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Abstract: In Mongolia, drought is a major natural disaster that can influence and devastate
large regions, reduce livestock production, cause economic damage, and accelerate desertification
in association with destructive human activities. The objective of this article is to determine
the optimal satellite-derived drought indices for accurate and real-time expression of grassland
drought in Mongolia. Firstly, an adaptability analysis was performed by comparing nine remote
sensing-derived drought indices with reference indicators obtained from field observations using
several methods (correlation, consistency percentage (CP), and time-space analysis). The reference
information included environmental data, vegetation growth status, and region drought-affected
(RDA) information at diverse scales (pixel, county, and region) for three types of land cover (forest
steppe, steppe, and desert steppe). Second, a meteorological index (PED), a normalized biomass
(NorBio) reference indicator, and the RDA-based drought CP method were adopted for describing
Mongolian drought. Our results show that in forest steppe regions the normalized difference water
index (NDWI) is most sensitive to NorBio (maximum correlation coefficient (MAX_R): up to 0.92) and
RDA (maximum CP is 87%), and is most consistent with RDA spatial distribution. The vegetation
health index (VHI) and temperature condition index (TCI) are most correlated with the PED index
(MAX_R: 0.75) and soil moisture (MAX_R: 0.58), respectively. In steppe regions, the NDWI is most
closely related to soil moisture (MAX_R: 0.69) and the VHI is most related to the PED (MAX_R: 0.76),
NorBio (MCC: 0.95), and RDA data (maximum CP is 89%), exhibiting the most consistency with
RDA spatial distribution. In desert steppe areas, the vegetation condition index (VCI) correlates
best with NorBio (MAX_R: 0.92), soil moisture (MAX_R: 0.61), and RDA spatial distribution, while
TCI correlates best with the PED (MAX_R: 0.75) and the RDA data (maximum CP is 79%). The VHI
is a combination of constructed VCI and TCI, and can be used instead of them. Finally, the mode
method was adopted to identify appropriate drought indices. The best two indices (VHI and NDWI)
can be utilized to develop a combination drought model for accurately monitoring and quantifying
drought in the future. Additionally, the new framework can be adopted to investigate and analyze
the suitability of satellite-derived drought indices and determine the most appropriate index/indices
for other countries or areas.
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1. Introduction

Higher temperatures and lower rainfall amounts may result in drought, is a common weather
phenomenon and costly natural hazard. Drought is a recurrent climate process that occurs in
association with temporally and spatially uneven rainfall over broad areas and extended periods [1].
The regional temperatures of Southern Mongolia have increased by 0.1–3.7 ◦C over the past 60 years,
spring precipitation has decreased by 17%, and summer precipitation has increased by 11% [2]. These
changes in temperature and precipitation are likely to intensify the occurrence of drought, especially
during the onset of vegetation green-up. Moreover, the frequency of drought in the spring and summer
has been reported to increase as much as four times every five years in the Gobi region [3]. Drought
has a disturbing effect not only on agricultural productivity and hydrological resources but also on
natural vegetation; therefore, it may accelerate the desertification processes associated with destructive
human activities (that is, overgrazing) in semi-arid grassland areas in Mongolia.

Many drought indices derived from remote sensing (RS-derived) data have been developed and
used to effectively detect drought conditions all over the world. Because drought causes stress to
vegetation, the extent of a drought can be reflected by changes in the vegetation index. The normalized
difference vegetation index (NDVI) is the normalized difference between near-infrared (NIR) and
red reflectance and is simple and effective and is now the most widely used index for detecting
drought [4–6]. Many vegetation indices based on the NDVI have been proposed for diverse regions. To
measure the impacts of weather and ecosystem components on vegetation and reduce their deviations,
a vegetation condition index (VCI) was developed by Kogan [7]. Water stress in plants results in
reduced chlorophyll absorption in the blue and red bands [8], so the blue band can be viewed as
the band least sensitive to vegetation moisture variation. Zhang et al. [9] proposed the visible and
shortwave infrared drought index (VSDI) by combining the blue, red, and SWIR optical spectral bands;
this index is suitable for drought monitoring throughout the America growing season. Shortwave
infrared reflectance (SWIR) is sensitive to leaf liquid water content, and a combination of NIR and
SWIR data has been used to derive water-sensitive indices for monitoring drought occurrences. Based
on NIR and SWIR, the normalized difference water index (NDWI) [10] is sensitive to changes in
soil moisture that are strongly related to vegetation drought conditions in the grass and crop land
of the Oklahoma Mesonet. Analysis has revealed that combining information from multiple near
infrared and short-wave infrared channels into the normalized multi-band drought index (NMDI) [11]
enhances its sensitivity to drought severity, a method that is suited to estimate both soil and vegetation
moisture. Gu et al. [12] found that the NDWI responds more quickly to drought than the NDVI, and
they then developed the drought indicator known as the normalized difference drought index (NDDI),
which also has been adopted by Mongolia’s National Remote Sensing Center for monitoring grassland
drought [13]. Land surface temperature (LST) derived from thermal radiance bands is a good indicator
of the energy balance of the earth’s surface, because temperatures can rise quickly under water stress.
Gutman [14] showed that thermal data might be useful for detecting inter-annual changes in surface
moisture. Kogan [7] developed the temperature condition index (TCI), which is an initial indicator of
water stress and drought.

A combination of different indices representing vegetation stress, water deficit, and soil moisture
status can describe the severity of and changes in drought better than each index in isolation. Previously,
Carlson [15] constructed the vegetation supply water index (VSWI) using the NDVI and LST to assess
summer drought, because the ratio of LST to NDVI is shown to increase during drought. VSWI
describes the soil moisture changes in agricultural land well and is a rapid and cost-effective method
for monitoring drought conditions [16]. Sandholt et al. [17] found that the scatter of LST and NDVI
data occupies a triangular space, the NDVI–LST spectral space, and that an index based on this
relationship (the temperature vegetation dryness index, TVDI) can be used to better monitor regional
drought. A similar indicator, the vegetation temperature condition index (VTCI), was applied to
drought monitoring by Wang et al. [18]. The VTCI had better performance than NDVI in classifying
relative drought occurrence levels and in studying the distribution of drought occurrences. A typical
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drought indicator, the vegetation health index (VHI), was proposed by Kogan [7,19] and was based on
the combination of vegetation greenness (VCI) and temperature (TCI) indices. AVHRR-based drought
indices (VCI, TCI, and VHI) were also proposed by Kogan [19] for monitoring grass conditions in
Mongolia; that study found that these indices coherently indicated intensive drought in poor grass.

