algorithm, where it can be seen that the line segments are much smoother than the edge segments
(Figure 3d), and many of the trivial short boundaries are removed.

3.4. Chessboard Segmentation

Chessboard segmentation is the simplest segmentation method as it involves splitting the image
into non-overlapping square objects with a size predefined by the user. Chessboard segmentation does
not consider the underlying data (e.g., the MBI, the NDVI, and the line segment feature maps in this
study) and, therefore, the features within the data are not delineated. This method is very suitable for
segmenting complex urban areas.

3.5. High-Level Feature Extraction

High-level features reflecting the intrinsic characteristics of the urban areas are extracted from
the primitive features for each spatial unit obtained by the chessboard segmentation. Figure 4 is the
combination of the MBI, the NDVI, and the line segment feature maps of Figure 3a. The line segments
of the built-up areas are very different to those of the bare land. Clearly, the MBI feature is the main
factor to distinguish urban and non-urban areas. However, some bare soil is detected by the MBI,
and some blue buildings are detected by both the MBI and the NDVI.
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Figure 4. The MBI, the NDVI, and the line segment feature map of Figure 3a (red color: MBI,
green color: NDVI, blue color: line segments). The blue and yellow rectangles frame the MBI and
NDVI mis-extraction.

In each spatial unit, the high-level features of the three primitive feature maps of the MBI,
the NDVI, and the line segments are extracted, respectively. In addition, the relationship between the
MBI, the NDVI, and the line segments is also considered. In total, 24 high-level features are extracted
from each spatial unit, as listed in Table 2.
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Table 2. The high-level features extracted from the primitive feature maps.

Primitive Feature
Map High-Level Features Scale Feature No.

MBI + NDVI f2area: The percentage of the MBI and NDVI area [0–100] 1

MBI

A_MBI: Percentage of the MBI area [0–100] 2
Qua_MBI: MBI area percentage in four quadrants [0–100] 3–6
num_MBI: The number of MBI plots that have areas >500, 300, and 20 pixels [0–100] 7–9
area_MBI: The percentage of MBI plots that have areas >500, 300, and 20 pixels [0–100] 10–12

NDVI
A_NDVI: Percentage of NDVI area [0–100] 13
big_NDVI: The number and area percentage of NDVI plots that have an area >500 [0–100] 14–15

Line segments

num_EDline: Number of line segments with length >10 pixels >0 16
difv: angle difference between the two top dominant directions [0–180] 17
DLR: Percentage of dominant direction line segments [0–100] 18
DLR2: Percentage of top two dominant direction line segments [0–100] 19
L_ls: Line length feature information: mean and variance >0 20–21

MBI + NDVI + line
segment

L_nb: the percentage of the MBI, the NDVI, and others in the line segment
neighborhood [0–100] 22–24

For the MBI and the NDVI, the sum of the area percentage of the MBI and the NDVI is calculated.
In general, water bodies, shadow, and some bare land (semi-arid and sub wetness land) belong to the
black in Figure 4. Usually, in urban areas, buildings are distributed densely. Thus, in the MBI feature
map, both the total and four quadrants of the area percentage are calculated. To distinguish the large
and small areas of bare soil detected by the MBI, the number plot and area percentage of the MBI plot
with different areas are calculated. The large-area MBI plot is larger than 500 pixels in this study, which
is determined by the resolution of the images and the average areas of the buildings. In the NDVI
feature map, the total area percentage is calculated. In general, urban area vegetation distribution is
fragmented, and non-urban-area vegetation usually occurs in large-area blocks. Thus, the number and
area percentage of the NDVI plot (area >500 pixels) are calculated.

In the line segment map, the number of line segments and the mean and variance of all the line
segments lengths are calculated. It can be seen in Figures 3b and 4 that the directional distribution
of the line segments is significantly different between the urban and non-urban areas. In this study,
the direction of the line segments is defined as 0–180◦ with a step of 30◦, namely, six directions.
The histogram is sorted in descending order according to the number of line segments. The direction
with the maximum number of line segments, namely, the first direction, is called the dominant
direction. Three features are extracted from the direction histogram of the line segments, namely,
the percentage of dominant direction line segments (DLR), the angle difference between the top two
dominant directions (difv), and the percentage of the top two dominant direction line segments.

Many bright non-building areas are detected as buildings by the MBI, especially the large areas
of bare land and bare mountain, which seriously hinders the urban area extraction accuracy. Through
observation of the experimental data, it can be seen that the spatial relationships between the MBI,
the NDVI, and the line segments are different in different spatial contexts. In general, the MBI features of
buildings overlap or are in close proximity to the line segments, due to the sudden significant spectral
change between buildings and their surroundings (especially building shadow). However, the MBI
features of bare land are generally far away from the line segments. This is because the bare land spectrum
changes slowly (as shown in Figure 3b). Thus, the spatial relationships between the MBI, the NDVI, and
the line segments are extracted in the neighborhood of the line segments, namely, the percentage of the
MBI, the NDVI, and others (water, shadow, and so on) in the line segment buffer with a 1-pixel width.

The values of all the 24 features are greater than or equal to zero. The scales of all the features’
values are similar, i.e., 0–100, except for features 16, 17, 20, and 21.

3.6. Classification

High-dimensionality features extracted for recognizing urban areas are a binary classification
problem. Hence, a nonparametric classifier is required, i.e., a classifier that does not assume
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any peculiar statistical distribution for the input. The classifier also has to be able to handle
high-dimensional feature spaces, since the high-level features are composed of 24 bands. Although
the high-dimensional features are artificially selected for the urban area extraction, they may contain
redundancies in the feature space. It is also important to understand the importance of each feature.
Therefore, the random forest (RF) classifier is used in this study for the urban area mapping, and to
analyze the importance of each feature. The RF classifier can manage a high-dimensional feature space,
and is both quick and robust [16].

The RF classifier constructs a multitude of decision trees, and is an approach that has been shown
to perform very well [15,16]. A large number of trees (classifiers) are generated, and majority voting
is finally used to assign an unknown model to a class. Each decision tree of RF chooses a subset of
features randomly, and creates a classifier with a bootstrap sample from the original training samples.
After the training, RF can assign a quality measure to each feature. In this study, the Gini index [12] is
used as the feature selection measure in the decision tree design. The Gini index measures the impurity
of a feature with respect to the classes:

∑ ∑
j 6=i

( f (Ci, T)/|T|)
(

f
(
Cj, T

)
/|T|

)
, (4)

where T represents the training set, and Ci represent a class. f (Ci, T)/|T| is the probability of the
selected pixel belonging to class Ci.

