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Abstract: Scattering mechanism (SM) analysis is a promising technique for ship detection and
classification in polarimetric SAR (PolSAR) images. In this paper, a four-component model-based
decomposition method incorporating surface, double-bounce, volume and cross-polarized
components is proposed for analyzing the SMs of ships. A novel cross-polarized scattering component
capable of discriminating between the HV scattering power generated by the oriented scatterers
on ships from that by volume scatterers is proposed as a means to address the problem of volume
scattering power overestimation. In the decomposition stage, by taking into account both the real and
imaginary parts of the elements 〈[T]〉HV(1, 3) and 〈[T]〉HV(2, 3) of the observed coherency matrix, the
proposed cross-polarized component can preserve the reflection asymmetry information completely,
which is an essential property of man-made targets, such as ships. Based on the proposed
decomposition method and an analysis of the different SMs between ships and sea clutter, a novel
ship detection metric defined as M = ln Pd + Pc

Ps
is proposed. Experimental results conducted on

RadarSat-2 quad-polarimetric data validate the proposed four-component decomposition method
as being more suitable for analyzing the SMs of ship targets than the existing helix matrix-based
decomposition methods. Additionally, we find that the proposed ship detection metric can effectively
enhance the signal-to-clutter ratio (SCR) and improve ship detection performance.

Keywords: polarimetric SAR (PolSAR); scattering mechanisms (SMs); incoherent decomposition;
cross-polarized component; reflection asymmetry; ship targets

1. Introduction

Precise ship detection and classification are crucial for maritime security and environmental
protection. Synthetic aperture radar (SAR) can provide wide-area, all-day and nearly all-weather
observation and, as such, has played an important role in maritime ship surveillance [1]. Methods
of ship detection and classification based on single-polarization SAR data have been extensively
studied [2–8]. Recent technological trends involving SAR are moving towards the utilization of
polarimetric SAR (PolSAR) data in this paper, we refer to fully-polarimetric or quad-polarimetric SAR
data as polarimetric SAR (PolSAR) data). With PolSAR data containing more available information, e.g.,
amplitude and relative phase, than single-polarization SAR data, the scattering behavior of the ship
target and sea clutter can be analyzed in detail. The methods of the classical polarimetric whitening
filter (PWF) [9], polarimetric cross-entropy (PCE) [10], reflection symmetry analysis (RS) [11] and
polarimetric notch filter (PNF) [12] can effectively reveal the difference in scattering behavior between
the ship target and sea clutter and are widely utilized to separate ship targets from the surrounding
sea clutter.
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The model-based decomposition technique is one of the most popular and effective analytical
methods employed in PolSAR data. Although primarily intended for land-cover classification,
its ability to differentiate the scattering characteristics generated by the ship target from those by
the sea surface makes it ideal for ship detection and classification. Wang et al. [13] adopted a classical
Freeman and Durden three-component decomposition [14] method to investigate the scattering
mechanisms (SMs) of different types of ships. They found that the main scattering of four types
of ships, including hospital ships, landing platform docks (LPD), container ships and oil tankers,
is volume scattering, but that hospital ships and LPDs have more surface scatterings, while oil tankers
have more double-bounce scatterings. Sugimoto et al. [15] utilized a four-component model-based
decomposition with orientation angle compensation proposed by Yamaguchi et al. [16] to analyze
the scattering mechanisms of ships for the purpose of detection. They found that scattering from
ships often consists of surface scattering, as well as considerable amounts of double-bounce and
volume scattering. This difference between the SMs of the sea surface and ship targets allows for better
detection of objects by designing discriminative detection metrics.

The classical Freeman and Durden three-component decomposition method assumes that the
co-polarized (HH or VV) and cross-polarized (HV) channels are uncorrelated (i.e., 〈SHHS∗HV〉 ≈ 0 or
〈SHVS∗VV〉 ≈ 0). This assumption of reflection symmetry is satisfied in most natural distributed areas,
but is not held by man-made structures such as ships. Hence, the three-component decomposition
method is not suitable for analyzing the SMs of ships. Yamaguchi et al. [16,17] extended the
three-component decomposition method by adding a helix scattering term to take into account the
reflection asymmetric situation (i.e., 〈SHHS∗HV〉 � 0 or 〈SHVS∗VV〉 � 0). Although this method has
demonstrated its effectiveness at separating the ship targets from the sea surface [15], several factors
limit its ability to interpret the SMs of ship targets. First, this method assigns almost all HV scattering
power to volume scattering, causing an overestimation of the volume scattering power. As mentioned
in the literature [16,18–20], besides the volume scatterers, the oriented scatterers such as oriented
dihedral corners and wires can also contribute to HV scattering power. Many attempts have been
made to mitigate the overestimation of the volume scattering power: an effective way is to modify
the volume scattering model so that it matches the real situation more reasonably [21–23]; another
way is to generalize the odd- and double-bounce scattering models to take into account the HV
scattering power generated by the oriented scatterers [24]. Second, the elements of the helix coherency
matrix, i.e., 〈[Th]〉(2, 3), comprise a pure imaginary number. This makes the helix coherency matrix
incapable of accounting for the asymmetric information contained in the real part of the observed
coherency matrix 〈[T]〉HV(2, 3), which is often a complex number with a non-zero real part. The
orientation angle compensation [16] can convert 〈[T]r〉HV(2, 3) into a pure imaginary number and
make the observed coherency matrix match the helix matrix much better. However, a more reasonable
solution would be one that could develop a more appropriate model to match the observation matrix,
rather than the opposite. In addition, another reflection asymmetry term 〈[T]r〉HV(1, 3) related to the
rotated coherency matrix is totally missed by the helix coherency matrix, causing a loss to measure the
reflection asymmetry information of man-made targets.