Several researchers are currently monitoring drought conditions in Mongolian grassland using
satellite-derived indices [1,19,20], and meaningful results have been obtained. As detailed above,
other drought indices have performed well in other countries and climate zones. Which of them
can best describe Mongolia’s drought conditions, for prevention and mitigation use by researchers,
government departments, or stakeholders, remains unclear. Therefore, this paper’s objectives are as
follows: (1) to adopt new reference indicators and comprehensive methods for evaluate Mongolian
drought in several scales; (2) to build an integrated and novel adaptability analysis framework to
determine the optimal satellite-derived drought indices for the accurate and real-time expression of
grassland drought in Mongolia.

2. Study Region and Data

2.1. Study Region

The study region covers grassland throughout Mongolia, located in the central part of the Asiatic
continent between latitudes 41◦35′N and 52◦09′N and longitudes 87◦44′E and 119◦56′E. Mongolia has
a total area of 1,565,000 km2, approximately 80% of which is covered by grass. The extensive grass and
shrub steppe grazing lands have the capacity to support a large number of grazing herbivores [21],
along with desert, desert steppe, steppe, and forest steppe zones (Figure 1). The national ecosystem is
fragile, and Mongolia has one of the highest disaster risks worldwide. The frequency and magnitude
of natural disasters (drought, dzud, and fire) are increasing because of global climate change. Mongolia
is characterized by harsh weather, and precipitation is unequally distributed temporally and spatially.
Approximately 80% of precipitation occurs in the three months of summer (June, July, and August) [22].
In northern Mongolia, precipitation levels reach 400 mm a year, whereas in the southern areas’ levels,
which feature semi-arid and desert conditions, are less than 50 mm. Mongolia also experiences extreme
daily and annual temperature fluctuations.

2.2. Data

2.2.1. Station Data

Automatic weather stations (AWSs) built by the Information and Research Institute of
Meteorology, Hydrology, and Environment (IRIMHE) are distributed across Mongolia, and each
AWS is equipped with instruments that measure micro-meteorological variables. Air temperature
at two meters and rainfall data were obtained from 86 meteorological stations covering Mongolia’s
grassland. The average air temperature and accumulated precipitation values were calculated every
10 days from 2000 to 2014. Biomass (the total aboveground biomass) was collected in small plots
(1 × 1 m [23], in three repeated samplings) at each meteorological station. Plant samples were heated
to above 100 ◦C and oven dried at 80 ◦C until they reached a constant weight in the laboratory. The
final dry weight of each sample was divided by the sampling area and the result was converted to
kg/ha. Soil moisture was measured using an earth-boring auger (EBA) at 39 meteorological stations
once each 10-day period from 2000 to 2011. The EBA equipment was used to collect soil samples
at different depths (for example, 5 cm and 10 cm), those samples were placed into an iron box. Soil
moisture content was calculated based on the difference in weight between fresh soil and dried soil.
The distribution of the observation stations is illustrated in Figure 1.



Remote Sens. 2017, 9, 650 4 of 23

Remote Sens. 2017, 9, 650  4 of 23 

 
Figure 1. Study area and field stations distribution. 

 
Figure 1. Study area and field stations distribution.



Remote Sens. 2017, 9, 650 5 of 23

Meteorological station data must be pre-processed and checked. Verification and temporal
stability analyses were performed for the standard data. The data were checked using the range of
values, and if data were missing, or their validity could not be determined, they were then excluded
from the validation.

2.2.2. Region Drought-Affected Data

To select the optimal drought indices for Mongolia, the conventional field drought assessment data
were referred to as the drought-affected region data (RDA data, also referred to as summer condition
data by some researchers). RDA value are obtained at IRIMHE every 10-day period according to an
evaluation of the vegetation conditions of the growing season of Mongolia based on plant growth,
growth stage, and grassland productivity. Also every 10 days, meteorological observers ask local
herders and environmental officers about summer conditions. After that they will get assessment
values by summary evaluation from the community in the county center. For each county, there is
one RDA value. Appraisal RDA values from the IRIMHE range from 1 to 6: 1 = extreme drought,
2 = serious drought, 3 = moderate drought, 4 = slight drought, 5 = no drought (normal conditions),
and 6 = good conditions.

2.2.3. RS Data

Daily level 1B clear sky data from the Moderate Resolution Imaging Spectroradiometer (MODIS)
were derived from the MODIS sensor aboard the TERRA satellite, which views entire earth’s surface
in one to two days and was launched in December 1999. These data (MOD02 and MOD03, at 1
km resolution) were downloaded from the Atmosphere Archive and Distribution System (LAADS)
of the National Aeronautics and Space Administration’s (NASA) website. The downloaded data
covered all of Mongolia from 2000 to 2015 (from May to September). Data projection and resampling
were conducted with the MRTSWATH tool (downloaded from the MODIS site). Next, cloud mask,
atmospheric correction, NDVI, and LST retrievals were performed through our own codes, developed
based on existing literature. Reflectance or thermal radiance bands of these data were calculated by
internal calibration parameters and functions. Bands 1–3, 5, 6, 20, 22, 26, 27, 31, and 35 were used for
cloud detection with reflectance and brightness temperature thresholds [24]. Aerosol optical depth
was retrieved using the dark dense vegetation (DDV) method [25]; then atmospheric corrections were
performed based on the 6S model [26]. The NDVI was calculated using reflectivity data based on
MODIS bands 1 and 2 after atmospheric correction. The surface albedo was computed from a linear
combination of the first seven reflectance bands. Using radiance data based on MODIS bands 31 and
32, and after atmospheric correction, daytime LST were calculated via the split-window algorithm [27].

2.2.4. Base Data

Land cover data was used to divide the study area into three steppe regions: forest steppe, steppe,
and desert steppe. Land cover data was obtained from Mongolia’s Land Cover Map 2010, produced
by the Mongolian National Remote Sensing Center (NRSC) [28]. The original land cover data included
19 types, which was combined into five types. Administrative data at the province and county levels
were obtained from the IRIMHE.