At each node of the decision tree, the feature with the lowest Gini index value is selected
from the randomly selected features as the best split, and is used to split the corresponding node.
About one-third of the observed training samples (the “out-of-bag” samples) are not used when
growing a tree, due to each tree of RF being grown from a bootstrapped sample. The variable
importance is represented by the decrease in accuracy using the out-of-bag observations when
permuting the values of the corresponding variables.

3.7. Morphological Spatial Pattern Analysis (MSPA)

Urban areas are created through urbanization and are categorized by urban morphology as cities,
towns, conurbations, or suburbs. In general, conurbations and suburbs are interconnected with cities
or towns, and the remote, sparse villages are not part of the urban areas. The RF classification map
cannot clearly distinguish between villages and urban areas based on the local spatial and spectral
information. Furthermore, some bare land with rich texture information can be misclassified as urban
areas. MSPA [3,47,48] is therefore introduced to refine the urban map, and to further analyze the
urban morphology.

In the binary or thresholded map (foreground and background), MSPA is used to analyze the
shape, form, geometry, and connectivity of the map components. This consists of a series of sequential
mathematical morphological operators such as erosion, geodesic dilation, reconstruction by dilation,
and anchored skeletonisation. MSPA borrows the notion of path connectivity to determine the
eight-connected or four-connected regions of the foreground. Each foreground pixel is classified as
one of a mutually exclusive set of structural classes, i.e., Core, Islet, Edge, Loop, Perforation, Bridge,
or Branch. In different applications, the corresponding objects in the generic MSPA categories are
different [3,49]. There are two key parameters in MSPA, i.e., the foreground connectivity (FGconn) and
the size parameter (Ew). Parameter Ew defines the width or thickness of the non-core classes in the
pixels. In this study, FGconn is set to four-connected, and Ew is set to 1 pixel.

As shown in Figure 5, the urban map of the test image R2 (Figure 5a) is input into MSPA. All the
pixels of urban areas are foreground, and the others are background. Figure 5b shows the MSPA
result. The output classes of MSPA are as follows: Core, the interior of the urban areas, city or town,
excluding the urban perimeter edge; Islet, disjoint cities or towns that are too small to contain Core,
which are mainly sparse villages; Loop, connected at more than one end to the same Core area cities,
which occurs due to a river or wide road splitting the city or town; Bridge, connected at more than one
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end to different Core areas; and Branch, connected at one end to Edge, Bridge, or Loop, and it shows the
trail of the conurbations or suburbs that link the cities or towns. In this paper, for urban area extraction
and urban morphology analysis, some of the Islets need to be abandoned. These Islets are mainly small
villages far away from the city or built-up areas.

Remote Sens. 2017, 9, 663  11 of 29 

 

shows the trail of the conurbations or suburbs that link the cities or towns. In this paper, for urban 
area extraction and urban morphology analysis, some of the Islets need to be abandoned. These Islets 
are mainly small villages far away from the city or built-up areas. 

 
(a) 

 
(b) 

Background  Core  Islet  Loop  Bridge  Perforation  Edge  Branch 

Figure 5. (a) Urban classification map of test image R2 as the MSPA input (White: foreground; black: 
background); and (b) MSPA results. 

4. Experiments and Results 

4.1. Experimental Design and Setup 

The proposed method was validated on six complex and challenging high-resolution remote 
sensing images (as shown in Table 1 and Figure 1). In this section, the classification results of the 
proposed method are first compared with those of the other methods, namely, PanTex [10] and 
support vector machine (SVM) [50]. The sensitivity of the features and parameters of the proposed 
method is then analyzed. Finally, the spatial structure analysis of the urban areas is performed based 
on the urban area classification map. 

The PanTex method is a robust built-up area presence index. The index is based on fuzzy 
rule-based composition of anisotropic textural co-occurrence measures derived from the satellite 
data by the GLCM [10]. Thus, in this study, the PanTex index is used as a comparison method for the 
urban area extraction. There are two parameters in PanTex: the window size (i.e., scale) and the 
threshold of the PanTex feature. The traditional PanTex method is a pixel-based method, and the 
PanTex feature of each pixel is extracted from the pixel-centered window. The threshold of the 
PanTex feature is then used to separate foreground (built-up areas or urban areas) and background 
(non-built-up areas or non-urban areas). All the test images in this study showed that the traditional 
PanTex method obtains very poor results, from both the visual effect and quantitative evaluation. 
Thus, in this experiment, the PanTex method was used as an object-based method, in order to obtain 
a fair comparison, and the window size was set as equal to the window size of the proposed method 
(i.e., 80–180, with a step size of 20). The threshold of PanTex was varied from the minimum to the 
maximum of PanTex, with a step size of 0.2. At each scale, the best PanTex result with the optimal 
threshold was selected for the comparison. 

SVM is a widely used classification method for multi-dimensional datasets, and all 24 features 
were input into the SVM classifier in this study. The LIBSVM [50] toolbox was used, with a radial 
basis function (RBF) kernel. The LIBSVM toolbox has very sensitive parameters c and g. After 
several tests, the value of parameter g was varied from 7 × 10−8 to 9 × 10−5 with a step size of 2 × 10−8, 
and parameter c was varied from 0.5 to 15 with a step size of 0.5. The best result with the optimal 
parameter settings for c and g was selected to ensure a fair comparison. 

The parameter settings in the experiments were as listed below. 

(1) MBI: Line-shaped SEs ranging from 2 to 32 with four directions. 
(2) NDVI threshold: The threshold of the NDVI was set according to the content of each image. The 

NDVI feature images were stretched to 0–255, and the NDVI thresholds of R1–R6 were set as 
140, 150, 120, 155, 120, and 167, respectively. 

(3) Segmentation: Multiple scales of chessboard segmentation were tested in the experiments, from 
80 to 180, with a step size of 20. 

Figure 5. (a) Urban classification map of test image R2 as the MSPA input (White: foreground; black:
background); and (b) MSPA results.