In this paper, to solve the existing problems and present a more accurate SM analysis of ships
employed for detection and classification applications, we propose a four-component model-based
decomposition method for ships in PolSAR data. The proposed model can effectively mitigate the
overestimation of volume scattering power and present a complete description of the scattering
asymmetry by incorporating a novel cross-polarized scattering component (〈[T]c〉) and a fine designed
decomposition process. Specifically, as shown in Figure 1, a cross-polarized scattering component is
proposed to model the HV scattering generated by the oriented scatterers, such as oriented dihedrals
and wires on ships, to mitigate the overestimation of volume scattering power. This cross-polarized
component can also describe the reflection asymmetry completely by taking into account both the
real and imaginary parts of the elements 〈[T]〉HV(1, 3) and 〈[T]〉HV(2, 3) of the observed coherency
matrix 〈[T]〉HV to retain the information lost by the helix matrix-based methods. The volume scattering
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component models the HV scattering power generated by the complicated superstructures on ships,
barring the oriented scatterers, which are accounted for by the proposed cross-polarized component.
Instead of using the traditional volume scattering component derived from randomly distributed
dipoles to characterize the complex structures of ships, the coherency matrix with the maximal
polarimetric entropy, i.e., the unit matrix proposed by An et al. [25], is used as the volume scattering
model because of its ability to characterize the total randomness, which is the prime feature of
volume scattering. The surface scattering component models the scattering generated by the sea
surface and ship deck, etc., while the double-bounce scattering component is used to model scattering
originating from dihedral corners such as broadside-sea configuration and deck-hatches on ships.
Based on the proposed decomposition method and an analysis of the different SMs between ships
and sea clutter, a novel ship detection metric defined as M = ln Pd + Pc

Ps
is proposed. Experimental

results conducted on RadarSat-2 quad-polarimetric data validate the proposed four-component
decomposition method as being more suitable for analyzing the SMs of ship targets than the existing
helix matrix-based decomposition methods. The proposed ship detection metric can effectively
enhance the signal-to-clutter ratio (SCR) and improve ship detection performance significantly.

Figure 1. Scattering mechanism analysis of ships at sea. SPAN: total backscattered power. Ps:
surface scattering power. Pd: double-bounce scattering power. Pv: volume scattering power. Pc:
cross-polarized scattering power.

This paper is organized as follows. In Section 2, the proposed cross-polarized coherency
component is described; then, the volume scattering component, the double-bounce and surface
components are introduced, respectively. In Section 3, we introduce the proposed decomposition
method in detail. The comprehensive experiments including SM analysis and ship detection conducted
on RadarSat-2 PolSAR data are presented in Section 4.
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2. Four-Component Scattering Model

2.1. Coherency Matrix

To interpret the polarimetric information contained in PolSAR data, the second-order statistics
covariance or coherency matrix is preferred. In the backscattering case of mono-static PolSAR,
according to the reciprocity, the 3D Pauli scattering vector~kp can be defined as:

~kp =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T (1)

Then, the observed coherency matrix can be derived as:

〈[T]〉HV =~kp ·~k∗
T

p

= 1
2

 〈|SHH + SVV |2〉 〈(SHH + SVV)(SHH − SVV)
∗〉 〈2(SHH + SVV)S∗HV〉

〈(SHH − SVV)(SHH + SVV)
∗〉 〈|SHH − SVV |2〉 〈2(SHH − SVV)S∗HV〉

〈2SHV(SHH + SVV)
∗〉 〈2SHV(SHH − SVV)

∗〉 〈4|SHV |2〉

 (2)

where 〈·〉 and superscripts T , ∗ denote ensemble average, transpose and complex conjugation,
respectively. For simplicity, we rewrite the observed coherency matrix as:

〈[T]〉HV =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 (3)

2.2. Cross-Polarized Scattering Model

The cross-polarized scattering matrix proposed by Moriyama et al. [18] is defined as:

[S]HV =

[
γ ρ

ρ 1

]
(4)

where γ and ρ are ratios of HH and HV backscattering to VV, respectively; where,

γ =
SHH
SVV

ρ =
SHV
SVV

(5)

Any scatterer with a certain orientation angle can produce HV scattering power, resulting in
a non-zero ρ; thus, the cross-polarized scattering matrix can be used to measure the HV scattering
produced by the oriented scatterers on ships. Although the horizontal and vertical scatterers such
as dihedral corners and wires are reflection symmetric, most of them are oriented at different angles
with a non-uniform distributions, making ships’ reflection asymmetric. To describe the asymmetric
scattering information of ships quantitatively, we consider the average contribution of several scatterers
by mathematical integration. Now, let us assume that the scatterers are oriented about the radar look
direction at angle θ from the vertical polarization direction; the oriented cross-polarized scattering
matrix becomes:

[S]hv =

[
Shh Shv
Svh Svv

]
=

[
cos θ sin θ

−sin θ cos θ

] [
γ ρ

ρ 1

] [
cos θ −sin θ

sin θ cos θ

]
(6)
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Specifically, the elements are:

Shh = ρ · sin 2θ + sin2 θ + γ · cos2 θ

Shv = ρ · cos 2θ +
1
2
(1− γ) · sin 2θ

Svv = γ · sin2 θ − ρ · sin 2θ + cos2 θ

(7)

Similarly, we parameterize the proposed cross-polarized coherency as Equation (8). The
mathematical forms of the elements of the cross-polarized coherency are derived via integration
using a probability density function p(θ) [21] with its peak at zero degrees (see Equation (9)), and any
of the expected values can be derived using similar operations with Equation (10):

〈[T]c〉 =

Tc11 Tc12 Tc13

Tc21 Tc22 Tc23

Tc31 Tc32 Tc33

 (8)

p(θ) =
1
2

cos θ, [−1
2

π,
1
2

π] (9)

〈|Shh + Svv|2〉 =
∫ 1

2 π

− 1
2 π

(Shh + Svv) · (Shh + Svv)
∗ · p(θ)dθ (10)