Table 1 describes all data types, including satellite-derived data (1 km resolution MODIS1B data)
which were used to calculate the drought indices, including meteorological station observation data
(such as soil moisture, biomass, precipitation, and air temperature) and RDA, which were used in our
adaptability analysis and for validation of the drought indices. Other auxiliary data were land cover
and administrative boundaries.
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Table 1. Data used in this study.

Data Type Year Information Source

Land cover collected in 2010 The NRSC of Mongolia
Administrator boundary from the IRIMHE of Mongolia The NRSC of Mongolia

MODIS 1B data (daily) 2000–2014 MODIS/TERRA

The Atmosphere Archive and
Distribution System (LAADS) of
National Aeronautics and Space

Administration’s (NASA)
Precipitation (P) 2000–2014 86 meteorological stations The IRIMHE of Mongolia

Air temperature (T) 2000–2014 86 meteorological stations The IRIMHE of Mongolia
Soil moisture 2000–2011 39 stations The IRIMHE of Mongolia

Biomass 2000–2014 86 meteorological stations The IRIMHE of Mongolia

Drought-affected region (RDA) data 2000–2014 37 counties with four directional
values in each county The IRIMHE of Mongolia

3. Methodology

For Mongolian grassland, it is important to determine the most suitable and stable index
based purely on RS data in different steppe types. Visible, NIR, and SWIR bands and land surface
temperature-derived thermal infrared data were used for drought monitoring and determination of the
optimal index in Mongolia. Feasible satellite-derived indices based on climate, drought characteristics,
and other information on the conditions in Mongolia were considered during the fact-finding stage.
Moreover, universality, comparability, and practicability for operational use needed to be considered
when selecting the index. Most important is the analysis described in our introduction: VCI, TCI, VHI,
and NDDI have been used in Mongolia, NDWI is sensitive to drought change in America, NMDI
and VSDI enhance measurement of drought severity by introducing short wave infrared and blue
channels, and VSWI and VTCI generated using NDVI and LST may reflect water and vegetation
stress well. Therefore, in assessing the arid to semi-arid natural zones of Mongolia, the following nine
indices derived from MODIS satellite data were selected for testing and determination of optimal
indices: TCI, VCI, VHI, NDWI, NDDI, VSWI, VTCI, VSDI, and NMDI. These nine candidate indices
for detailed analysis and investigation of their suitability for different natural zones were calculated
for the growing seasons of 2000–2014. The process of the proposed method is summarized in Figure 2.
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3.1. Satellite-Derived Indices

MODIS 1B data between June and August during 2000–2014 were pre-processed as described in
Section 2.2.3. Data for the blue, red, NIR, and SWIR bands, as well as the NDVI and LST of each day
were produced and retrieved. Any remaining cloud-contaminated pixels were removed. Next, the
daily band data, NDVI data, and LST data were combined into a 10-day average, NDVI, and LST. Nine
indices (TCI, VCI, VHI, NDWI, NDDI, VSWI, VTCI, VSDI, and NMDI) were selected and calculated
according to the formulas listed in Table 2.

Table 2. Candidate drought indices.

Satellite-Based
Drought Index Authors Formula(e)

VCI Kogan, F.N., 1995 [7]
VCIj =

NDVIj − NDVImin

NDVImax − NDVImin
× 100%

NDVImax and NDVImin are the maximum and
minimum NDVI in multi-year dataset

TCI Kogan, F.N., 1995 [7]
TCIj =

LSTmax − LSTj

LSTmax − LSTmin
× 100%

LSTmax and LSTmin are the maximum and minimum
LST in multi-year dataset

VHI Kogan, F.N., 1995 [7] VHI = a×VCI + (1− a)× TCI

VTCI Wang et al., 2001 [18]
VTCIi =

LSTNDVIi,max − LSTNDVIi

LSTNDVIi,max − LSTNDVIi,min

LSTNDVIi,max = a1 + b1× NDVIi
LSTNDVIi,min = a2 + b2× NDVIi

NMDI Wang, L. and Qu, J.J.,
2007 [11] NMDI =

R860nm − (R1640nm − R2150nm)

R860nm − (R1640nm + R2150nm)

VSDI Zhang et al., 2013 [9] VSDI = 1− [(ρSWIR − ρBlue) + (ρRed − ρBlue)]

VSWI Carlson et al., 1990 [15] VSWI =
Ts

NDVI

NDWI Gao, 1996 [10] NDWI =
ρSWIR − ρNIR
ρSWIR + ρNIR

NDDI Yingxin Gu, 2007 [13] NDDI =
NDVI − NDWI
NDVI + NDWI

3.1.1. Pixel Levels

RS-derived drought indices can be calculated using the above equations in Table 2 at the pixel
scale, based on drought classification criteria in each formula from the literature cited as shown in
Table 2. The pixel value range of RS-derived drought indices was converted into numeric values from
1–5: 1 = extreme, 2 = severe, 3 = moderate, 4 = slight drought, and 5 = normal. RS-derived pixel values
were used for correlation and temporal analysis with field data from selected stations. These pixel
values can also be used for producing drought severity category (DSC).

3.1.2. County Level

The percentages of drought acreage (PDA) is calculated by dividing the drought area by the total
grass area in each county using the RS-derived data. Then, based on a similar method described in
Reference [29], we developed the drought severity level (DSL) indicator using the RS-derived drought
indices and the following formula to represent drought severity in every county as follows

DSLsoum_RS = 0.4 × DrouEX + 0.3 × DrouSE + 0.2 × DrouMO + 0.1 × DrouSL (1)
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where DSLsoum_RS is the output of DSL in a county, and DrouEX, DrouSE, DrouMO, and DrouSL are
the PDAs of extreme, severe, moderate, and slight drought rankings, respectively, from the RS-derived
drought indices.

To ensure that the satellite-derived drought statistics indicator (DSLsoum_RS) is compatible with
the RDA data, DSLsoum_RS was classified into a drought severity category (DSCsoum_RS) indicator
in accordance with the Mongolia local experiential rule: DSC = 1 when DSL ≥ 0.2, DSC = 2 when
0.1 ≤ DSL < 0.2, DSC = 3 when 0.05 ≤ DSL < 0.1, DSC = 4 when 0 < DSL < 0.05, and DSC = 5 when
DSL = 0. The DSC range is 1–5: 1 = extreme, 2 = severe, 3 = moderate, 4 = slight drought, and
5 = normal.

3.2. Ground Data-Derived Indices

3.2.1. Station Level

Ped [30] originally established the PED index to detect the long-term intensity of meteorological
drought using corresponding environmental parameters, including air temperature and precipitation,
which were monitored at stations over a long period.