4. Experiments and Results

4.1. Experimental Design and Setup

The proposed method was validated on six complex and challenging high-resolution remote
sensing images (as shown in Table 1 and Figure 1). In this section, the classification results of the
proposed method are first compared with those of the other methods, namely, PanTex [10] and support
vector machine (SVM) [50]. The sensitivity of the features and parameters of the proposed method
is then analyzed. Finally, the spatial structure analysis of the urban areas is performed based on the
urban area classification map.

The PanTex method is a robust built-up area presence index. The index is based on fuzzy
rule-based composition of anisotropic textural co-occurrence measures derived from the satellite data
by the GLCM [10]. Thus, in this study, the PanTex index is used as a comparison method for the urban
area extraction. There are two parameters in PanTex: the window size (i.e., scale) and the threshold of
the PanTex feature. The traditional PanTex method is a pixel-based method, and the PanTex feature of
each pixel is extracted from the pixel-centered window. The threshold of the PanTex feature is then
used to separate foreground (built-up areas or urban areas) and background (non-built-up areas or
non-urban areas). All the test images in this study showed that the traditional PanTex method obtains
very poor results, from both the visual effect and quantitative evaluation. Thus, in this experiment,
the PanTex method was used as an object-based method, in order to obtain a fair comparison, and
the window size was set as equal to the window size of the proposed method (i.e., 80–180, with a step
size of 20). The threshold of PanTex was varied from the minimum to the maximum of PanTex,
with a step size of 0.2. At each scale, the best PanTex result with the optimal threshold was selected for
the comparison.

SVM is a widely used classification method for multi-dimensional datasets, and all 24 features
were input into the SVM classifier in this study. The LIBSVM [50] toolbox was used, with a radial
basis function (RBF) kernel. The LIBSVM toolbox has very sensitive parameters c and g. After several
tests, the value of parameter g was varied from 7 × 10−8 to 9 × 10−5 with a step size of 2 × 10−8,
and parameter c was varied from 0.5 to 15 with a step size of 0.5. The best result with the optimal
parameter settings for c and g was selected to ensure a fair comparison.

The parameter settings in the experiments were as listed below.

(1) MBI: Line-shaped SEs ranging from 2 to 32 with four directions.
(2) NDVI threshold: The threshold of the NDVI was set according to the content of each image.

The NDVI feature images were stretched to 0–255, and the NDVI thresholds of R1–R6 were set as
140, 150, 120, 155, 120, and 167, respectively.
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(3) Segmentation: Multiple scales of chessboard segmentation were tested in the experiments, from 80
to 180, with a step size of 20.

(4) RF classification: Random forest was used for the feature selection and classification with 400
decision trees. RF was repeated nine times with different starting training samples, and the
average accuracies are reported.

(5) Accuracy assessment: The overall accuracy (OA) computed from the confusion matrix [51] was
used to evaluate the classification accuracies. The accuracy assessment was performed on the
original image sizes, and the numbers of ground-truth samples are listed in the fourth and fifth
columns of Table 3.

Training: the classification training and testing was performed on the segmentation blocks. All
of the pixels of one segmentation block have the same feature value, and the block number of each
segmented image is small. Thus, the numbers of training samples are also small, as listed in Table 3.

Table 3. The numbers of training and ground-truth samples of test images R1–R6.

Image
Training Ground-Truth

Urban Non-Urban Urban Non-Urban

R1 20 22 9,323,317 4,506,565
R2 17 17 2,649,265 2,641,588
R3 44 39 11,038,243 9,326,837
R4 56 50 8,389,830 7,065,124
R5 39 39 5,506,806 5,047,800
R6 52 53 12,342,790 8,970,420

In order to test and reduce the impact of the small numbers of training samples, three schemes of
classifier training were tested:

(1) Scheme 1: The training samples of each image were used to train one RF classifier.
(2) Scheme 2: Training two RF classifiers for all the images. One classifier was obtained with the training

samples of images R4 and R5, which feature barren vegetation. The other classifier was trained from
all the training samples of images R1, R2, R3, and R6, which contain a lot of vegetation.

(3) Scheme 3: Training one RF classifier for all six images. All the training samples of the six test
images were used to train one RF classifier.

The above three schemes of classifier training were applied to the SVM classifier, and are denoted
as SVM1, SVM2, and SVM3.

4.2. Comparison with Other Methods

Test R1: The classification accuracies of image R1 (WorldView-2 Harbin, Heilongjiang) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 4. The classification maps of the RF1, PanTex, and SVM2 methods at scales of 80,
120, and 160 are displayed in Figure 6 to allow a visual comparison.

Table 4. Accuracies (%) of image R1.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 94.27 1 ± 0.12 92.30 2 ± 0.11 86.48 ± 0.36 90.6 91.4 92.7 91.3
100 95.69 ± 0.09 94.20 ± 0.30 88.64 ± 0.25 90.3 92.3 92.5 92.2
120 94.89 ± 0.15 94.48 ± 0.10 91.07 ± 0.22 88.9 92.2 94.5 92.8
140 95.14 ± 0.24 94.09 ± 0.14 91.84 ± 0.22 88.8 91.6 94.0 93.1
160 95.64 ± 0.15 94.89 ± 0.15 92.12 ± 0.17 88.7 89.1 94.6 92.8
180 95.04 ± 0.21 94.26 ± 0.11 92.24 ± 0.14 88.4 90.0 94.7 93.1

1 The red color denotes the highest OA; and 2 the bold denotes the second-highest OA at the same scale.
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The RF1-based method shows an outstanding performance at all scales. The bottom left part
of image R1 is bare land to be developed, and shows strong textural characteristics (as shown in
Figure 1a), resulting in a relatively low OA (<91%) for PanTex in all the scales, as shown in Figure 6,
second column. The OAs of RF1 are about 3–7% higher than those of PanTex at the same scale. At the
same scale, the RF and SVM-based methods perform better than PanTex, except for RF3 at a scale of
80–100. It can be seen from Figure 6, third column, that many blocks in the middle of image R1 are
labeled as non-urban areas by SVM.
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Figure 6. (a–i) The urban area classification maps for the R1 image with scales of 80, 120, and 160,
shown in rows 1, 2, and 3, respectively. Columns 1 to 3 are the results of the RF1, PanTex, and SVM2
methods, respectively.