The elements of the proposed cross-polarized coherency are in the formulas:

Tc11 =
1
2
〈|Shh + Svv|2〉 =

1
2
|γ|2 + γre +

1
2

(11a)

Tc22 =
1
2
〈|Shh − Svv|2〉 =

7
30
|γ|2 − 7

15
γre +

16
15
|ρ|2 + 7

30
(11b)

Tc33 = 〈2|Shv|2〉 =
4
15
|γ|2 − 8

15
γre +

14
15
|ρ|2 + 4

15
(11c)

Tc12 =
1
2
〈(Shh + Svv)(Shh − Svv)

∗〉 = 1
6
(γ + 1)(γ∗ − 1) (11d)

Tc13 = 〈(Shh + Svv)S∗hv〉 =
16 + 5π

40
ρ∗(γ + 1) (11e)

Tc23 = 〈(Shh − Svv)S∗hv〉 =
8

15
ρ(1− γ∗) +

16− 5π

40
ρ∗(γ− 1) (11f)

where γre represents the real part of γ. It is worth noting that both Tc13 and Tc23 have a certain complex
value, and their real part is not always equal to zero. Since 〈(SHH + SVV)S∗HV〉 � 0 and 〈(SHH −
SVV)S∗HV〉 � 0 of the observed coherency represent the reflection asymmetry, Equation (11e,f) indicates
that the proposed cross-polarized coherency matrix can be used to take account of the reflection
asymmetry completely. In addition, as the proposed coherency is derived from the cross-polarized
scattering matrix, it can be also used to measure the cross-polarized scattering power produced by
oriented dihedrals and oriented wires.

It should be noted that the orientation compensation widely used in the previous method [16,25]
should not be applied to the observed coherency matrix because the orientation information is the
basis of the cross-polarized coherency [24].

2.3. Volume Scattering Model

The traditional volume scattering component is derived from randomly-oriented dipoles and is
suitable for measuring the HV scattering from forests. When it comes to ship targets, it seems that
these volume models do not match the observed data because there are few oriented dipoles on ships.
Generally, the volume scatterer is a considerably complicated structure, the scattering from which
can be regarded as a combination of several kinds of SMs. As a result, the polarimetric entropy of
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the volume scattering should be high. Based on the above analysis, we adopt the coherency matrix
with the maximal polarimetric entropy, which is, i.e., the unit matrix (see Equation (12)) proposed by
An et al. [25], to model the volume scattering power retained after the cross-polarized scattering power
corresponding to the oriented scatterers is subtracted.

〈[T]v〉 =

1 0 0
0 1 0
0 0 1

 (12)

2.4. Double-Bounce and Surface Scattering Model

The double-bounce scattering component models the scattering from a dihedral corner reflector,
such as the ship side-sea surface, deck-hatches and other dihedral structures on ships. The surface
scattering component models the scattering from first-order Bragg surfaces (sea surface) and planes
(ship deck). Following [26], the coherency matrices for double-bounce and surface components are
given as Equations (13) and (14), respectively:

〈[T]d〉 =

|α|2 α 0
α∗ 1 0
0 0 0

 (13)

〈[T]s〉 =

1 β∗ 0
β |β|2 0
0 0 0

 (14)

where α and β are complex numbers.

3. Decomposition Method

When analyzing the SMs of ships, we have two basic elements of a priori domain knowledge:
(1) Ships are constructed mainly by planes, dihedral corners and a few volume scatterers with
complicated structures. As a result, ships should be surface and double-bounce scattering dominated,
while the volume scattering power should not be high in general. In addition, besides the
volume scatterers, the oriented scatterers on ships such as oriented dihedral corners and wires can
also generate HV scattering; hence, the HV scattering power corresponding to volume scatterers on
ships should be low. (2) Reflection symmetry is a powerful tool by which the essential difference
between ship targets and sea clutter can be characterized [27]. The natural sea background scenario
possesses symmetry properties, while such properties no longer apply with man-made metallic targets,
i.e., ships at sea. In practice, the reflection asymmetry-related components, such as a helix matrix,
are usually adopted to measure the symmetry property of the given object. If the normalized power
(which is defined as the corresponding decomposition power divided by the total backscattered
power, i.e., SPAN) of the reflection asymmetric component is close to zero, the object under test is
regarded as a reflection symmetric target; if the normalized power is close to one, the given object is
a non-reflection symmetric target. Keeping these two rationales in mind, we expand the observed
coherency matrix 〈[T]〉HV as Equation (15) by using the four components described above, i.e., the
proposed cross-polarized coherency matrix, the unit matrix with the maximal polarimetric entropy
and the coherency matrix corresponding to the surface and double-bounce scatterers.

〈[T]〉HV = fs〈[T]s〉+ fd〈[T]d〉+ fv〈[T]v〉+ fc〈[T]c〉

= fs

1 β∗ 0
β |β|2 0
0 0 0

+ fd

|α|2 α 0
α∗ 1 0
0 0 0

+ fv

1 0 0
0 1 0
0 0 1

+ fc

Tc11 Tc12 Tc13

Tc21 Tc22 Tc23

Tc31 Tc32 Tc33

 (15)
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where the cross-polarized coherency matrix 〈[T]c〉 can be obtained by Equation (11) and fs, fd, fv,
fc, α and β are six parameters that need to be determined. Now, comparing the left-hand with the
right-hand side of Equation (15), we have the following six basic equations:

T11 = fs + fd|α|2 + fcTc11 + fv (16a)

T22 = fs|β|2 + fd + fcTc22 + fv (16b)

T33 = fcTc33 + fv (16c)

T12 = fsβ∗ + fdα + fcTc12 (16d)

T13 = fcTc13 (16e)

T23 = fcTc23 (16f)