PEDi =
Ti − T
σT

− Pi − P
σP

(2)

where T is air temperature, P is precipitation, and σT and σP are the standardized deviations of
temperature and precipitation. Accordingly, T and P are the corresponding means.

The PED drought index was used to determine temperature anomalies and precipitation deficits,
and it reflects the effects of these two combined parameters on drought. Mongolia experiences
particularly extreme annual temperature fluctuations in response to global climate change, and high
temperatures may cause water stress and drought [31]. According to the records of 48 meteorological
stations distributed over the territory of Mongolia, the annual mean temperature of Mongolia increased
by 2.14 ◦C during the last 70 years, and the number of hot days in the summer season is increasing [32].
In addition, the PED is very effective at monitoring drought in Russia [30] and the Bulgarian low
regions [33]; therefore, the PED meteorological index was used in this paper.

Drought had a substantial influence on maximum measured aboveground biomass
production [34,35]. Since absolute biomass data had shortcomings of spatial and temporal
comparability, we developed a normalized biomass (NorBio) for the assessment of grassland drought
along similar lines to the development of the VCI equation as a normalized calculation using long-term
data. Station biomass data was correlated with the eight RS-derived drought indices. NorBio can be
calculated by using the equation

Biomassnormalized(i, n) =
Biomass(i, n)− Biomassmin(i, n)
Biomassmax(i, n)− Biomassmin(i, n)

(3)

where Biomassnormalized(i, n) is the normalized biomass for period i and station n, Biomass(i, n) is
the biomass for period i and station n in a certain year, Biomassmax(i, n) is the multi-year maximum
biomass for period i and station n, and Biomassmin(i, n) is the multi-year minimum biomass for period
i and station n.

Soil moisture is a good indicator of drought caused by water reduction, and changes in soil
moisture can reflect drought change trends. High correlations have been observed between RS-derived
drought indices and soil moisture at different depths [36]. The correlation between soil moisture based
on ground measurements and RS-derived drought indices was used to evaluate drought severity and
validate the accuracy of the RS-derived drought indices.
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3.2.2. County Level

The RDA is considered as qualified assessment for consequences that include are values intended
to measure consequences of drought, including vegetation growth rate, vegetation damage, and
vegetation adequacy for feeding livestock. RDA data are field-derived regional, manual, and
experiential observations based on plant growth, growth stage, and grassland productivity information,
and provide a very suitable and exact description of drought severity. Here we recommended this
reference data for evaluating the drought results of satellite-based data in county scale.

Meanwhile, for compatibility with RS-derived values, we combined the RDA values of 5 and
6 into the single value, which gave the average of 5 (which means no drought). In addition, RDA
data was used for constructing a consistence percentage (CP) indicator for consistent evaluation of
county-based drought based on field-derived and RS-derived values.

3.3. Suitability Analysis

An evaluation was performed to assess the quality of the data derived from the model [37]. The
index accuracy was then assessed over a widely distributed set of locations and long time periods
via ground-truth data. However, for the drought indices, obtaining real drought values in a field
campaign is difficult; thus, we assessed drought using other reference data. Normally, soil moisture
was correlated with agricultural or vegetation drought [34]. Soil moisture in the field can reflect crop
or vegetation drought, which also represent an effective method of evaluating grassland drought.
Vegetation affected by drought experiences a sharp decrease in biomass; therefore, the field-based
biomass index (NorBio) data is an effective method of assessing grassland drought. Field-based RDA
are regional data from drought-affected areas and can directly describe the drought status in a region.
Because grass drought is related to meteorological conditions and caused by extreme weather [7], the
meteorological index (PED) is recommended in this paper.

For correlation analyses at the pixel scale, the consistent and spatial distribution comparisons of
drought results were analyzed to identify the most suitable and accurate drought indices for different
land cover types to accurately describe drought occurrence and severity in Mongolia.

3.3.1. Correlation

When regional ground-truth data values are difficult to obtain or cannot be collected, in situ point
data are important for evaluating RS-derived drought indices.

Pearson’s correlation coefficient (R) usually indicates the correlation between two variables as

Rxy =
n

∑
i=1

[(xi − x)(yi − y)]/

√
n

∑
i=1

[
(xi − x)2(yi − y)2

]
(4)

where rxy is the correlation coefficient, xi and yi are variables, x and y are the mean values of the
variables, and n is the number of samples.

3.3.2. Consistence Percentage

Field drought distribution and statistical data such as county-level RDA can be easily obtained,
and represent important drought evaluation information. At the county scale, CP reflects goodness
of fit between field-based RDA and drought severity categories determined using satellite-derived
drought indices. Higher CP values indicate greater consistency: 100% indicates that the same drought
severity was obtained from the RS and field data.

Next, CP was used to describe the relationship between field-derived vegetation conditions and
RS-derived drought indicators in three land cover types. CP can be calculated by RDA data and DSC
via the equation

CPcounty =
CN
TN
× 100% (5)
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For each unit, CN is the number of consistent drought severity rankings between RDAcounty and
DSCcounty_RS, and TN is the number of RDA drought severity rankings.

3.3.3. Spatial Analysis

If regional-scale data can be obtained from field measurements, the spatial distribution of drought
based on field observation data and RS-derived drought indices can be analyzed and used to validate
the drought indices. An ideal result corresponds to regional true-field data in the form of raster data
with a certain resolution. In practice, however, the available data are obtained from different data
sources and present various spatial attributes, extents, and resolutions. For this study, field drought
distribution maps based on field-derived RDA were created and compared to RS-derived drought
index maps to evaluate the spatial distribution differences and temporal change consistencies between
them. The inverse distance weighted (IDW) method was used by IRIMHE to convert the in situ
RDA into a 1 km raster format in order to create field drought spatial distribution maps [38]. The
distribution maps of RS-derived drought indices were produced using ArcGIS 10.0 software and were
used to determine whether these indices and RDA data exhibit consistent spatial distributions and
temporal fluctuations.

4. Results

4.1. Comparisons with the PED

Eighty-six meteorological stations in Mongolian grassland areas were available from 2000 to 2014,
and data from these stations was used for analysis and validation. The land cover of these stations
can be divided into three types: forest steppe (18), steppe (41), and desert steppe (27). The effects of
meteorological variations on vegetation were observed, and lags in vegetation response (drought or
normal growth) were identified. Therefore, we calculated the one-month PED using data from the
current 10-day and last two 10-day periods. Long-term analyses of PED meteorological index were
performed on the grass-growing periods (June–August) from 2000 to 2014.