Different training programs have a great impact on RF and SVM. The RF1 method shows the
best performance (average OA = 94.3–95.7%), followed by RF2 (average OA = 92.3–94.9%), and finally
RF3 (average OA = 86.5–92.2%). The RF1 and RF2 methods (average OA = 92.3–95.7%) are clearly
better than RF3 (average OA = 86.5–92.2%). However, for the SVM-based methods, SVM2 is superior
to SVM1 and SVM3. It can be seen from Table 4 that almost all the best accuracies of RF are superior to
those of SVM in training schemes 1 and 2 at the same scale. The scale has a significant influence on
image R1, and the optimal scale is different for the different methods. With the increase of the scale,
the overall trend of the OA of RF2, RF3, SVM2, and SVM3 increases, while the trend of the OA of
PanTex decreases.

Test R2: The classification accuracies of image R2 (WorldView-2, Harbin, Heilongjiang) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 5. The classification maps of RF3, PanTex, and SVM3 at scales of 80,120, and 160 are
displayed in Figure 7 for a visual comparison.

Table 5. Accuracies (%) of image R2.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 92.47 ± 0.27 93.62 1 ± 0.09 92.88 ± 0.17 91.4 90.2 92.0 93.2 2

100 92.57 ± 0.24 93.79 ± 0.11 93.52 ± 0.14 90.7 90.3 94.0 94.1
120 89.03 ± 0.69 92.46 ± 0.25 93.46 ± 0.13 90.6 88.7 93.3 94.0
140 91.39 ± 0.22 91.88 ± 0.22 92.30 ± 0.27 89.2 89.0 92.6 92.8
160 92.07 ± 0.12 91.91 ± 0.12 92.50 ± 0.11 88.6 89.7 92.0 93.1
180 90.10 ± 0.41 91.11 ± 0.20 91.53 ± 0.13 88.5 88.5 91.6 91.3

1 The red color denotes the highest OA; and 2 the bold denotes the second-highest OA at the same scale.
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Almost all of the OAs of RF (average OAs of RF = 90.1–93.5%) and SVM (OAs of SVM1 and
SVM2 = 91.3–94.1%) are higher than those of PanTex (OA = 88.5–91.4%) at the same scale, except for
SVM1 (OA = 88.5–90.3%) and RF1 at a scale of 120. As shown in Figure 7, second column, the sparse
vegetation covered fields are detected as urban areas by PanTex. Furthermore, the bright green grid-like
vegetation area in the middle and lower right region of image R2 is also detected as urban area by
PanTex. Thus, the OA of PanTex is relatively low at all scales. The scale has a regular impact on PanTex,
i.e., the OA of PanTex decreases with the increase of the scale. However, for SVM and RF, the training
programs have a greater impact than the scale. In addition, the different training programs have
a greater impact on SVM than RF. The average OA differences between RF1 (90.1–92.6%, except for
89.0% at scale 120), RF2 (91.1–93.8%), and RF3 (91.5–93.5%) are small. The OA of SVM1 (88.5–90.3%) is
lower than that of PanTex at the same scale. The OA of SVM2 (91.6–94.0%) shows a significant increase
compared with SVM1. On the whole, SVM3 (OA = 91.3–94.1%) performs the best at all scales.

Remote Sens. 2017, 9, 663  14 of 29 

 

Almost all of the OAs of RF (average OAs of RF = 90.1–93.5%) and SVM (OAs of SVM1 and 
SVM2 = 91.3–94.1%) are higher than those of PanTex (OA = 88.5–91.4%) at the same scale, except for 
SVM1 (OA = 88.5–90.3%) and RF1 at a scale of 120. As shown in Figure 7, second column, the sparse 
vegetation covered fields are detected as urban areas by PanTex. Furthermore, the bright green 
grid-like vegetation area in the middle and lower right region of image R2 is also detected as urban 
area by PanTex. Thus, the OA of PanTex is relatively low at all scales. The scale has a regular impact 
on PanTex, i.e., the OA of PanTex decreases with the increase of the scale. However, for SVM and 
RF, the training programs have a greater impact than the scale. In addition, the different training 
programs have a greater impact on SVM than RF. The average OA differences between RF1 (90.1–
92.6%, except for 89.0% at scale 120), RF2 (91.1–93.8%), and RF3 (91.5–93.5%) are small. The OA of 
SVM1 (88.5–90.3%) is lower than that of PanTex at the same scale. The OA of SVM2 (91.6–94.0%) 
shows a significant increase compared with SVM1. On the whole, SVM3 (OA = 91.3–94.1%) performs 
the best at all scales. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 7. (a–i) The urban area classification maps for the R2 image with scales of 80, 120, and 160, 
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3 
methods, respectively. 

Test R3: The classification accuracies of image R3 (Gaofen-2, Guangzhou, Guangdong) based 
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are 
presented in Table 6. The classification maps of RF2, PanTex, and SVM2 at scales of 80, 120, and 160 
are displayed in Figure 8 for a visual comparison. 

Table 6. Accuracies (%) of image R3. 
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Figure 7. (a–i) The urban area classification maps for the R2 image with scales of 80, 120, and 160,
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3
methods, respectively.

Test R3: The classification accuracies of image R3 (Gaofen-2, Guangzhou, Guangdong) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 6. The classification maps of RF2, PanTex, and SVM2 at scales of 80, 120, and 160 are
displayed in Figure 8 for a visual comparison.

Table 6. Accuracies (%) of image R3.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 92.31 ± 0.11 92.96 2 ± 0.15 89.98 ± 0.12 87.8 87.6 89.8 89.5
100 91.47 ± 0.20 93.32 ± 0.08 90.38 ± 0.08 87.9 89.7 90.3 88.8
120 93.62 ± 0.14 94.27 ± 0.15 91.79 ± 0.07 87.8 92.3 92.7 91.5
140 93.01 ± 0.21 93.81 ± 0.09 93.01 ± 0.11 88.3 92.1 92.7 91.5
160 93.50 ± 0.07 94.23 ± 0.08 93.37 ± 0.12 88.0 89.6 91.8 90.9
180 91.92 ± 0.10 93.13 ± 0.12 92.54 ± 0.13 88.0 89.6 92.0 90.0

1 The bold denotes the second-highest OA; and 2 the red color denotes the highest OA at the same scale.



Remote Sens. 2017, 9, 663 15 of 29

Remote Sens. 2017, 9, 663  15 of 29 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 8. (a–i) The urban area classification maps for the R3 image with scales of 80, 120, and 160, 
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF2, PanTex, and SVM2 
methods, respectively. 

