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Abstract: The number of Lyme disease cases (Lyme borreliosis) in Ontario, Canada has increased
over the last decade, and that figure is projected to continue to increase. The northern limit of
Lyme disease cases has also been progressing northward from the northeastern United States into
southeastern Ontario. Several factors such as climate change, changes in host abundance, host and
vector migration, or possibly a combination of these factors likely contribute to the emergence of
Lyme disease cases in eastern Ontario. This study first determined areas of warming using time
series remotely sensed temperature data within Ontario, then analyzed possible spatial-temporal
changes in Lyme disease risk in eastern Ontario from 2000 to 2013 due to climate change using
tick population modeling. The outputs of the model were validated by using tick surveillance data
from 2002 to 2012. Our results indicated areas in Ontario where Lyme disease risk changed from
unsustainable to sustainable for sustaining Ixodes scapularis (black-legged tick) populations. This
study provides evidence that climate change has facilitated the northward expansion of black-legged
tick populations’ geographic range over the past decade. The results demonstrate that remote sensing
data can be used to increase the spatial detail for Lyme disease risk mapping and provide risk maps
for better awareness of possible Lyme disease cases. Further studies are required to determine the
contribution of host migration and abundance on changes in eastern Ontario’s Lyme disease risk.

Keywords: Lyme disease; climate change; Ixodes scapularis; MODIS temperature product; remote
sensing; mathematic population modeling

1. Introduction

The impact of climate change on vector-borne disease systems in North America has been subject
to much debate and speculation over the last decade [1]. Highly sensitive to changes in environmental
conditions and patterns, vectors of tick-borne diseases may be particularly vulnerable to climatic
changes, which could play a role in the vector’s overall development, abundance and activity. Over
recent years, the northern distribution limit of tick vectors of the causative agent of Lyme disease,
Borrelia burgdorferi (B. burgdorferi), has advanced from the northeastern United States to southeastern
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Ontario [2,3]. This has led to a significant increase in Lyme disease cases throughout Ontario, confirmed
through a combination of thorough active and passive surveillance programs [4,5]. In 2004, there were
only 40 cases of Lyme disease in Canada [4], while in 2016 there were 343 cases in Ontario alone [6].

Ixodes scapularis (I. scapularis), commonly known as the black-legged tick, is the primary vector
of B. burgdorferi in Canada. Populations of this tick have been identified in several provinces across
Canada including Ontario, Manitoba, Nova Scotia, New Brunswick and Quebec [7]. Depending on
climatic conditions, the lifespan of the black-legged tick is approximately two to two-and-a-half years
and includes three blood-feeding instars: larva, nymph and adult. While many previous studies
have focused on analyzing the impact of climate change on I. scapularis ticks in the United States, the
extent and rate at which tick populations are colonizing new regions in Ontario is only recently being
studied [8]. It is difficult to predict the impact of climate change on tick-borne diseases due to the high
complexity and dynamic nature of the tick-borne pathogen systems [9].

A combination of several factors may influence the establishment and abundance of I. scapularis
populations in southeastern Ontario. Firstly, the greatest densities of endemic ticks are located within
close proximity to the northeastern US border, due to the relatively high population density in this
region [10]. Secondly, large mammalian hosts such as white-tailed deer and migratory birds carry
ticks across a range of distances from the USA into Canada every year as ticks are unable to move
great distances on their own [11]. Thirdly, warming temperatures due to climate change increase the
likelihood of immigrating ticks establishing endemic populations in their new territory [3].

The effect of climate on tick population survival is thought to be the effect of temperature on rates
of interstadial development and thus on the duration of the lifecycle; if temperature conditions over
the multi-year lifecycle (often expressed in terms of cumulative degree days) fall below a threshold,
the probability that a larva survives to become a mated adult falls below unity [12]. While both host
abundance and climate are important factors in the survival of black-legged tick populations, 98%
of the black-legged tick’s two-year life cycle exists off the host where environmental conditions are
particularly important to the survival and development of the tick [2,13]. As such, some studies
have suggested that climatic differences may be more limiting than host abundance in the spatial
distribution of ticks [14]. Therefore, an understanding of the influence of climate change on I. scapularis
ticks is critical to predicting the geographical distribution of endemic tick populations and therefore to
assessing future Lyme disease risk in Ontario.