The NDDI, NMDI, VSWI, and PED indices are positively correlated, whereas the other six
indices are negatively correlated (refer to these equations in Table 1). The correlations between the
satellite-based drought indices and the PED are shown in Table 3, which shows maximum, minimum,
average, and standard deviation values of the correlation coefficients (MAX_R, MIN_R, AVE_R, and
STDE_R) for all stations. The results indicate that VHI, TCI, and VSWI were highly correlated with
satellite-based drought indices throughout the growing period in the steppe zone, with an average
correlation of more than 0.52 at the 99% confidence level (this confidence level also applies to the
following). The VHI had the highest average correlation (0.66) with a maximum value of 0.76. VHI
and TCI exhibited the highest correlation values for forest steppe and desert steppe areas; the MAX_R
of VHI was 0.75 (VHI and TCI averages were 0.61 and 0.56, respectively). The results indicate that VHI,
TCI, and VSWI are significantly correlated with PED for the three steppe types, and that correlation
between VHI and PED is higher than between TCI and VSWI. Additionally, STDE_R for the three
land cover zones varied from 0.07 to 0.24. In forest steppe zones, TCI exhibited the lowest STDE_R,
and there was less variability figure across stations. TCI is a stable and reliable index for this zone.
Similar results were produced for VHI in the steppe zone and TCI and NDWI in the desert steppe
zone. NMDI had the largest STDE_R for all three steppe zones, which demonstrates that this index
cannot accurately reflect drought in Mongolia as a whole.

Stations Erdenet, Erdenesant, and Saikhan were selected for the forest steppe, steppe, and desert
steppe zones, respectively. Figure 3a–i are composed of time series plots based on nine RS-derived
drought indices and the meteorological index (PED) from these three stations over the first 10 days of
July from 2000 to 2014. The curves of the RS-derived drought indices were extracted using a 3 × 3 km
window over the 86 meteorological stations. All nine RS-derived drought indices present obvious
changes relative to the PED. The TCI, VCI, VHI, NDWI, VTCI, and VSDI are negatively correlated
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with the PED, whereas the NMDI, NDDI, and VSWI are positively correlated. Like the TCI, VCI, and
VHI for Erdenet (forest steppe) exhibit less consistent changes than other indices. Moreover, the VSDI
is not sensitive to the PED and shows a small value range. The Erdenet station is known to have
experienced severe drought in the serious drought year of 2002. The lowest values in the time series
occurred for the indices TCI, VCI, VHI, NDWI, VTCI, VSDI, and NMDI, and they corresponded to the
largest PED values. The overall trend for the VHI, TCI, and VSWI curves are more consistent with
the PED curve than for other curves for Erdenesant station (Figure 3d–f). The values of the VHI, VCI,
TCI, and NDWI decrease rapidly with increases in the PED, and increase rapidly with decreases in the
PED. In the desert steppe station (Saikhan), less vegetation resulted in lower sensitivity of the VCI and
NDWI to drought. The VHI is obviously the best index for describing grassland drought, because it
combines vegetation changes and temperature anomalies, and the PED also reflects water and thermal
conditions. The highest correlation between the RS-derived drought indices and the PED is the VHI.

Table 3. R of the PED and satellite-based drought indices during the grass growing period
(June–August) across stations (with a 99% confidence level).

RS-Derived Indices Forest Steppe Steppe Desert Steppe

TCI −0.69/−0.43/−0.57/0.07 −0.71/−0.35/−0.56/0.08 −0.62/−0.28/−0.46/0.09
VCI −0.57/−0.20/−0.34/0.14 −0.68/−0.27/−0.47/0.10 −0.58/−0.16/−0.40/0.11
VHI −0.75/−0.36/−0.61/0.09 −0.76/−0.52/−0.66/0.07 −0.75/−0.31/−0.56/0.11

NDWI −0.65/−0.20/−0.50/0.10 −0.69/−0.29/−0.54/0.09 −0.58/−0.20/−0.43/0.09
NDDI 0.58/0.21/0.44/0.10 0.62/0.02/0.39/0.15 0.39/−0.04/0.15/0.12
VSWI 0.70/0.35/0.54/0.09 0.73/0.35/0.58/0.10 0.64/0.33/0.48/0.09
VTCI −0.63/−0.29/−0.48/0.08 −0.59/−0.23/−0.46/0.09 −0.57/−0.22/−0.39/0.10
VSDI 0.48/0.02/0.25/0.11 0.35/−0.29/0.13/0.13 −0.11/0.23/0.09/0.10

NMDI −0.59/0.05/−0.27/0.20 0.48/−0.52/0.10/0.24 0.51/0.13/0.31/0.13

Each cell in the table shows four values in the following order: MAX_R, MIN_R, AVE_R, and STDE_R. The bold
number is maximum of MAX_R in nine indices.

4.2. Comparisons with Soil Moisture

For this study, soil moisture observation data were obtained at depths of 5 cm and 10 cm for
each 10 day period from 2000 to 2011 from 39 soil moisture sites (9 forest steppe sites, 23 steppe, and
7 desert steppe). We found that soil moisture at 10 cm was better associated with grass growth and
drought conditions than that at 5 cm; therefore, the 10 cm depth soil moisture values were adopted
for the analysis in this paper. To account for spatial consistency between soil moisture measurements
and RS-derived drought indices, we selected the corresponding nearest pixel for each of the 39 soil
moisture site locations and extracted each pixel’s value. Thus we created a dataset that included
39 pairs of site-based soil moisture and RS-derived drought index values for each drought index in
every 10-day period.

The Rs were determined from satellite-derived drought indices and ground soil moisture data;
the results indicate that the TCI, NDWI, and VHI have higher Rs. For each steppe type, the MAX_R,
MIN_R, AVE_R, and STDE_R were produced by many stations. In the forest zone, TCI presented the
largest maximum and average R, as can be seen in Table 4, though larger STDE_R values occurred
elsewhere. The correlation between ground-observed soil moisture at 10 cm and the NDWI in the
steppe zone was the highest of the indices (0.69, which was significant at p < 0.01), followed by the
VHI (0.67). However, in the desert steppe zone, VHI featured the highest correlation coefficient (0.61)
among the indices. Lower STDE_R and higher VHI averages in the desert steppe zone show that these
values are stable across stations.