It can be seen in Figure 1c that the upper right region of image R3 contains many small patches 
of dry soil, which show a strong texture characteristic when combined with the surrounding objects 
(buildings, roads, vegetation, etc.) In addition, the bottom right region contains a lot of scattered 
noise blocks covered with sparse vegetation. As shown in Figure 8, second column, the above two 
areas are detected as urban areas by PanTex, resulting in the low OA (87.8–88.0%) of PanTex at all 
scales. All the OAs of RF and SVM are higher than those of PanTex, and the RF performance is 
superior to SVM at the same scales, except for SVM1 at a scale of 80. Comparing images R1 and R2, it 
can be seen that the impact of the training programs in image R3 is smaller. The RF2 method (93.0–
94.3%) shows the best performance, and the OA of RF2 is >5% higher than that of PanTex. 

Test R4: The classification accuracies of image R4 (Gaofen-2, Guangzhou, Guangdong) based 
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are 
presented in Table 7. The classification maps of RF3, PanTex, and SVM3 at scales of 80, 120, and 160 
are displayed in Figure 9 for a visual comparison. 
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It can be seen in Figure 1c that the upper right region of image R3 contains many small patches
of dry soil, which show a strong texture characteristic when combined with the surrounding objects
(buildings, roads, vegetation, etc.) In addition, the bottom right region contains a lot of scattered noise
blocks covered with sparse vegetation. As shown in Figure 8, second column, the above two areas are
detected as urban areas by PanTex, resulting in the low OA (87.8–88.0%) of PanTex at all scales. All the
OAs of RF and SVM are higher than those of PanTex, and the RF performance is superior to SVM at
the same scales, except for SVM1 at a scale of 80. Comparing images R1 and R2, it can be seen that the
impact of the training programs in image R3 is smaller. The RF2 method (93.0–94.3%) shows the best
performance, and the OA of RF2 is >5% higher than that of PanTex.

Test R4: The classification accuracies of image R4 (Gaofen-2, Guangzhou, Guangdong) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 7. The classification maps of RF3, PanTex, and SVM3 at scales of 80, 120, and 160 are
displayed in Figure 9 for a visual comparison.
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Table 7. Accuracies (%) of image R4.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 90.33 ± 0.16 91.12 ± 0.19 91.93 1 ± 0.12 94.6 2 87.5 88.7 90.8
100 91.93 ± 0.19 93.12 ± 0.12 92.88 ± 0.14 94.6 88.3 91.4 90.7
120 92.03 ± 0.13 93.38 ± 0.08 93.02 ± 0.20 94.1 89.4 90.7 93.0
140 92.29 ± 0.20 93.22 ± 0.21 93.47 ± 0.18 94.1 92.1 92.2 93.6
160 92.87 ± 0.24 92.96 ± 0.20 93.63 ± 0.33 93.4 91.0 91.7 92.9
180 92.42 ± 0.13 93.10 ± 0.13 93.14 ± 0.16 92.9 90.8 91.3 92.7

1 The bold denotes the second-highest OA; and 2 the red color denotes the highest OA at the same scale.
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shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3 
methods, respectively. 

As shown in Figure 1d, this image contains two types of bare land, namely, flat bare land 
(bottom left of R4) and bare mountain (right of R4), and both of these areas are large and have very 
little vegetation cover. PanTex (OA = 92.9–94.6%) shows a good performance in both types of bare 
land at small scales of 80–140, although the bare mountain areas contain distinctive texture features, 
as shown in Figure 9, second column, and Table 7. In general, the performance of RF (average OA = 
90.3–93.6%) is better than SVM (OA = 87.5–93.6%). The training programs have less influence on RF 
than SVM. The differences in OA between the training programs are less than 1.6% at the same scale. 

Figure 9. (a–i) The urban area classification maps for the R4 image with scales of 80, 120, and 160,
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3
methods, respectively.

As shown in Figure 1d, this image contains two types of bare land, namely, flat bare land (bottom
left of R4) and bare mountain (right of R4), and both of these areas are large and have very little
vegetation cover. PanTex (OA = 92.9–94.6%) shows a good performance in both types of bare land at
small scales of 80–140, although the bare mountain areas contain distinctive texture features, as shown
in Figure 9, second column, and Table 7. In general, the performance of RF (average OA = 90.3–93.6%)
is better than SVM (OA = 87.5–93.6%). The training programs have less influence on RF than SVM.
The differences in OA between the training programs are less than 1.6% at the same scale. The scale
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has a great influence on both RF and SVM, and RF3 (average OA = 93.1–93.6%) performs better than
PanTex (OA = 92.9–93.4%) at large scales (e.g., 160–180). As shown in Figure 10c, these large areas of
bare land are detected as buildings by the MBI due to the bright, dry soil. The distribution of the line
segments and the MBI shows a distinct difference in Figure 10c,d. Although the line segment features
can partially compensate for MBI’s erroneous detection, the performances of RF and SVM are still
slightly degraded compared with PanTex at small scales (<160).
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Figure 10. (a,b) Two subsets of R4; and (c,d) their corresponding MBI (red) and line segment (cyan)
feature maps.

Test R5: The classification accuracies of image R5 (Gaofen-2, Guangzhou, Guangdong) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 8. The classification maps of RF3, PanTex, and SVM3 at scales of 80, 120, and 160 are
displayed in Figure 11 for a visual comparison.

Table 8. Accuracies (%) of image R5.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 88.22 ± 0.39 86.20 ± 0.43 89.09 1 ± 0.26 94.0 2 85 85.4 87.6
100 88.56 ± 0.25 88.56 ± 0.11 90.18 ± 0.19 94.6 88.2 89.2 88.7
120 89.66 ± 0.15 90.12 ± 0.28 91.82 ± 0.15 94.9 91.9 89.7 93.3
140 91.84 ± 0.39 90.83 ± 0.37 92.09 ± 0.18 95.0 92.1 91.4 92.3
160 90.94 ± 0.43 91.14 ± 0.29 93.08 ± 0.18 94.8 91.7 91.6 93.9
180 90.40 ± 0.36 91.58 ± 0.22 93.02 ± 0.15 94.8 93.2 93.3 94.9

1 The bold denotes the second-highest OA; and 2 the red color denotes the highest OA at the same scale.
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Figure 11. (a–i) The urban area classification maps for the R5 image with scales of 80, 120, and 160, 
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3 
methods, respectively. 