Multiple studies have suggested that the warming of temperatures as a result of climate change
may impact the abundance and survival rates of ticks by opening up previously uninhabitable territory
for vectors, increasing their reproductive rates [15,16]. Because the tick spends most of their lifetime
at the ground level, land surface temperature (rather than air temperature) is a better predictor of
survival [17]. The temperature measure of environmental suitability for tick populations is typically
expressed in terms of accumulated degree days >0 ◦C [18]. In 2005, a climate suitability model
of I. scapularis was used to obtain projections for possible spread of the geographic range of the
tick in North America. Their results revealed that sustainable habitat regions for black-legged ticks
could increase 213% by 2080 based on projected future climate [2]. Another study using a climate
model predicted that the theoretical range of I. scapularis establishment would move northwards by
approximately 200 km by 2020 and 1000 km by 2080 from the current range limit of the tick [3].

A clear distinction between weather and climate should be made when analyzing the impact of
climate change on vector-borne disease systems. Weather is most commonly measured as temperature,
precipitation, cloudiness, brightness, visibility, wind, and atmospheric pressure over a particular
area during a short period of time. Climate is the average measure of weather conditions over long
periods of time. The World Meteorological Organization’s standard for climate norms are measured by
averaging 30 years of measurement for a climate element [19]. Climate models are useful in predicting
the future impact of these long-term trends. Climate models use existing knowledge of physical
relationships between observed environmental variables and unknown variables. Observed values are
then fed in to these models to produce the unknown variables as outputs. In this context, observed
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variables are those measured by researchers such as current and past climatic conditions. Unknown
variables are those that predicted based on observed variables, such as future climatic conditions.

In order to most effectively utilize these predictive models, large-scale, high-resolution climate
data are needed. Weather stations provide spatially discrete data for fixed points. The limited number
of weather stations, particularly in rural areas, means that spatial interpolation is required to create
a continuous spatial coverage of weather data. Since temperature varies greatly both spatially and
temporally, weather station data can be inadequate for epidemiological studies of climate change [20].
Remote sensing can more accurately measure spatial variation in temperature particularly at the
regional and local scale where interpolation may introduce error, particularly in regions with wide
variations in elevation. Advancements in remote sensing technologies have made it possible to
retrieve large-scale climatological data at high resolution, and have been previously used for studying
vector-borne diseases [21,22].

One such example of the collection of remote sensing data is the Moderate Resolution Imaging
Spectroradiometer (MODIS), an instrument on board the Terra and Aqua satellites, operated by
NASA [23]. The MODIS instruments capture data on 36 spectral bands that range in both wavelength
and spatial resolution. MODIS is particularly useful because it provides global coverage with accurate
calibration in thermal infrared bands that were designed to measure land surface temperature [24].
MODIS provides land surface temperature and emissivity products, created by a physics-based land
surface temperature algorithm from pairs of daytime and nighttime observations in seven MODIS
thermal infrared bands (bands 20, 22, 23, 29, and 31–33) from both Terra and Aqua MODIS data [24].
The temperature measurements of MODIs are accurate to within 1 ◦C when measuring temperatures
are between −10 and 50 ◦C [25].

The objective of this study is to use temperature data to determine (a) how climate has changed
in Ontario between 2000 and 2013; and (b) whether any observed climate change could be associated
with changes to the spatial distribution of Lyme disease risk in eastern Ontario and thus a possible
cause for the increased number of Lyme disease cases [4,5].