Point-derived data (such as soil moisture) only reflect information from a small region, while the
drought extent determined by satellite data over large areas and long time periods are pixel values.
Errors and uncertainties may occur in both data sets because of the difference in spatial scale.
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Table 4. R of soil moisture at a depth of 10 cm and the RS-derived indices in the three land-cover types
across stations (at a 99% confidence level).

RS-Derived Indices Forest Steppe Steppe Desert Steppe

TCI 0.58/0.03/0.36/0.16 0.63/0.05/0.39/0.15 0.49/0.13/0.32/0.13
VCI 0.17/0.13/0.08/0.10 0.49/0.10/0.24/0.13 0.58/0.35/0.43/0.08
VHI 0.42/0.10/0.32/0.13 0.67/0.10/0.40/0.15 0.61/0.37/0.48/0.08

NDWI 0.29/0.06/0.17/0.13 0.69/0.02/0.26/0.17 0.43/0.08/0.22/0.34
NDDI −0.32/0.00/−0.18/0.10 −0.62/−0.10/−0.19/0.17 −0.19/0.00/−0.10/0.07
VSWI −0.37/0.00/−0.28/0.12 −0.65/0.00/−0.38/0.14 −0.58/−0.40/−0.48/0.07
VTCI 0.51/0.00/0.29/0.14 0.60/0.00/0.33/0.14 0.47/0.03/0.25/0.17
VSDI 0.32/0.01/0.11/0.17 0.43/0.03/0.25/0.16 0.54/0.02/0.19/0.27
NMDI −0.29/0.00/0.02/0.25 −0.39/0.00/−0.06/0.16 −0.49/0.00/−0.26/0.25

Each cell in the table shows four values in the following order: MAX_R, MIN_R, AVE_R, and STDE_R. The bold
number is maximum of MAX_R in nine indices.

4.3. Comparisons with the NorBio

To test the regional effectiveness of RS drought indices and determine the best index during the
grass growing period for different land cover types (across 18 forest steppe stations, 41 steppe, and
27 desert steppe), we compared the RS drought indices with the NorBio index.

Generally, the grass-growing period in Mongolia is from May to September. In May, the grass
is short. July and August are critical grass-growing periods, and grass biomass data is available
from field observations. Therefore, we selected observed biomass data from late July for correlation
analysis with the RS-derived drought indices. Using Formula (3), we calculated the NorBio values and
constructed a correlation graph for July using the nine RS-derived drought indices and station-based
biomass data observed over 15 years (2000–2014). For each steppe type, the maximum, average,
minimum, and STDE_R correlation values were produced by many stations (seen in Table 5). The
results show high R values for some indices, with maximum values up to and above 0.90. For the
forest steppe areas, the NDWI, VHI, VCI, and VSWI have better correlations than the other indices,
with AVE_R values of 0.70, 0.62, 0.64, and 0.59, respectively, and MAX_R values of 0.92, 0.87, 0.83, and
0.78, respectively. For the steppe regions, the VHI, NDWI, VCI, and VSWI have higher correlations
with the ground-based NorBio values than the other indices, with averages of 0.60, 0.61, 0.57, and 0.59,
respectively, and MAX_R values of 0.94, 0.95, 0.94, and 0.88, respectively. VCI, VSWI, VHI, and NDWI
have AVE_R values of 0.67, 0.60, 0.59, and 0.48, respectively, and MAX_R values of 0.92, 0.83, 0.82, and
0.86, respectively, in the desert steppe areas. The NDWI coefficient varies greatly among the stations
with high STDE_R values, with a MAX_R value of 0.86 and MIN_R value of 0.08. The signs of the
VSDI and NMDI correlation coefficients vary: some stations have positive correlations, whereas others
have negative correlations.

Figure 4a–i show the time series plots of nine RS-derived drought indices and the NorBio values
at three stations (representing the three types of steppes) for the last 10-day period of July from 2000 to
2014. The dynamic trend of the NorBio is similar to that of the RS-derived drought indices throughout
the studied period. The TCI, VCI, and VHI also showed fluctuation trends consistent with the NorBio.
Generally, the TCI, VCI, VHI, NDWI, VSDI, and VTCI had positive relationships with the NorBio, and
these values were also substantially lower in the severe drought year of 2002 than in a weak drought
year (2003) for the three representative stations, except for the VCI at the Erdenet station (forest steppe,
Figure 4a). The TCI, VCI, and VHI values increased more than the NDWI, VSDI, and VTCI values
during the severe summer drought of 2003, which suggests that the former are more sensitive than
the latter to drought conditions. The relationship between NMDI and NorBio was negative, although
opposite results were observed in certain years, as shown in Figure 4b,e,h, indicating that this index
is not suitable for detecting drought in Mongolia. When the NDDI was compared with the NorBio,
the change trends in certain years (such as 2001, 2004, and 2012–2014 at the Erdenet station) were
inconsistent; the VSWI and NorBio curves showed greater consistency.
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Table 5. R of the NorBio and RS-derived drought indices in three land-cover types across stations (at a
99% confidence level).

RS-Derived Indices Forest Steppe Steppe Desert Steppe

TCI 0.70/0.04/0.43/0.19 0.80/0.09/0.45/0.21 −0.46/0.73/0.23/0.30
VCI 0.83/0.35/0.64/0.16 0.94/0.12/0.57/0.16 0.92/0.28/0.67/0.15
VHI 0.87/0.30/0.62/0.17 0.94/0.38/0.60/0.14 0.82/0.32/0.59/0.16

NDWI 0.92/0.48/0.70/0.14 0.95/0.15/0.61/0.17 0.86/0.08/0.48/0.20
NDDI −0.81/0.14/−0.57/0.17 −0.80/−0.08/−0.50/0.19 −0.57/0.11/−0.33/0.17
VSWI −0.78/0.38/−0.59/0.14 −0.88/−0.33/−0.59/0.14 −0.83/−0.26/−0.60/0.12
VTCI 0.61/−0.21/0.32/0.22 0.72/−0.32/0.31/0.25 0.68/−0.76/0.05/0.34
VSDI 0.49/−0.48/−0.08/0.25 0.73/−0.56/0.02/0.33 0.82/−0.70/−0.05/0.38
NMDI 0.69/0.00/0.39/0.22 −0.70/0.67/−0.16/0.38 −0.79/0.05/−0.36/0.23

Each cell in the table had four values in the following order: MAX_R, MIN_R, AVE_R, and STDE_R. The bold
number is maximum of MAX_R in nine indices.