Equation (16e,f) can give two different coefficients fc, of which only one is needed. In this paper,
we empirically average their values in order to fully utilize the information provided by the observed
matrix 〈[T]〉HV and derive the resulting fc as:

fc =
1
2

∣∣∣∣ T13

Tc13
+

T23

Tc23

∣∣∣∣ (17)

then fv is derived from Equation (16c) as:

fv = T33 − fcTc33 (18)

The proposed cross-polarized component is reflection symmetry related. We utilize this
component to measure whether the given object is reflective symmetric or reflective asymmetric.
Thus, the cross-polarized component should always exist in the decomposition process. Based on this
rationale, if fv ≤ 0 occurs, the volume scattering component rather than the cross-polarized component
will be removed, i.e., fv is set to zero, and the four-component decomposition is automatically converted
to a three-component decomposition. After fc and fv are obtained, the remaining four parameters
can be derived following [25]. To ensure that fs and fd are non-negative, the power constraint is also
incorporated. Basically, if either fc or fv exceeds its maximum, we re-assign it to its maximum. The
re-assignment of fc or fv may break the power balance between the real total backscattered power
SPAN and the summation of the power of four decomposed components; thus, such problems should
be handled carefully. The detailed flowchart of the proposed decomposition process is shown in
Figure 2. The final power corresponding to the four components is derived as:

Ps = fs(1 + |β|2)
Pd = fd(1 + |α|2)
Pv = 3 fv

Pc = fc · trace(〈[T]c〉)

(19)

under the constraint of:
SPAN = Ps + Pd + Pv + Pc (20)

where trace(·) denotes the trace of a matrix. Equations (15)–(20) are the main set of expressions for the
four-component decomposition.
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Data Matrix

NO

𝑓𝑣 = 𝑇33 − 𝑓𝑐𝑇𝑐33 

𝑓𝑣𝑀𝐴𝑋 = 𝑚𝑖𝑛 𝑇𝑇11 , 𝑇𝑇22  

YES

𝑇𝑇11 ←  𝑇011 − 𝑓𝑐 ∙ 𝑇𝑐11  

𝑇𝑇22 ←  𝑇022 − 𝑓𝑐 ∙ 𝑇𝑐22  

YES

YES NO
𝑓𝑣𝑀𝐴𝑋 = 𝑇𝑇11 

𝑇𝑇22 ←  𝑇𝑇22 + ∆𝑇  𝑇𝑇11 ←  𝑇𝑇11 + ∆𝑇  

NO

  𝑇𝑇  =   𝑇  − 𝑓𝑐  𝑇𝑐   

YES NO

  𝑇  =  
1

𝑛
 𝑘𝑝𝑘𝑝

∗𝑇𝑛
𝑖=1 =  

𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

   

  𝑇𝑐  =   

𝑇𝑐11 𝑇𝑐12 𝑇𝑐13

𝑇𝑐21 𝑇𝑐22 𝑇𝑐23

𝑇𝑐31 𝑇𝑐32 𝑇𝑐33

   

  𝑇0  =   𝑇  ,   𝑇𝑇  =  

𝑇𝑇11 𝑇𝑇12 𝑇𝑇13

𝑇𝑇21 𝑇𝑇22 𝑇𝑇23

𝑇𝑇31 𝑇𝑇32 𝑇𝑇33

   