2. Materials and Methods

2.1. Study Area, Data and Preprocessing

Southeastern Ontario and the surrounding region was the area of interest for this study. Figure 1
outlines the boundaries of the study area. Temperature data for this study region was obtained from
the MODIS product MOD11C3. This is a monthly mean average of land surface temperatures, with
a spatial resolution of 0.05 decimal degrees, or 5.6 square kilometers in the region of study. This
product was created by taking the daily land surface temperature and emissivity product MOD11B1,
reprojecting and averaging the values to 6 km equal-area grids in the sinusoidal projection, and then
averaging the values over a month [19]. The mean temperature for each month from 1979 to 2013 was
extracted for each pixel within the study area in ArcMap (10.3).

Public Health Ontario provided tick surveillance data for the province of Ontario from 2002
to 2012. I. scapularis removed from both humans and animals were submitted between 2002 and
2008. From 2009 to 2012, only ticks attached to humans and removed by a medical professional were
submitted to Public Health Ontario. In 2009, Lyme disease became a reportable disease in Ontario,
meaning that medical practitioners were obligated to report all cases or suspected cases to their local
public health unit [26]. The date is reported as the month and year of tick collection, and the location is
reported as the location of the medical practitioner who removed the tick. For this study, an assumption
was made that the location where the person was bit by a tick is the same as the submitter city. This
assumes that a person bitten by a tick will travel to the closest medical office to have it removed. This is
a potential source of uncertainty, as in some cases individuals may prefer their family doctor regardless
of their relative proximity to the location where transmission occurred.
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Figure 1. The study area boundaries delineate the region of Ontario included for analysis. The 
northern boundary is defined by row 840 in the MODIS11C3 data, which encompassed all of southern 
Ontario and part of northern Ontario that coincided with ticks collected and submitted to Public 
Health Ontario. 

After data cleaning (sampling bias, data with the wrong location), there were 184 unique 
submitter cities from the Public Health Ontario data where matching locations were found. The 
Canadian Place Names dataset of the Atlas of Canada [27] was used to locate the submitter cities. 
Using this dataset, 175 of the 184 unique submitter city entries were found. Locations that could not 
be found in the place names dataset were found using the Natural Resources Canada query online 
by geographical name, which returned the approximate latitude and longitude coordinates of the 
submitter city. Astra was removed from the dataset because it could not be found in either the place 
names dataset or the Natural Resources website.  

Names were identified as points, which is not representative of the geographic area covered by 
that location’s name. Therefore, all of the point locations and names were used to find the 
corresponding geographic area. The place names were then used to match with three main data 
sources that contain boundaries outlining areas. The first was Statistics Canada’s census shapefiles, 
which delineate the census subdivisions, consolidated census subdivisions, designated places, and 
population centers. The remaining places were then first matched with the federal polling station 
dataset. Any place that could not be matched with the federal polling stations was then matched 
using Canada Post’s forward sortation areas and local delivery units. 

2.2. Analysis 

The analysis includes two parts, both conducted in ArcMap (10.3). The first is to determine 
whether Ontario’s climate has changed. If Ontario’s climate has not changed, then it cannot be a 
possible factor in causing changes in Lyme disease risk. However, if it has changed, then it is a 
possible factor for causing changes in Lyme disease risk. The second part of the analysis focuses on 
finding areas of changing Lyme disease risk when the only input variables used for the population 
model was mean monthly temperature for every grid point within the study area. 

2.2.1. Climate Data Analysis 

The annual degree days above 0 °C is calculated by cumulatively adding the temperature for 
each day of the year when the temperature is above 0 °C. Although this study was focused on finding 

Figure 1. The study area boundaries delineate the region of Ontario included for analysis. The northern
boundary is defined by row 840 in the MODIS11C3 data, which encompassed all of southern Ontario
and part of northern Ontario that coincided with ticks collected and submitted to Public Health Ontario.

After data cleaning (sampling bias, data with the wrong location), there were 184 unique submitter
cities from the Public Health Ontario data where matching locations were found. The Canadian Place
Names dataset of the Atlas of Canada [27] was used to locate the submitter cities. Using this dataset,
175 of the 184 unique submitter city entries were found. Locations that could not be found in the
place names dataset were found using the Natural Resources Canada query online by geographical
name, which returned the approximate latitude and longitude coordinates of the submitter city. Astra
was removed from the dataset because it could not be found in either the place names dataset or the
Natural Resources website.