4.4. Comparisons with the RDA in County

The RDA have a specific characterization area due to their nature as field observations, and are
used to evaluate vegetation conditions at the county level. The DSC based on RS-derived drought
indices represents drought status at the county scale. We adopted CPs (explained in Section 3.3.2) to
describe the abilities of the RS-derived indices to monitor summer drought using RDA as field-derived
reference data. We calculated the DSC, RDA, and CP for 37 counties and analyzed the results.

The CP values for the three land cover types are shown in Figure 5. The CPs of the VHI, VCI,
TCI, and NDWI relative to the RDA were higher than those of the other indices. In the forest steppe
regions, the highest average CP values were from the VHI, VCI, TCI, and NDWI at 74, 73, 73, and 71%,
respectively. The maximum values for these indices were 84, 74, 81, and 87%, respectively. VHI, VCI,
TCI, and NDWI predicted the same level of drought severity as RDA for approximately two-thirds of
all 10-day intervals during summers from 2000 to 2014. For the steppe areas, the drought CPs between
the VHI, VCI, and RDA were higher than those of the other indices, at 74%, although the average CP
between the NDWI and the RDA was 73%. The maximum CP values for VHI, VCI, and NDWI were
89, 89, and 88%, respectively. The highest average drought CP (67%) was between VCI and RDA in the
desert steppe zone (maximum value of 79%), and an average value of 66% was observed between VHI
and RDA across all stations (maximum value of 81%).
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These results show good consistencies between RS-derived drought indices and the field-derived
RDA. The VCI, TCI, VHI, and NDWI are more sensitive to grassland drought and had stronger
relationships with the RDA. These indices can accurately describe changes in drought in Mongolia at
different temporal and spatial scales. In addition, the CP value for steppe is generally higher than for
the other two land cover types, and the lowest CP is found in the desert steppe zone.

4.5. Spatial Consistence Comparsions

Mongolia experienced heavy drought conditions in 2002 and slight drought conditions in
2003. Two typical years (the first 10 days of July in 2002 and 2003) of drought monitoring results
(Figures 6 and 7) were selected for the visual comparison of the spatial monitoring characteristics of the
nine RS-derived drought indices with the reference RDA data. In 2002, drought occurred throughout
most of Mongolia except for eastern Mongolia and a few other areas. The VHI and VCI maps showed
similar distributions as the reference RDA map in central and southern Mongolia (mainly steppe and
desert steppe areas), whereas the NDWI and NDDI maps exhibit good correlations in the northern
forest steppe region. The VTCI and VSWI maps showed strong drought conditions, and the NMDI
map showed drought in only the southern and western regions. Similar maps were generated for
the slight drought year of 2003. The VHI and TCI maps were consistent with the distributions in
reference to the RDA map in the central and southern Mongolia. The NDDI and VSWI maps showed
heavier drought in the south but slight or no drought in the north or central Mongolia, which was
completely inconsistent with the results in the RDA map. In comparison to the RDA and the VHI, TCI,
and VCI map, the VTCI showed drought distribution over a larger area, whereas the VSDI showed
less drought distribution. In the north forest steppe region, the NDWI and NDDI maps showed only
the approximations of the drought distribution. Thus, for the weak drought year of 2003, we find that
the VHI, TCI, and NDWI maps were more consistent with the reference RDA map than those of the
other indices.

To clarify the annual variations, we focused on the temporal fluctuations from 2002 to 2003.
The NDWI, NMDI, NDDI, VSWI, VSDI, and VTCI maps had features of the same drought pattern
in 2002 and 2003, with less drought extent and severity in 2003. The VHI, VCI, and TCI results
indicated decreasing drought extent and severity, consistent with the RDA map and local drought
characteristics. Furthermore, the NDWI and NDDI maps showed distribution features in the northern
forest steppe region that were consistent with significantly decreasing trends as on the RDA map.
Figures 6 and 7 illustrate the advantages of the VHI, VCI, TCI, and NDWI for drought monitoring
large areas of Mongolia.

4.6. Comprehensive Results

A suitability analysis was conducted by comparing the RS-derived drought indices to the
ground-derived results of the PED, soil moisture, NorBio, and RDA for the forest steppe, steppe,
and desert steppe areas during the study period at the pixel, county, and regional scales. The output is
shown in Table 6. For each area, two levels (best and second best) were used to express sensitivity to
reference indicators. The primary results were VHI/NDWI/TCI for forest steppe, VHI/VCI/NDWI
for steppe, and VHI/VCI/VSWI for desert steppe. As the VHI index consists of both the VCI and TCI,
the VHI can represent those two indices.

In terms of statistical distribution, there is an obvious trend point that represents the general level
of data, known as the mode. The mode is the value that is repeated most often in a data set. Here,
we propose using the mode to select the best indices for grassland drought monitoring. Based on the
mode, the best indices are VHI and NDWI. Therefore, we find that these two RS-derived drought
indices (VHI and NDWI) accurately describe Mongolian drought in the growing stage.
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Table 6. Sensitivity of RS-derived drought indices to the reference indicators

Reference Indicators Forest Steppe Steppe Desert Steppe

PED VHI */TCI ** VHI */TCI ** VHI */VSWI **
Soil moisture TCI */VTCI ** NDWI */VHI ** VHI */VSWI **

NorBio NDWI */VHI ** VHI */NDWI ** VCI */VSWI **
RDA NDWI */VHI ** VHI */VCI ** VCI */VHI **

RDA spatial distribution NDWI */VHI ** VHI */VCI ** VHI */VCI **

*, ** indicate the best and second-best correlations between the RS-derived drought indices and the
reference indicators.

5. Discussion

This paper proposes a comprehensive suitability analysis method for monitoring drought in
Mongolia. The selected RS-derived drought indices (TCI, VCI, VHI, NDDI, VSWI, VTCI, VSDI, and
NMDI) and were derived from multi-band data (visible, NIR, SWIR, and thermal infrared). The new
method does not depend on only one reference data for evaluation; it takes full advantage of multiple
sources of field data (environmental conditions, grass condition, and drought-affected information) to
describe drought status at different scales for different aspects.