𝑓𝑐 =
1

2
 
𝑇13

𝑇𝑐13
+

𝑇23

𝑇𝑐23
 , 𝑓𝑐𝑀𝐴𝑋 = 𝑚𝑖𝑛  

𝑇11

𝑇𝑐11
,
𝑇22

𝑇𝑐22
  

𝑇𝑇11 ←  𝑇𝑇11 − 𝑓𝑣 , 𝑇𝑇22 ←  𝑇𝑇22 − 𝑓𝑣  

 𝑇𝑇12 ←  𝑇12 − 𝑓𝑐 ∙ 𝑇𝑐12   

YES NO

𝑇𝑇11 > 𝑇𝑇22 𝑇𝑇11 > 𝑇𝑇22 

𝛽∗ =
𝑇𝑇12

𝑇𝑇11
, 𝛼 = 0 

𝑓𝑑 = 𝑇𝑇22 −
 𝑇𝑇12 

2

𝑇𝑇11
 

𝑓𝑠 = 𝑇𝑇11 

𝛽∗ = 0, 𝛼 =
𝑇𝑇12

𝑇𝑇22
 

𝑓𝑠 = 𝑇𝑇11 −
 𝑇𝑇12 

2

𝑇𝑇22
 

𝑓𝑑 = 𝑇𝑇22 

𝛽∗ =
𝑇𝑇12

 𝑇𝑇12 
 

𝑇𝑇22

𝑇𝑇11
  

𝛼 = 0 

𝑓𝑠 = 𝑇𝑇11 , 𝑓𝑑 = 0 

𝛽∗ = 0 

𝛼 =
𝑇𝑇12

 𝑇𝑇12 
 

𝑇𝑇11

𝑇𝑇22
 

𝑓𝑠 = 0, 𝑓𝑑 = 𝑇𝑇22 

YES NO YES NO

 𝑇𝑇12 
2 ≤ 𝑇𝑇11 ∙ 𝑇𝑇22 

𝑃𝑐 = 𝑓𝑐 ∙ 𝑡𝑟𝑎𝑐𝑒  𝑇𝑐  , 𝑃𝑣 = 3𝑓𝑣 , 𝑃𝑠 = 𝑓𝑠 1 +  𝛽 2 , 𝑃𝑑 = 𝑓𝑑 1 +  𝛼 2  

YES NO
𝑓𝑐𝑀𝐴𝑋 = 𝑇11 𝑇𝑐11  

∆𝑇 =  𝑓𝑐 − 𝑓𝑐𝑀𝐴𝑋  ∙ 𝑇𝑐33 ,𝑓𝑐 = 𝑓𝑐𝑀𝐴𝑋  

𝑇33 ←  𝑇33 − ∆𝑇  

𝑇11 ←  𝑇11 + ∆𝑇  

𝑇33 ←  𝑇33 − ∆𝑇  

𝑇22 ←  𝑇22 + ∆𝑇  

∆𝑇 = 𝑓𝑣 − 𝑓𝑣𝑀𝐴𝑋  

𝑓𝑣 = 𝑓𝑣𝑀𝐴𝑋  

𝑓𝑣 > 0 

𝑓𝑣 < 𝑓𝑣𝑀𝐴𝑋  

𝑓𝑐 < 𝑓𝑐𝑀𝐴𝑋  
YES NO

YES

NO

𝑇011 > 𝑇022 

𝑇022 ←  𝑇022 + ∆𝑇  𝑇011 ←  𝑇011 + ∆𝑇  

𝑓𝑐 < 𝑓𝑐𝑀𝐴𝑋  

𝑓𝑣 = 0, 𝑓𝑐 = 𝑇033 𝑇𝑐33 , 𝑓𝑐𝑀𝐴𝑋 = 𝑚𝑖𝑛  
𝑇011

𝑇𝑐11
,
𝑇022

𝑇𝑐22
  

∆𝑇 =  𝑓𝑐 − 𝑓𝑐𝑀𝐴𝑋  ∙ 𝑇𝑐33 , 𝑓𝑐 = 𝑓𝑐𝑀𝐴𝑋  

Symbols illustration 

←: Update operation 

  𝑇0  : A copy of 

observed   𝑇   

Updated   𝑇   

Updated   𝑇𝑇   Updated   𝑇𝑇   

Updated   𝑇𝑇   

Observed   𝑇   

Figure 2. Flowchart of the four-component decomposition algorithm. The total power of these four
components equals SPAN.
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4. Experimental Results and Discussion

4.1. SAR Data and Comparative Methods

As shown in Figure 3, C-band RadarSat-2 polarimetric data acquired on 16 December 2008
over the Hong Kong area were used to validate the proposed four-component model-based
decomposition method. The mean incident angle is 28.97◦. At the time of SAR data acquisition,
the sea was at low to medium wave. We multilooked the data by four look-numbers in the azimuth
direction and two look-numbers in the range direction, which corresponds to about 10 m×10 m on
the ground. Then, mean filtering with a window size of 5× 5 was used to reduce the speckle noise.
To focus on the scattering analysis of ship targets, a sub-area marked by the blue rectangle in Figure 3a
was selected for our experiments. Figure 3b represents the ground truth of ship locations and complete
contours obtained by the expert interpreter. In this figure, all pixels belonging to ships are colored in
white. The ships are numbered to facilitate convenient reference in the following sections.

(a) (b)

Figure 3. (a) PolSAR data of Hong Kong area. The blue rectangle marks the sampling area in
the experiments. (b) The ground truth of the location and contour of the ship in the sampling area.

Two existing representative methods S4R, C4G and an improved method IC4G were compared
with the proposed method P4C

• S4R: a four-component decomposition method developed by Sato et al. [21] that incorporates
the matrix rotation and extended volume scattering model. The matrix rotation leads to
Re{T23} = 0 and minimizes the cross-polarized power (T33) generated by dipole scattering
plus dihedral scattering. The extended volume scattering model is used to account for the HV
scattering power generated by the oriented structures.

• C4G: a four-component decomposition method proposed by Chen [24] that generalizes the odd-
and double-bounce scattering models to fit the cross-polarization and off-diagonal terms by
separating their independent orientation angles. A general decomposition framework is proposed
that utilizes all elements of a coherency matrix. The residual minimization criterion is used for
model inversion.

• IC4G: The original C4G has nine equations (refer to Equation (27) in [24]), but ten unknown
parameters if the imaginary part of β is considered. To make the nonlinear least squares
optimization problem have a determined solution, Chen et al. neglected the imaginary
part of β considering that β can be approximated as a real value for most natural surfaces.
However, as mentioned earlier, the imaginary part of β should be considered to improve the
decomposition accuracy. In order to satisfy a determined equation system when considering
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the imaginary part of β, an improved version is herein proposed that contains the additional
constraint that SPAN equals the total power of four components. With this additional equation,
we can obtain all of those ten parameters following the original decomposition framework.

• P4C: the proposed four-component decomposition method for ships. It has the ability to
discriminate HV scattering power generated by oriented scatterers from that by volume scatterers
to mitigate the volume scattering power overestimation. It also emphasizes that the reflection
asymmetry term should exist in all cases and takes both real and imaginary parts of 〈[T]〉HV(1, 3)
and 〈[T]〉HV(2, 3) of the observed coherency matrix 〈[T]〉HV into account to measure the reflection
asymmetry completely.

4.2. Analysis of the Ship Scattering Mechanism

In this section, we evaluate the capability of comparative methods to reveal the SMs of ships.
With the above-mentioned four-component decomposition methods, each pixel in PolSAR data will
get four power measurements, i.e., Pd, Pv, Ps and Pc for the proposed method P4C or Pd, Pv, Ps

and Ph for the other three methods S4R, C4G and IC4G. In order to provide a visual comparison for
different methods, the Pd, Pv and Ps were assigned red, green and blue, respectively. Then, we combined
Pd, Pv, Ps to generate an RGB image, as shown in Figure 4, to analyze the SMs of ships. From the
comparative subplots, we find that in most cases, all methods present satisfactory decomposition
results for sea clutter, which appears blue, indicating that the surface scattering power (Ps) is the
major contributor of the four components. For ship targets, we find that many ships in Figure 4a
corresponding to the result of S4R appear green, indicating that the volume scattering component
contributes more than other components. This is not consistent with the a priori domain knowledge
of ships. As analyzed in [6,15], a ship is mainly composed of surface or double-bounce scatterers,
such as decks, cabins and guardrails. In contrast, only a few complicated superstructures on the
ship contribute to volume scattering. Therefore, generally speaking, for ship targets, either surface
or double-bounce scattering, not volume scattering, should dominate. The result shown in Figure 4a
indicates that the method of S4R overestimates the volume scattering power of ships to some degree.
Visually, all of the other three methods, including the original C4G (Figure 4b), the improved IC4G
(Figure 4c) and the proposed P4C (Figure 4d), outperform S4R in terms of mitigating the overestimation
of volume scattering.