Names were identified as points, which is not representative of the geographic area covered by that
location’s name. Therefore, all of the point locations and names were used to find the corresponding
geographic area. The place names were then used to match with three main data sources that contain
boundaries outlining areas. The first was Statistics Canada’s census shapefiles, which delineate the
census subdivisions, consolidated census subdivisions, designated places, and population centers.
The remaining places were then first matched with the federal polling station dataset. Any place that
could not be matched with the federal polling stations was then matched using Canada Post’s forward
sortation areas and local delivery units.

2.2. Analysis

The analysis includes two parts, both conducted in ArcMap (10.3). The first is to determine
whether Ontario’s climate has changed. If Ontario’s climate has not changed, then it cannot be a
possible factor in causing changes in Lyme disease risk. However, if it has changed, then it is a possible
factor for causing changes in Lyme disease risk. The second part of the analysis focuses on finding
areas of changing Lyme disease risk when the only input variables used for the population model was
mean monthly temperature for every grid point within the study area.

2.2.1. Climate Data Analysis

The annual degree days above 0 ◦C is calculated by cumulatively adding the temperature for
each day of the year when the temperature is above 0 ◦C. Although this study was focused on finding
climate changes during the period 2000 to 2013, long-term climatological trends are measured by
30-year trends to encompass annual variability. Therefore, the annual degree day above 0 ◦C was
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calculated from 1979 to 2013. Although this encompasses climate change beyond the study’s target
dates (2000 to 2013), a minimum of 30 years still shows the direction of change over time.

For each pixel, the linear trend of its time series annual degree days was calculated using the least
squares fit to the data. The slope was then used to determine whether the location was warming (a
slope greater than 0), cooling (a slope less than 0), or unchanged (a slope equal to 0). The slope at
each grid location was then mapped to create a raster covering the study area that showed areas of
warming, cooling, and no change.

2.2.2. Tick Population Modeling

A periodic ordinary differential equation model developed by Wu et al. simulates the development
of ticks by using twelve differential equations to describe the proportion of ticks growing from one
developmental stage to the next [28]. Each equation of the system represents the change in number
over time of a specific stage of the whole tick life cycle (egg-laying adult females, eggs, hardening
larvae, questing larvae, feeding larvae, engorged larvae, questing nymphs, feeding nymphs, engorged
nymphs, questing adults, feeding adult females and engorged adult females) as shown in Equation (2).
Each di(t) (i = 1, 2,...,12) has a temperature-dependent component and a non-temperature-dependent
component, both of which are derived from field data [28]. The latter is life stage-specific and includes
factors such as mortality, number of hosts, and rate of attachment to host. In each equation, these are
summarized into a single constant. For instance,

d2(T) = 34234× T−2.27 (1)

represents the rate at which eggs hatch into larvae. T represents temperature in degrees Celsius. The
remaining di values follow the same general format. For this study, temperature data was extracted
from MODIS product MOD11C3. All other parameters were obtained from [28].

The role of this model is to calculate the basic reproductive number (R0) for tick populations
under changing environmental conditions, particularly in southern Canada. In mathematical biology
and population ecology, R0 represents the number of female offspring produced by a female individual
in its whole life under ideal conditions. Due to the seasonality and population structure implicit in the
model developed by Wu and colleagues [28], R0 calculations were conducted based on a methodology
developed for time-periodic systems [29,30].

x′1 = d12(t)x12 − u1(t)x1

x′2 = p(t) f (x11)x1 − (d2(t) + u2(t))x2

x′3 = d2(t)x2 − (d3(t) + u3(t))x3

x′4 = d3(t)x3 − (d4(t) + u4(t))x4

x′5 = d4(t)x4 − (d5(t) + u5(t, x5))x5

x′6 = d5(t)x5 − (d6(t) + u6(t))x6

x′7 = d6(t)x6 − (d7(t) + u7(t))x7

x′8 = d7(t)x7 − (d8(t) + u8(t, x8))x8

x′9 = d8(t)x8 − (d9(t) + u9(t))x9

x′10 = d9(t)x9 − (d10(t) + u10(t))x10

x′11 = 0.5d10(t)x10 − (d11(t) + u11(t, x11))x11

x′12 = d11(t)x11 − (d12(t) + u12(t))x12

(2)