Drought had a substantial influence on maximum measured aboveground biomass
production [34,35]. However, biomass data reflect vegetation conditions in different areas at different
times, and are limited in terms of spatial and temporal comparability with drought indices. To reduce
these shortcomings, the NorBio was implemented to capture regional climate differences and the
effects of short-term weather-related fluctuations on vegetation. Additionally, an AVHRR-based VHI
was successfully used as a proxy for biomass in Mongolia [28], because the VHI has high correlations
with biomass anomalies and estimates of crop yield and grassland biomass in other parts of the
world [39–41]. The biomass production of a barley crop changes in response to drought depending
on the timing and duration of the drought [35]. Drought stress may influence the water supply to
vegetation and reduce accumulated biomass and production of crops or grasses. Hence biomass data
can reflect the extent and severity of drought; we successfully used biomass index to express drought
status in different regions over many years.

VHI and NDWI are the best indices for Mongolian drought, based on comparisons with field
RDA. Because RDA is regional data, we analyzed the temporal and spatial distributions of RDA and
satellite-derived drought indices for the severe drought in 2002 and the slight drought in 2003. The
VHI and NDWI had more consistent spatial–temporal drought variability than the other indices. The
spatial distribution data was able to express the general drought status, changes, and development
better than the pixel- or point-based data.

Considering all the multi-aspect and multi-reference comparison results, the VHI and NDWI are
the optimal selection. Kogan [28] previously applied the VHI for drought detection and derivation
of pastoral biomass in Mongolia and found that VHI could reflect grassland health conditions and
water- and temperature-related vegetation stress during drought. Hence the results of this paper are
consistent with the findings of pioneering researchers. This index was also used for monitoring drought
in other areas. Initially, VHI was used to evaluate the impact of drought on regional agricultural
production in South America, Africa, Asia, North America, and Europe [7,39,40], and a very strong
correlation was observed between VHI and crop yield, particularly during critical periods of crop
growth. In China, VHI has been evaluated for drought monitoring by several researchers [42–44], who
found that it was a stable and reasonable RS index for monitoring agricultural drought in different
agro-meteorological zones of China.

Our research has found that the NDWI can also accurately express Mongolian grassland drought
over long periods. The NDWI was derived from the NIR and SWIR channels, and it responded to
changes in both water content (absorption of SWIR radiation) and spongy mesophyll (reflectance of NIR
radiation) in vegetated areas [10]. The NDWI has further been used to monitor the moisture conditions
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of vegetation canopies over large areas in several investigations [45,46]. Soil moisture is a critical
component in interactions between the land surface and the atmosphere, and prolonged soil moisture
deficits often lead to drought-induced vegetation stress [47]. We evaluated the performances of the
NDWI for drought monitoring, and found that it is more sensitive to Mongolian grassland drought
than other possible indices, especially for forest steppe (seen in Table 4). The spatial distribution of
NDWI values can best express RDA spatial distribution in forest steppe areas. Additionally, high
correlation coefficients between NDWI and NorBio exist for forest steppe and steppe regions. Therefore,
the NDWI is a very effective and simple index for monitoring grassland drought.

However, certain weaknesses in the proposed RS-derived drought products (VHI and NDWI) and
ground data must be mentioned. These differences were caused by several error sources, including
the selection of field stations, the distance between repeated points, differences in soil structures, and
inconsistencies between the footprint of RS data and the point-based nature of the measured parameter
indicators (soil moisture, NorBio, and PED). Soil moisture is a good indicator for vegetative drought;
however, it is derived from in situ data, and it is difficult to obtain high correlations between in situ
data and the spatial data of drought indices. Future experiments should focus on measurements of
regional soil moisture to determine changes in drought. Normally, the PED index requires data over
long time periods; however, the currently available dataset only covers approximately 15 years. The
RDA is treated as regional field observation data, the data is actually collected by different observers
without standardized instruments or equipment, possibly resulting in somewhat subjective results.

The VHI may feature additional errors for high-latitude regions, according to A. Karnieli [48]. The
relationship between NDVI and LST is positive, but the VHI-based drought index hypothesizes
that increasing temperatures act negatively on vegetation vigor and consequently cause water
stress and drought. However, in high-latitude or equatorial humid regions, higher temperatures
accelerate vegetation growth, and vegetation development is mainly limited by the available energy.
Consequently, the VHI may not be the best index for drought monitoring in high-latitude regions.
Indeed, this paper has shown that, in forest steppe areas, VHI is not always the best indicator for
describing drought (Table 4). Our comparison analysis of NorBio and RDA spatial distribution showed
that NDWI was better than VHI. This result is consistent with previous findings [49,50]. In this paper,
we adopted the VHI equation used by Kogan’s papers [7,28]. In this equation, the coefficients of TCI
and VCI are the same, that is, to 0.5, which is not strictly accurate because the NDVI and the LST
exert varying influences on drought in different regions or ecosystems. In the future, focus should
be on these shortcomings to find the optimal coefficients for various regions. This will enable the
construction of a comprehensive drought monitoring model for the entirety of Mongolia based on the
VHI (with various coefficient of TCI and VCI), and NDWI.

6. Conclusions

To identify the optimal index or indices for monitoring pasture drought in Mongolia, a new
adaptability analysis framework was adopted for evaluating the performances of satellite-derived
drought indices. Methods based on comparison to a meteorological index (PED), normalized biomass
(NorBio) reference indicator, and RDA-based drought consistent percentage (CP) were proposed. Due
to valuations at diverse scales (pixel, county, and region) for three land cover types (forest steppe,
steppe, and desert steppe), Pearson’s correlation, CPs, and spatial consistency analysis methods were
adopted, and an integrated assessment was developed to fully describe drought status. The mode
method of statistical significance was used to identify comprehensive results among the comparisons
of satellite-derived drought indices and five different reference indicators (PED, soil moisture, NorBio,
RDA, and RDA spatial distribution).

The VHI and NDWI were found to be appropriate for the assessment of drought characteristics
and for monitoring drought conditions in Mongolian grassland. These indices were able to detect the
timing of drought onset and processes, and provided realistic quantification of drought severity in
the study areas. These two indices can therefore be used to develop a combination drought model
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for accurately monitoring drought in the future. A comprehensive and novel adaptability analysis
framework was built to identify the most appropriate satellite-derived drought indices for the accurate
and near real-time detection of droughts in other countries or regions.
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