To facilitate a quantitative evaluation of the performances of different decomposition methods,
based on the ground truth image as shown in Figure 3b, which was obtained by an expert interpreter,
the powers of different components are averaged for ship and sea clutter pixels, respectively.
The detailed decomposition component power distribution statistics are listed in Table 1. It is seen
that the volume scattering power of ships is 35.26% for S4R, which is regarded as an overestimation,
and 24.48% for C4G. That is to say, the overestimation of the volume scattering power for ships
is mitigated significantly by C4G. The volume scattering power is decreased further by IC4G
to 21.63%. The proposed method of P4C achieved the lowest average volume scattering power 14.04%.
Considering the real distribution of superstructures on ships [6], this result is reasonable. It also
should be noted that the volume scattering power depends on the type of ship. A volume scattering
component contributing for about 14% to the SPAN could be reasonable for some kinds of ships,
but it can be an over-/under-estimation for other types of ships. In addition, it is seen that except
for the proposed method, the other three methods suffer from the problem of power differences,
i.e., the summation of all of the power components is not equal to the actual total power SPAN.
By introducing a total power constraint in the proposed decomposition strategy, as shown in Figure 2,
this power difference has been eliminated. For the purpose of solving all ten parameters, the power
constraint is also used by IC4G. However, because IC4G applies an optimization algorithm based on
the residual minimization criterion, the possible local optimal solution also leads to power differences.
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(a) (b)

(c) (d)

Figure 4. Combined RGB images of different decomposition results of (a) S4R, (b) C4G, (c) IC4G and
(d) P4C, respectively (red: Pd, green: Pv, blue: Ps).

The SMs of ships can also be analyzed from another perspective. The main SM of each pixel
is first determined. For a pixel belonging to a ship, after polarimetric decomposition, it has four
power components, i.e., Ps, Pd, Pv and Pc for the proposed method and Ps, Pd, Pv and Ph for helix
matrix-based methods. Referring to Table 1, since the most impacting component (power) is no larger
than 50%, we regard that the scattering component (power) concurs with the SPANthe most as the
main scattering. As an example, if Ps gets the maximum value among the four powers Ps, Pd, Pv and Pc

(or Ph), surface scattering is regarded as the main SM of the pixel under test. By this method, we can
obtain a main SM pattern for each ship. Figure 5 illustrates a color map of the main SMs of ships in the
test area. In this figure, red, green, blue and orange denote double-bounce scattering, volume scattering,
surface scattering and cross-polarized (or helix) scattering, respectively. To conveniently observe
ship SMs, the sea clutter is colored dark blue. It is seen that the ships exhibit a variety of SMs;
no single SM dominates the entire ship. The vast majority of ships are dominated by surface or/and
double-bounce scattering, which is an acceptable result. Ships T9, T17, T19 and T23 (refer to the labels
in Figure 3) are very likely to have been overestimated by S4R, since almost the whole body of the
ship appears green in Figure 5a. This situation is improved by C4G (Figure 5b), except for ship T9,
and further improved by IC4G (Figure 5c) and the proposed P4C (Figure 5d). For ships T2, T3, T4,
and T10, which are dominated by the double-bounce scattering, all methods except for IC4G produce
consistent results. Careful observation of Figure 5d indicates that some parts of several ships are
dominated by cross-polarized scattering (orange), which indicates that oriented dihedral corners or
wires are located in these areas. The main SM distribution for all ship pixels is counted in Figure 6.
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It shows that the proposed method P4C yields cross-polarized scattering as the main SM for only a
small proportion of pixels. As analyzed above, this result is reasonable. In general, surface scattering
and double-bounce scattering are the first and second dominant SMs for ships, which is validated by
the results of C4G, IC4G and P4C. The volume scattering is overestimated by S4R, causing it to become
the second dominant SM.

Table 1. Distributions of scattering components with different decompositions.

Ships Sea

P4C IC4G C4G S4R P4C IC4G C4G S4R

Cross or Helix † 17.52% 4.18% 4.09% 3.96% 2.61% 0.25% 0.28% 0.29%
Double-bounce 18.11% 25.04% 27.54% 21.16% 2.35% 5.34% 5.36% 2.33%

Surface 50.33% 49.15% 43.89% 39.62% 93.51% 91.63% 91.36% 93.47%
Volume 14.04% 21.63% 24.48% 35.26% 1.54% 2.78% 3.00% 3.91%

Power Difference ‡ 0.00% −0.08% −0.15% 0.08% 0.00% 0.41% 0.41% 0.42%

Notes: † Calculated by Pc/(Pc + Ps + Pd + Pv) ∗ 100% and the same way with the other components; ‡ calculated
by (SPAN − (Pc + Ps + Pd + Pv))/SPAN ∗ 100%.

(a) (b)

(c) (d)

Figure 5. Ships’ main scattering mechanisms (SMs) of different decompositions. (a) The decomposition
results of S4R, (b) C4G, (c) IC4G and (d) P4C. Only ships’ main SMs are calculated and colored in: red:
Pd, green: Pv, blue: Ps, yellow: Pc(Ph). Sea area is the dominant surface, but is colored dark blue to
facilitate convenient observation of ship SMs.
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Figure 6. Distributions of main SMs for different scattering models. The total number of ship pixels
is 2295.