Using a matrix algebra-driven approach, these twelve differential equations were consolidated
into the equation:

dx(t)
dt

= (F(t)−V(t))x(t) (2)

where F(t) and V(t) are 12× 12 matrices, representing ticks born into the population and the progression
of ticks from each developmental stage to the next, respectively. The solution to (3) is linked to the
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population growth or decay rate by a linear operator referred to in epidemiology as the next-generation
operator [28–30]. This value indicates the average number of offspring surviving until the next
generation per tick, and how these offspring are distributed across the population structure. R0 is
calculated as the dominant eigenvalue of a next-generation operator defined from the linear system (3).
The value of R0indicates the average number of offspring surviving until the next generation produced
per tick, which is linked to population growth if R0 > 1 or decay if R0 < 1. Full calculations are available
in [28]. All R0 calculations were performed in MATLAB.

2.2.3. Model Validation

Model validation was done by comparing tick validation data against the model output for the
approximate location of the tick bite to determine if the R0 value at that location was greater or equal
to one within the last two years. This cut-off was chosen because black-legged ticks have a lifespan of
approximately two years. An R0 value greater or equal to one within the last two years prior to the
tick bite shows the climate could support a reproductive tick population. Using the spatial boundaries
for the locations where ticks were submitted, the corresponding R0 value was extracted.

The total number of tick submissions from 2002 to 2012 was normalized using the road length in
2014. The purpose of normalizing using the road length was to account for differences in population
accessibility. That is, areas with higher road densities may have more tick submissions due to greater
chances of tick bites in areas with higher population accessibility, while areas with low road length
may have lower chances of tick bites. The road length in each area was used as a proxy for population
accessibility. The number of submitted ticks was divided by total road length. The normalized tick
validation data was plotted with the model output data in order to visualize the relationship between
the two.

3. Results

3.1. Changing Climate

The vast majority of Ontario within the study area exhibited warming trends between 1979 and
2013, although the very southernmost tip of Ontario has experienced a modest cooling trend (Figure 2).
Overall, the climate within most of Ontario has been changing and become warmer, with slightly
greater overall temperature increases in northern Ontario.
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3.2. Lyme Disease Risk

The range of potential sustainable tick habitat was found to have expanded (Figure 3). The R0

values output by the tick population model were converted to a binary variable, with all values 1 or
greater (indicating sustainable) reclassified as 1, and all values less than 1 (indicating unsustainable)
reclassified as 0. The binary outputs from the 14 years included in the study period were then summed.
A summed R0 value of 14 means that a region was sustainable throughout the entire study period,
while a value between 0 and 13 inclusive, 14 indicates that it became sustainable between 2000 and 2013.
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Figure 3. Summed basic reproductive number for tick populations in southern Ontario from 2001 to
2014. The values were reclassified as binary, with 1 for sustainable and 0 for unsustainable. A value of
14 indicates that a region was sustainable throughout the entire study period. A value between 1 and
13 inclusive indicates that a region became sustainable during the study period.

The vast majority of southern and eastern Ontario has been consistently suitable for ticks, while
northern Ontario has been consistently unsustainable for ticks during the same time period. However,
there is a band separating the two regions where tick suitability has changed. This includes regions
within the Niagara Escarpment and the Madawaska Highlands of Algonquin Provincial Park.

3.3. Model Validation

Model output was validated using tick submission data from Public Health Ontario. The majority
of R0 values for submitted tick locations were above one, with a few occurring below one as could
be expected due to some ticks identified in surveillance being ticks dispersed out of reproducing
populations by migratory birds [31]. Nevertheless, for the locations reporting R0 values below one, the
R0 value was above one during the two years previous to the year when the tick was reported. This
indicates that while a tick may have been collected in a year with a climate that was not sustainable for
sustaining a tick population, the two years prior were sustainable for sustaining a tick population.