There are large areas of bare land in this image, as shown in Figure 1e. The urban areas show 
distinctive texture characteristics compared with the bare land. PanTex makes a good distinction 
between the urban and non-urban areas, as shown in Table 8 and Figure 11, second column. PanTex 
obtains a higher OA than RF and SVM at all scales, except for the scale of 180. In addition, both the 
quantitative comparison and visual effect show that the scale has a relatively low impact for PanTex 
(OA = 93.3–95.0%). 

The bare land contains many small, bright patches of dry soil, which are detected by the MBI as 
buildings, as shown in Figure 12b, thus degrading the performance of RF and SVM. However, with 
the increase of the scale, the adverse influence of the dry soil patches becomes smaller, as shown in 
Figure 11g,i (OA = 93.3% and 94.9%, respectively). 
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Figure 12. (a) A subset of R5; and (b) the MBI (red) and line segment (cyan) feature maps of (a). 

The OA differences between RF3 (SVM3) and PanTex become smaller (e.g., 4.4–1.8% (6.4–
−0.1%)). Furthermore, for RF and SVM, the influence of the scale is much greater than the influence 

Figure 11. (a–i) The urban area classification maps for the R5 image with scales of 80, 120, and 160,
shown in rows 1, 2, and 3, respectively. Columns 1–3 are the results of the RF3, PanTex, and SVM3
methods, respectively.

There are large areas of bare land in this image, as shown in Figure 1e. The urban areas show
distinctive texture characteristics compared with the bare land. PanTex makes a good distinction
between the urban and non-urban areas, as shown in Table 8 and Figure 11, second column. PanTex
obtains a higher OA than RF and SVM at all scales, except for the scale of 180. In addition, both the
quantitative comparison and visual effect show that the scale has a relatively low impact for PanTex
(OA = 93.3–95.0%).

The bare land contains many small, bright patches of dry soil, which are detected by the MBI
as buildings, as shown in Figure 12b, thus degrading the performance of RF and SVM. However,
with the increase of the scale, the adverse influence of the dry soil patches becomes smaller, as shown
in Figure 11g,i (OA = 93.3% and 94.9%, respectively).
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The OA differences between RF3 (SVM3) and PanTex become smaller (e.g., 4.4–1.8% (6.4–0.1%)).
Furthermore, for RF and SVM, the influence of the scale is much greater than the influence of
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the training schemes. Overall, the OA of RF and SVM improves with the increase of the scale
(e.g., the average OA of RF3 = 89.1–93.1% and the OA of SVM3 = 87.6–94.9%).

Test R6: The classification accuracies of image R6 (Gaofen-2, Guangzhou, Guangdong) based
on the classification methods of PanTex, SVM, and the proposed method with the RF classifier are
presented in Table 9. The classification maps of RF1, PanTex, and SVM2 at scales of 80, 120, and 160 are
displayed in Figure 13 for a visual comparison.

Table 9. Accuracies (%) of image R6.

Scale RF1 RF2 RF3 PanTex SVM1 SVM2 SVM3

80 93.38 1 ± 0.16 92.43 ± 0.11 89.23 ± 0.16 92.8 2 88.5 90.7 89.0
100 94.26 ± 0.14 93.60 ± 0.11 91.00 ± 0.13 92.2 86.3 91.0 89.5
120 94.99 ± 0.14 94.22 ± 0.08 92.61 ± 0.15 91.2 90.7 92.1 91.4
140 94.86 ± 0.16 94.52 ± 0.12 92.82 ± 0.12 91.6 90.6 93.3 90.7
160 94.64 ± 0.14 94.47 ± 0.09 93.39 ± 0.13 90.4 92.8 93.2 91.7
180 95.23 ± 0.09 94.76 ± 0.10 94.14 ± 0.15 90.3 93.7 94.3 93.3

1 The red color denotes the highest OA; and 2 the bold denotes the second-highest OA at the same scale.
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This image is the most challenging test image. The image contains old city center, newly developed
areas, areas to be developed, and open spaces. In the old city center, the buildings are very dense,
small, and dark in color. As a result, its texture is not prominent. The surrounding newly developed
areas contain relatively sparse, large, and bright buildings. The areas to be developed contain large
areas of bare soil, very few buildings, and bright roads, as shown in the right bottom area of Figure 1f,
which has obvious texture features. Meanwhile, the open spaces contain more types of land cover, e.g.,
small patches of bare soil, irregular paddy fields and farmland, and rivers and lakes. This type of area
shows outstanding texture features. The above situation results in PanTex obtaining a relatively low
OA (90.3–92.8%), as shown in Table 9 and Figure 13, second column.

Because this is the most challenging test image, the training scheme has a great influence,
especially when the scale is relatively small. The results of RF are better than those of SVM at
the same scale. RF1 obtains the best results (average OA = 93.4–95.2%), followed by RF2 (average
OA = 92.5–94.8%), and finally RF3 (average OA = 89.2–94.1%). Among the SVM-based methods, SVM2
obtains the best results (maximum OA = 90.7–94.3%).

4.3. Parameter Sensitivity Analysis

From the accuracies of test images R1–R6, as shown in Tables 4–9, the following conclusions can
be drawn: Firstly, the training schemes have a significant impact on RF and SVM due to the fact that
the test image size is limited, and thus the training samples are not sufficient, especially for a complex
image. In all six test images, the scale has a greater influence than the training scheme. Secondly, the
influence of scale for PanTex is less than for RF and SVM. The optimal scale is different for the different
methods. The optimal scale for one image is affected by both the image resolution and the complexity
of the image. For example, the optimal scales for PanTex are 80, 80, 140, 80, 140, and 80 for R1–R6,
respectively; the optimal scales for RF2 are 160, 80, 160, 120, 180, and 180 for R1–R6, respectively; and
the optimal scales for SVM2 are 180, 100, 120, 140, 180, and 180 for R1–R6, respectively.