4.3. Reflection Asymmetry Description

In this experiment, we explored the characteristics of the cross-polarized coherency matrix
〈[T]c〉 used in P4C and the helix matrix 〈[T]h〉 used in S4R, C4G and IC4G by comparing them with
the observed coherency matrix 〈[T]〉HV . The real measurement of 〈[T]〉HV and its corresponding
orientation compensation matrix 〈[T]r〉, cross-polarized matrix 〈[T]c〉 and helix matrix 〈[T]h〉 is
presented in Equations (21)–(24), respectively.

〈[T]〉HV =

 0.0617 − 0.0048− 0.0011i + 0.0006− 0.0007i
−0.0048 + 0.0011i 0.0020 − 0.0002 + 0.0002i
+0.0006 + 0.0007i − 0.0002− 0.0002i 0.0007

 (21)

〈[T]r〉 =

 0.0617 − 0.0048− 0.0010i − 0.0002− 0.0008i
−0.0048 + 0.0010i 0.0021 + 0.0000 + 0.0002i
−0.0002 + 0.0008i + 0.0000− 0.0002i 0.0006

 (22)

〈[T]c〉 =

 1.1186 − 0.1252 + 0.0221i 0.4629− 0.5106i
−0.1252− 0.0221i 0.4211 0.1232 + 0.0983i
0.4629 + 0.5106i 0.1232− 0.0983i 0.3847

 (23)

〈[T]h〉 =

0 0 0
0 1 ± i
0 ∓ i 1

 (24)

Ph = 2|Im{〈[T]〉HV(2, 3)}| (25a)

Ph = 2|Im{〈[T]r〉(2, 3)}| (25b)

In Equation (21), one can easily find that the element 〈[T]〉HV(2, 3) of the observed coherency
matrix has a certain complex value. A non-zero 〈[T]〉HV(2, 3) or 〈(SHH − SVV)S∗HV〉 � 0 means that
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the reflection symmetry condition does not hold for the observed targets, and this should be considered
in the decomposition method. The element 〈[T]c〉(2, 3) of the proposed cross-polarized coherency,
as shown in Equation (23), has a non-zero value just like 〈[T]〉HV(2, 3) does, and this permits us to
account for the reflection asymmetry. Furthermore, it is very important to note that the real parts of
both 〈[T]〉HV(2, 3) and 〈[T]c〉(2, 3) are non-zero. This characteristic causes the proposed coherency
matrix 〈[T]c〉 to match the observed coherency matrix 〈[T]〉HV (no orientation compensation applied)
more accurately than the helix matrix 〈[T]h〉, as shown in Equation (24), whose real part is zero.
Since the element 〈[T]h〉(2, 3) is a pure imaginary number, only the imaginary part of 〈[T]〉HV(2, 3) is
considered when calculating the reflection asymmetry power (Equation (25)). Although the special
unitary transformation known as orientation angle compensation can convert 〈[T]〉HV(2, 3) to a pure
imaginary number (Equation (22)) and maintain the total information of 〈[T]〉HV , helix matrix-based
decomposition methods [16,17,21,24] cannot take the reflection asymmetry information contained
in the real part of 〈[T]〉HV(2, 3) into account, resulting in a low estimation of the reflection
asymmetry power. In addition, the helix matrix totally misses matching the 〈[T]〉HV(1, 3) element,
which is another term related to reflection asymmetry. As a result, the reflection asymmetry power
of ships is underestimated, as can be corroborated from Figure 6, which shows that no ship pixel is
dominated by helix scattering in the results of S4R, C4G and IC4G.

4.4. Ship Detection by SM-Based Metrics

Based on the analysis of SMs of ship targets and sea clutter as described in Section 4.2,
the dominant SM of sea clutter is surface scattering, while the SMs of ships are relatively complex.
Broadly speaking, the dominant SM of ships is also surface scattering, which is consistent with the
results obtained by various decomposition methods, as shown in Table 1 and Figure 5. Except for
surface scattering, for the proposed method, double-bounce and cross-polarized scattering account
for a considerable amount of the total power. This difference in the SM between the sea clutter and
the ships allows us to detect the ships using model-based decomposition analysis. In this paper,
we propose a novel metric for separating ships from the surrounding sea clutters, which is defined as:

M = ln
Pd + Pc

Ps
(26)

This metric is proposed based on the following concept: M will lead to a relatively large value for
ship targets compared to that for sea clutter, since the power of double-bounce and cross-polarized
scattering is considerably small for sea clutter, while surface scattering is the dominant power.
Intuitively, this metric can effectively enhance the signal-to-clutter ratio (SCR) and improve the
detection performance. For the purpose of comparison, we use Ph, i.e., the counterpart of Pc,
to construct similar metrics for the other three decomposition methods:

M∗ = ln
Pd + Ph

Ps
(27)

We know that for the other three decomposition methods, if we use Pv instead of Ph,
better detection performance may be obtained (especially for the method of S4R). However, this
is not done because Pv is overestimated and cannot reveal the correct SMs of ships, as discussed in
previous sections.

To evaluate the performance of comparative methods, we combine the proposed metric with a
classical constant false alarm rate (CFAR) detector [3]. For selecting the optimal probability density
function (pdf ) to model the sea background for the M image, we conducted an experiment to
evaluate the candidate pdfs, including the lognormal (LGN), the Weibull (WBL), the Nakagami (NKG),
the K-root and the G0 distributions. The detailed definitions of these distributions are presented in a
comparative study by Cui et al. [28]. The parameters of the models were estimated using the method
of log-cumulants (MoLC) [29]. The goodness of fit of the comparative models was measured by the
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Kullback–Leibler (KL) distance [30], which approximates to zero, indicating that the estimated pdf
perfectly fits the actual sea background distribution. The statistical distribution of the sea background,
together with the candidate pdf ’s for the metrics image, is shown in Figure 7. Among these pdf ’s, the G0

distribution (red line) shows the highest similarity to the sea background distribution (grey area). The
detailed KL distances for the five distributions are LGN (0.0299), WBL (0.1781), NKG (0.0696), K-root
(0.0393) and G0 (0.0218). Thus, in the following experiments, we utilized a G0-CFAR detector to conduct
the ship detection task for the test image. The detection threshold was adaptively determined based
on modeling the pdf of a local sea background by the G0 distribution (a sliding window method [2,3]
was used in our experiment), in combination with a given false alarm probability (PFA).