This visualization demonstrates that the majority of submitted ticks by the end of the study
period were collected in areas having a climate consistently sustainable for sustaining tick populations
(Figure 4). Comparison was conducted qualitatively, as it is apparent that the majority of cases occur
within the always-sustainable regions of the map. However, it is important to note that there were a
small number of ticks which were submitted to Public Health Ontario in regions that became newly
sustainable for carrying tick populations over the study period. These submitted ticks coincided with
the expanded climatological range for sustainable tick populations predicted by the tick population
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model. In 2002, there were very few ticks submitted in Ontario. By 2012, the number of ticks submitted
to Public Health Ontario had greatly increased. Furthermore, there was a geographic concentration of
submitted ticks in eastern Ontario in the areas around Kingston and Ottawa.

Remote Sens. 2017, 9, 608  8 of 12 

 

there were a small number of ticks which were submitted to Public Health Ontario in regions that 
became newly sustainable for carrying tick populations over the study period. These submitted ticks 
coincided with the expanded climatological range for sustainable tick populations predicted by the 
tick population model. In 2002, there were very few ticks submitted in Ontario. By 2012, the number 
of ticks submitted to Public Health Ontario had greatly increased. Furthermore, there was a 
geographic concentration of submitted ticks in eastern Ontario in the areas around Kingston and 
Ottawa.  

 

Figure 4. The number of ticks submitted to Public Health Ontario (normalized according to road 
length to account for population accessibility differences) and plotted over the tick suitability output 
by the model. Red represents always sustainable, green regions became sustainable during the study 
period, and black areas are consistently unsustainable. The number of ticks was multiplied by a factor 
of 100 for clarity.  

4. Discussion 

While it is apparent that the number of Lyme disease cases in Ontario rose in the last decade 
[4,5], whether or not climate change has contributed to the increase requires further study. Much of 
the current research on Lyme disease risk mapping is focused on finding factors that correlate well 
with current tick presence [32], or projecting future tick habitat distribution due to climate change 
[2,33]. This study examined whether there is evidence that the geographic distribution of Lyme 
disease risk in eastern Ontario has changed between 2000 and 2013 due to climate change, where the 
capacity to sustain an endemic tick population was used as a proxy for Lyme disease risk. The 
capacity to sustain a tick population was defined by cumulative annual degree days above 0 °C, and 
by changes in tick populations calculated using a tick population model. 

First, it was determined that a warming trend has occurred in Ontario between 1979 and 2013, 
except for a small pocket in southern Ontario which has experienced cooling. This finding is 
consistent with previous research using data from Canadian meteorological stations [34]. Then, it was 
shown that the vast majority of ticks submitted to Public Health Ontario were found in areas where 
the climate was sustainable for ticks from 2001 to 2014. There was a clear increase in submitted ticks 
in eastern Ontario in the last decade in areas already sustainable for a tick population. The increase 
in submitted ticks suggests the existing tick populations in these areas were stabilizing, rather than 
spreading to new geographic areas due to climate change. However, a small number of ticks 
submitted to Public Health Ontario during the study period were from newly sustainable regions, 
coinciding with the expanded climatological range for sustainable tick populations. This supports the 
idea that climate change has played some role in the changed spatial distribution of Lyme disease 
risk. When combined with Lyme disease risk mapping studies projecting climate change forward 

Figure 4. The number of ticks submitted to Public Health Ontario (normalized according to road length
to account for population accessibility differences) and plotted over the tick suitability output by the
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and black areas are consistently unsustainable. The number of ticks was multiplied by a factor of 100
for clarity.