The bars of Figure 14 represent the average (Ave) OA (%) of the test images at all scales obtained
by the RF-based methods (RF1, RF2, and RF3), the SVM-based methods (SVM1, SVM2, and SVM3),
and the PanTex (OA = 91.2%) method. The black and red lines are, respectively, the average and
standard deviation (SD) of the OA (%) (denoted as OA Ave and OA SD) of RF1, RF2, RF3, PanTex,
SVM1, SVM2, and SVM3 obtained from all the test images at all scales.
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Figure 14. The left vertical axis is the OA (%), and the right is the standard deviation (SD) of the OA.
The bars represent the average (Ave) OA (%) of test images R1–R6 at all scales. The black and red
lines are, respectively, the average and SD OA of all the test images at all scales for the RF1, RF2, RF3,
PanTex, SVM1, SVM2, and SVM3 methods.

The black line in Figure 14 shows that RF has obvious overall advantages compared with PanTex
and SVM, and RF2 obtains the best results (OA = 92.8%), followed by RF1 (OA = 92.6%) and RF3
(OA = 92.0%). The SVM1 OA (90.2%) is the most stable (SD = 0.9) and is also the lowest, followed by
SVM3 (91.8%) and SVM2 (91.9%). It can be seen from the black line in Figure 14 that training scheme
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2 achieves the best results for both RF and SVM. Training scheme 1 has a much smaller sample size
than scheme 2, and SVM1 is not adequately trained, thereby obtaining the worst result. However,
RF1 obtains a much better result, even when the sample size is very small, because RF has the ability
to select features. It can be seen that when the training samples are sufficient and correct, the classifier
can reach its potential [52]. Furthermore, the optimal value of the RF parameter can be easily found.
However, the ranges of suitable values for parameters g and c of SVM are very difficult to determine.

It can be seen in Tables 4–9 that, for the same test image, PanTex is less scale-sensitive than RF and
SVM. However, Figure 14 indicates that the PanTex OA shows a very large fluctuation between the
different images. Furthermore, the red line in Figure 14 clearly shows that the SD of PanTex is larger
(SD = 2.4) than the SD of RF and SVM. Thus, it is concluded that PanTex is much more sensitive to the
image content, and is not robust compared with RF and SVM.

4.4. Feature Analysis

In this study, 24 features are used, including the primary regional and line segment features, and
advanced-level features, which reflect the spatial relationship of the primary-level features. In this
section, the importance of each feature in the RF training is analyzed. Three training programs are
observed and analyzed, as shown in Figures 15–17. The height of the bars indicates the degree to
which the accuracy or Gini coefficient decreases when this feature is not used. The upper bar graph is
the mean decrease in accuracy over all classes; the lower bar graph is the mean decrease in Gini index.

Figure 15 shows the importance of the 24 features in each of the RF1 classifiers (one test image
is training one RF1 classifier), training at a scale of 160. Clearly, the importance of each feature is
very different for each image, as shown in Figure 15. Some features have a significant influence in
some of the test images; for example, features 13 (A_NDVI) and 15 (the second feature of big_NDVI)
in Figure 15a,b and features 16 (num_EDline), 18 (DLR), and 19 (DLR2) in Figure 15e. In general,
features 2–7 (A_MBI, Qua_MBI, and num_MBI (area >500 pixels)) and 22–23 (the first two features of
L_nb) play a significant role in improving the classification accuracy in all the test images, compared
to the other features. However, some features have a negative impact on the classification accuracy;
for example, features 16, 17, 19, and 20 in Figure 15c (the mean decreases in accuracy over all classes
are −1.6 × 10−4%, −1.7 × 10−4%, −2.5 × 10−4%, and −7.2 × 10−4%).

Figure 16 shows the importance of the 24 features in each of the RF2 classifiers at scales of 80,
120, and 160, where one RF2 classifier is trained from test images R1, R2, R3, and R6, and another is
trained from test images R4 and R5. In general, the feature importance for RF2 is consistent with RF1,
i.e., features 2–7 and 22–23 play a significant role in improving the classification accuracy, as shown in
Figure 16. In addition, at the different scales, the feature importance is similar for both RF2 classifiers.
In Figure 16a–c, where the RF2 classifier is trained from test images R1, R2, R3, and R6, features 2–7,
10 (the first feature of area_MBI), 13 (A_NDVI), 15 (the second feature of big_NDVI), and 22–23 have
a relatively large influence at all three scales (80, 120, and 160), compared with the other features.
In Figure 16d–f, features 2–7, 16 (num_EDline), 18–19 (DLR and DLR2), and 22–23 have a relatively
large influence at all three scales. However, several features play a very different role in the RF2
classifiers. For example, in the first row, features 13 and 15 have an obvious positive effect on the
accuracy improvement compared with the second row. However, in the second row, features 16, 18,
and 19 have an obvious positive effect on the accuracy improvement compared with the first row.
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Figure 17 shows the importance of the 24 features in the RF3 classifiers (all six test images R1–R6
training one RF3 classifier), training at scales of 80, 120, and 160. At the different scales, the features
that play a significant role in improving the RF3 classification accuracy are consistent, namely, features
2–7 and 22–23, as shown in Figure 17.

Overall, the importance of the basic features extracted from the line segments is not significant.
However, all three training schemes for all the test images show that the neighborhood of the
line segment features plays a significant positive role in improving the classification accuracy,
i.e., the features extracted from the line segments play an important role.
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4.5. Spatial Structure Analysis of Urban Areas

The urban morphology was also extracted and analyzed by MSPA using the best results of the
RF-based method of each test image. MSPA was executed on the urban classification map, each pixel
of which corresponds to a segment block of the original image. Thus, parameter Ew of MSPA was
set to the smallest value, namely, 1 pixel. Figure 18, second column, shows the urban morphology
categorized by MSPA. Each of the urban blocks extracted by the RF-based methods (the first column of
Figure 18) is allocated to one of a mutually exclusive set of structural classes: Core, Islet, Loop, Bridge,
Perforation, Edge, and Branch, where the category Edge is the edge of Core.