Figure 7. The pre-selection of the sea clutter modeling method for the metrics image.

We evaluated the comparative methods and the proposed method quantitatively by utilizing the
receiver operating characteristic (ROC) [31], which plots the pixel-level factor of the metric criterion
(FoM) (in this paper, we use pixel-level FoM, rather than target-level FoM, to evaluate the ship detection
performance, since all comparative methods yield FoM values close to one for the latter and cannot
reveal the difference between methods) against the false alarm rate (Pf a), to characterize the overall
ship detection performance. The FoM and Pf a are defined by:

FoM =
TP

TP + FN + FP

Pf a =
FP

FP + TN

(28)

where TP (true positive) and TN (true negative) denote the number of correctly-detected ship target
pixels and sea clutter pixels, respectively. FP (false positive) and FN (false negative) denote the number
of false alarm pixels and missing ship target pixels, respectively. TP + FN denotes the actual number
of ship target pixels and is commonly referred to as the ground truth, which was marked by the expert
interpreter as shown in Figure 3b. It should be noted that the terms PFA and Pf a are two different
parameters. PFA is a preset parameter representing the expected false alarm rate to calculate the adaptive
detection threshold, whereas Pf a represents the actual false alarm rate defined by Equation (28).

To plot an ROC curve for a comparative method, the experiments were run on the test image
with a series of pre-defined PFA values, which were selected successively from a set PFA = {1×
10−6, ..., 9 × 10−6, ..., 1× 10−3, ..., 9× 10−3, 0.01}. For each run with a given PFA, the intermediate results
TP, TN, FN and FP were calculated based on the ground truth image, after which the subsequent
FoM and Pf a were obtained based on Equation (28) and a point generated (Pf a, FoM) on the curve.
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After all runs, the FoM/Pf a curve for the corresponding method was plotted. The process described
above was repeated for all comparative methods, and the final ROC curves are plotted in Figure 8.
From this result, we can see that, visually, the curve plotted based on the metrics obtained by the
proposed decomposition method P4C is located at the top-left side compared to those obtained by the
other methods. This indicates that generally speaking, the performance of the detector based on the
proposed metric outperforms the comparative methods.

From another viewpoint, the factor of the metric criterion (FoM) of the different detectors was
compared in terms of the extent to which this rate corresponded to the same observed false alarm
rate Pf a = 0.003, Pf a = 0.004, and Pf a = 0.005, respectively. The details are listed in Table 2. It is
seen that the detector based on the proposed metric achieved the highest performance. The average
value of FoM is 0.519. The gain to the second best method S4R (0.464)) is more than 5% and more than
10% to the methods of IC4G (0.398) and C4G (0.400). Considering that the FoM is measured at the
pixel-level, this is a very encouraging result. Another advantage of the proposed metric is that for the
large range of change of the expected PFA, the maximum of the real false alarm rate Pf a is not more
than 6× 10−3, but preserves a high FoM, which is close to 0.550. These results prove that the proposed
metric obtained by our four-component model-based polarimetric decomposition method is feasible
to be applied for ship detection.

Figure 8. Ship detection performance evaluation on the factor of the metric criterion (FoM) for different
decomposition methods.

Table 2. FoM under specific Pf a for comparative methods.

P4C IC4G C4G S4R

Pf a = 3× 10−3 0.494 0.343 0.353 0.443
Pf a = 4× 10−3 0.525 0.406 0.396 0.474
Pf a = 5× 10−3 0.537 0.445 0.451 0.475

Average value 0.519 0.398 0.400 0.464

5. Conclusions

For the purpose of presenting a more accurate interpretation of ships’ SMs, a four-component
model-based decomposition method is proposed. The proposed method models the SMs of ships with
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surface, double-bounce, volume and cross-polarized components based on a priori domain knowledge
of ships. Some conclusions can be summarized as follows:

(1) The comprehensive comparative experiments demonstrate that the proposed cross-polarized
scattering component can mitigate the overestimation of volume scattering effectively by
discriminating the scattering power generated by the oriented scatterers, such as dihedral
corners and oriented wires from volume scattering power. This cross-polarized scattering
component can also completely describe the reflection asymmetry by accounting for both the
real and imaginary parts of the observed coherency matrix to retain the information lost by the
existing helix matrix-based methods. This characteristics makes the proposed method capable of
presenting a more accurate interpretation of the SMs of ships.

(2) Based on the proposed decomposition method and an analysis of the difference of SMs between
ships and sea clutter, a novel ship detection metric defined as M = ln Pd + Pc

Ps
is proposed.

The experiments prove that the proposed ship detection metric can effectively enhance the
signal-to-clutter ratio (SCR) and improve the detection performance. The average gain evaluated
by pixel-level FoM for the existing methods is more than 5% compared to S4R and even more
than 5% compared to IC4G and C4G.

Since different types of ships have different superstructures, and consequently different SMs, it is
highly desirable to classify ships based on the correct SM analysis. The proposed four-component
model-based decomposition method provides the possibility to understand the SMs of ships
more accurately. Because of the limitations in the PolSAR data we now have, we have not yet pursued
such a study. In our future work, we will further explore the feasibility of using the decomposed
parameters by the proposed method for ship classification.
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