4. Discussion

While it is apparent that the number of Lyme disease cases in Ontario rose in the last decade [4,5],
whether or not climate change has contributed to the increase requires further study. Much of the
current research on Lyme disease risk mapping is focused on finding factors that correlate well with
current tick presence [32], or projecting future tick habitat distribution due to climate change [2,33].
This study examined whether there is evidence that the geographic distribution of Lyme disease risk
in eastern Ontario has changed between 2000 and 2013 due to climate change, where the capacity to
sustain an endemic tick population was used as a proxy for Lyme disease risk. The capacity to sustain
a tick population was defined by cumulative annual degree days above 0 ◦C, and by changes in tick
populations calculated using a tick population model.

First, it was determined that a warming trend has occurred in Ontario between 1979 and 2013,
except for a small pocket in southern Ontario which has experienced cooling. This finding is consistent
with previous research using data from Canadian meteorological stations [34]. Then, it was shown that
the vast majority of ticks submitted to Public Health Ontario were found in areas where the climate
was sustainable for ticks from 2001 to 2014. There was a clear increase in submitted ticks in eastern
Ontario in the last decade in areas already sustainable for a tick population. The increase in submitted
ticks suggests the existing tick populations in these areas were stabilizing, rather than spreading to
new geographic areas due to climate change. However, a small number of ticks submitted to Public
Health Ontario during the study period were from newly sustainable regions, coinciding with the
expanded climatological range for sustainable tick populations. This supports the idea that climate
change has played some role in the changed spatial distribution of Lyme disease risk. When combined
with Lyme disease risk mapping studies projecting climate change forward [2,35,36], these results
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indicate that Lyme disease risk mapping will only become more important in the future to aid in early
diagnosis of Lyme disease cases.

The following conclusions can be made from this study:

1. Climate in Ontario between 1979 and 2013 has been warming except for a small pocket in southern
Ontario, which has been gradually cooling.

2. The changing climate in Ontario has increased in areas in Ontario that are sustainable for carrying
a reproductive tick population, given stable host finding for ticks.

This study has also shown that remote sensing data can be used to increase the spatial resolution
for Lyme disease risk mapping. The MODIS climate data used has a resolution of 0.05 × 0.05◦,
making the findings more applicable at a local and regional scale. Previous studies on the impact of
climate change on Lyme disease risk in eastern Ontario and northeastern United States have used
climate models that have coarser resolutions. Brownstein, Holford and Fish used the Canadian Global
Coupled Model with a resolution of 3.75 × 3.75◦ (interpolated and resampled to 0.5◦) while Ogden,
Maarouf and Barker used the Coupled Global Climate Model with a resolution of approximately
3.7◦ [2,36]. While valuable for identifying areas of concern for potential Lyme disease risk monitoring,
the coarse resolution can be of limited value to government organizations responsible for monitoring
and mitigating Lyme disease risk at a more local level. In another study by Ogden, Bigras-Poulin and
O’Callaghan, weather station data was used to model R0 values [3], which can create accurate but
geographically sparse results [37]. Interpolation of these weather stations can introduce error and
uncertainty in studying Lyme disease risk over large geographic areas. This study demonstrates that
MODIS remote sensing data can be used to yield high resolution, continuous geographic coverage of
Ontario to determine changes in climate and its effects on Lyme disease risk.

Higher resolution Lyme disease risk mapping can better identify areas of concern at local and
regional scales than temperature data using coarser resolution, which may better assist with Lyme
disease risk monitoring. Monitoring of Lyme disease at higher resolution will become of greater
interest as Lyme disease continues to progress northwards in Ontario. This allows for more accurate
risk mapping, which is extremely valuable on a local scale.

These results coincide with previous work [3,28] indicating that the theoretical niche of ticks
is increasing rapidly, which is important for public health practitioners to be aware of. Also, these
outputs are in line with previous findings [4,8] indicating that the spatial distribution of Lyme disease
risk has spread in a northwestern fashion in Ontario over the past decade, progressing northward from
the United States. This supports climate change models indicating that Lyme disease risk will continue
to move northwards [3,38]. The findings of this study have implications in the future study of Lyme
disease as it gives insight into which regions may experience increased risk in the future. Since the first
identified Lyme-positive tick in Ontario was found in 1993 [39], the regions in which ticks can be found
has continued to expand. Climate models have historically been an importance predictor of future
conditions. This study contributes to the history of population and climatic models that were used
previously to study vector-borne disease [3,18,28,38]. This type of predictive modelling has significant
clinical implications as common Lyme disease tests lack specificity, meaning that false positives are
prevalent [40]. Therefore, whether individuals live in or have travelled to a Lyme-endemic region
remains an important diagnostic criterion.