Test R1: Figure 18a was obtained by the RF-based method at a scale of 160, and Figure 18b is the
corresponding MSPA category map. Clearly, Core is the largest area of the main city of this region.
The newly developed area (on the left of R1) and the small town outside the main city (on the right of
R1) are labeled as Branch, linked to the main city. The large areas of green space in the city (Core) are
classified as Perforation, or are enclosed by Loop or Edge, as shown in Figure 18b. In this test image R1,
the Islets are adjoined to the main city and are mainly the surrounding towns, so they are part of the
urban area.

Test R2: Figure 18c was obtained by the RF-based method at a scale of 100, and Figure 18d is the
corresponding MSPA category map. Clearly, the Cores are the regions of towns, which are split by
roads and green areas (classified as Bridge). The small and scattered sparse villages or small towns,
which are far away from the city (Core), are detected as Islets, as shown in Figure 1b. Thus, the Islets are
not part of the urban area in test image R2, and can be removed based on their size and distance from
the main city.

Test R3: Figure 18e was obtained by the RF-based method at a scale of 120, and Figure 18f is the
corresponding MSPA category map. It can be seen from Figure 18f that the categories of Branch and
Bridge account for a large proportion compared with the other test images. This is consistent with
the visual interpretation of the original image. It can be seen from Figure 1c that the main old city is
mainly distributed in the middle region of test image R3, and is labeled as Core. The main old city is
surrounded by a wide range of new development zones, which are detected as small-area Core links
with many branches, and the connection area is classified as Bridge. Some small-area built-up regions
split by river or vegetation are classified as Islet.

Test R4: Figure 18g was obtained by the RF-based method at a scale of 160, and Figure 18h
is the corresponding MSPA category map. Clearly, the main city features two large areas of Core.
The surrounding towns are connected with the main city by roads (labeled as Bridge), and are labeled
as Branch or Core (small area). Most of the Islets are the small towns outside the main city. However,
the three Islets in the right middle of Figure 18h are a bare mountain area that has been misclassified as
urban area. The misclassified Islets can be removed according their size (<2 pixels).
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Test R5: Figure 18i was obtained by the RF-based method at a scale of 160, and Figure 18j is the
corresponding MSPA category map. The building-intensive large area of the main city is classified as
Core, and its surrounding conurbations or suburbs linked to the main city are labeled as Branch. The left
part of test image R5 is mainly conurbations or suburbs, which contain relatively sparse buildings and
several patches of bare soil. The Islets are small built-up regions not far from the main city, and are part
of the urban area.

Test R6: Figure 18k was obtained by the RF-based method at a scale of 180, and Figure 18l is the
corresponding MSPA category map. Large areas of connected built-up area are labeled as Core, and the
surrounding towns are also labeled as small-area Core. Many of the smaller regions are labeled as
Branch or Bridge. The Islets in test image R6 are part of the urban area, because they are relatively close
to the city.

In general, the MSPA results are consistent with the visual interpretation. The urban morphology,
i.e., the main cities, towns, conurbations, suburbs, and villages, are accurately distinguished by MSPA.
In addition, according to the results of MSPA, the urban area mapping can be further refined. Except
for a few small and long-distance Islets, all the remaining foreground areas are urban areas, i.e., Edge,
Core, Loop, Branch, and Bridge.

5. Discussion

In this study, experiments were conducted with six very challenging images acquired by different
satellites and different seasons. According to the results of the experiments, the following conclusions
can be made:

(1) The low-level primitive features used are the MBI, the NDVI, and line segments. The MBI and
the NDVI are efficient proxies of regional features of buildings and vegetation, and the line segments
are very different between urban and non-urban areas.

(2) The fast chessboard segmentation method is used to split the image into non-overlapping
square objects, and does not consider the underlying data. This approach is very suitable for
segmenting complex urban areas.

(3) The high-level feature extraction is conducted in the segmented square objects. The results of
the experiments proved that the advanced features are well described and can reflect the characteristics
of urban and non-urban areas. The feature analysis experiments with all six test images showed that
the spatial relationship between the MBI, the NDVI, and the neighborhood of the line segments has
a great effect on the improvement of the classification accuracy.

(4) The proposed urban area extraction framework was compared with the state-of-the-art PanTex
method. The proposed framework was also tested using SVM methods. The experiments proved
that the proposed urban area extraction framework is much more robust than PanTex. In general,
both the RF- and SVM-based methods can obtain much higher OAs than PanTex, especially when
the image is complex and challenging. However, PanTex can obtain better results when the image is
simple and the scale is smaller. Overall, the RF-based method performs better than the SVM-based
method. Furthermore, the optimal value of the RF parameter is much easier to find than those of SVM.
In addition, the training schemes proved that when the training samples are sufficient and accurate,
RF and SVM can reach their full potential. This study also proved that the number and abstraction
level of the features play a very important role for object recognition, which will be further studied in
our follow-up research.

(5) The urban morphology is well recognized, and is consistent with the visual interpretation.
In this study, the MSPA was proven to be a very effective tool for the analysis of urban morphology at
a macroscopic spatial extent.

6. Conclusions

In this study, a new object-oriented approach based on the fusion of regional and line
segment features has been proposed for urban area extraction from high spatial resolution remote
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sensing images, and then urban morphology analysis. The proposed workflow incorporates two
levels of spatial information, i.e., microscopic (local spatial units) and macroscopic spatial extents.
After primitive feature extraction and segmentation, the urban area characteristics are described by
the high-level features extracted from the low-level regional and line segment features in the local
spatial units. Subsequently, RF is used for urban area extraction and feature analysis. Finally, MSPA
is used at a macroscopic spatial extent to analyze the urban area morphology and refine the urban
mapping results.

According to the experimental results, the urban area extraction method proposed effectively
overcomes the difficult problem of distinguishing urban area from bare land, and is more robust than
the state-of-the-art PanTex method, especially when the image is complex and challenging. In this
study, the line features played a very positive role, especially the spatial relationship features between
line segments and the MBI and the NDVI. This will be further studied in our follow-up research.
Although 24 high-level features were extracted and analyzed in this study, the results proved that
the number and abstraction level of the features play a very important role for urban area object
recognition [35,36], which will also be further studied in our follow-up research. Meanwhile, the urban
morphology reflects the macroscopic characteristic of the urban areas [53,54]. Thus, our future work
will also focus on urban morphology analysis.
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