There are a few limitations in this study which should be noted. Firstly, the ability for a region
to sustain an I. scapularis population is treated as a proxy for Lyme disease risk. In some cases,
adventitious ticks may be present due to deposition by migratory hosts, or established tick populations
may not be infected with the B. burgdorferi bacterium [11]. However, due to the large spatial range
and small physical size of I. scapularis, it is logistically difficult to directly measure their habitat range.
Thus, proxies such as sustainable climate are valuable.

Also, migration was omitted in the tick population model because ticks have little horizontal
movement. However, host migration may play a role in introducing ticks into new areas where an
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endemic tick population does not exist but climatic conditions are sustainable [41]. Furthermore, the
tick population model assumes a constant host density throughout the study region. Further research
is needed on the impact of changes in host distribution and migration as a possible factor for increased
Lyme disease cases in southeastern Ontario.

Ticks collected by health practitioners and submitted to Public Health Ontario were used in this
study as a proxy for locations of Lyme disease risk. This methodology relies on adherence by health
practitioners to submit all ticks that were collected. However, it is possible that health practitioners
who collect numerous ticks underreported the number of ticks collected due to the high frequency,
and it is also possible that practitioners who rarely collect ticks were unaware of the need to report.
Possible lack of reporting could manifest in differences in spatial distribution of collected ticks than
what was available and mapped.

Given that the majority of ticks submitted to Public Health Ontario are from previously sustainable
regions, this reinforces the importance of future research into other potential causes of a Lyme
disease risk increase. This suggests the increased incidence of Lyme disease may be predominantly
due to factors such as tick populations stabilizing within their existing habitats, or an increase in
tick-human interactions. Several of these factors have been previously studied, in terms of how they
correlate with I. scapularis presence. For instance, in the Thousand Islands region, Ontario, host-species
abundance was found to be strongly positively correlated with tick abundance, while species richness,
a measure of biodiversity, is inversely associated [32]. Also, in the eastern United States, altitude
and monthly mean vapour pressure were found to be predictors of tick density [38]. In New York
State, low precipitation, low forest cover, and high urban density are all positively correlated to tick
abundance [42]. These factors may play a role in the stabilizing tick populations observed during
this study.

In order to build upon the findings of this study, further research is needed into these other
potential determinants of Lyme disease risk distribution. For instance, greater insight is needed into
vector host activity, including density and migration patterns. One of the potential reasons for the
observed increase in Lyme disease prevalence is an increase in the density of host species such as
white-tailed deer and white-footed mice throughout southern Ontario. Additionally, host density
may itself be impacted by climate change, further complicating this relationship. Also, ticks are often
introduced into new regions by migratory hosts, so greater insight into the migratory patterns of the
main host species would be beneficial. Additionally, human development patterns should be modelled
on smaller scales in order to assess the role of changes in the frequency of human–tick interactions to
changing Lyme disease risk.

5. Conclusions

This study used MODIS remote sensing data to evaluate the changing niche of I. scapularis in
southern Ontario. It was found that temperatures have steadily increased throughout the province,
making climatic conditions sustainable for tick populations over a greater area. The northernmost
boundary at which ticks can survive expanded further north between 2000 and 2013. This indicates a
greater potential risk area for Lyme disease, particularly in the Niagara Escarpment and Algonquin
Provincial Park. The majority of ticks submitted to Public Health Ontario over this period were
from regions that were sustainable throughout the entire study period, indicating the importance of
other factors such as host abundance and human development in assessing risk. Greater insight into
the factors driving the rapid increase in Lyme disease risk in Ontario are valuable to public health
practitioners, as they enable better predictions to be made about which regions may see an increase
in risk.
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