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Abstract: In this paper, we aim to identify passengers with different baggage by analyzing the
micro-Doppler radar signatures corresponding to different kinds of gaits, which is helpful to improve
the efficiency of security check in airports. After performing time-frequency analysis on the X-band
and K-band radar data, three kinds of micro-Doppler features, i.e., the period, the Doppler offset,
and the bandwidth, are extracted from the time-frequency domain. By combining the features
extracted by dual-band radar with the one-versus-one support vector machine (SVM) classifier,
three kinds of gaits, i.e., walking with no bag, walking with only one carry-on baggage by one
hand, and walking with one carry-on baggage by one hand and one handbag by another hand,
can be accurately classified. The experimental results based on the measured data demonstrate
that the classification accuracy using dual-band radar is higher than that using only a single-band
radar sensor.

Keywords: micro-Doppler; dual-band fusion; time-frequency analysis; feature extraction;
gait classification

1. Introduction

The classification of personnel targets with different sizes of baggage has the potential to improve
the efficiency of security checks in airports [1–3]. For example, individuals with no bag, with a small
bag, and with large luggage can be categorized and arranged into different places for security checks.
In this paper, we investigate how to automatically achieve this goal with continuous wave (CW)
radar sensors because of its numerous benefits, including privacy, the robustness against illumination,
accurate persistent monitoring capabilities, no physical discomfort caused by wearing motion sensor
devices or modifying human normal behavior, and its low cost compared to other sensors such as
high-resolution video camera systems [4–6]. When radar observes a moving target, the main Doppler
shift of the received signal corresponds to the bulk motion of the target, while the micro-Doppler effect
represents the motions of the parts of the target relative to its main body [7,8]. Based on this fact,
the micro-Doppler effect can be used as a powerful tool for inferring the motion status of the target [9].

There have been many studies published on classification systems based on micro-Doppler
information. The classification among different kinds of targets was shown in References [10–12].
The authors extracted very basic information to recognize walking humans using a spectral analysis
with a simple classifier in Reference [13]. In Reference [14], the authors used a continuous wave
radar to distinguish between different persons or other moving objects. In Reference [15], the authors
classified seven kinds of human activities by selecting six features from the time-frequency spectrogram.
In Reference [16], specific components of micro-Doppler gait signatures related to parts of the
body at a long range for identification purposes was shown. In Reference [17], armed/unarmed
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personnel targets were distinguished based on multi-static micro-Doppler signatures. The authors
of Reference [18] classified eight types of specific finer-grained human activities using through-wall
stepped frequency continuous wave (SFCW) radar. An automatic procedure to detect, in real-time,
the presence of one or several human subjects behind walls is discussed in Reference [19]. The method
in Reference [20] is capable of recognizing men and women. All of the above methods are based
on the empirical selection of features in the time-frequency domain with single band radar. Other
approaches of feature selection include the linear predictive coding (LPC) [21], the principal component
analysis (PCA) [22], the singular value decomposition (SVD) [23], the empirical mode decomposition
(EMD) [24], the hierarchical image classification architecture (HICA) [25], and the deep convolutional
neural networks (DCNN) [26,27], etc. The existing literature indicates that, (1) the extraction of proper
features is of great importance for accurate classification and (2) the appropriate features may vary
with different applications.

In this paper, we focus on the classification of three kinds of human walking postures in a realistic
manner, i.e., walking with no bag, walking with only one carry-on baggage by one hand, and walking
with one carry-on baggage by one hand and one handbag by another hand, with both X-band and
K-band radar sensors. Different from most of the existing methods that only use single-band radar,
the proposed method uses two micro-Doppler radar sensors operating simultaneously in different
bands for the classification of personnel targets with baggage. The time-frequency analysis is firstly
performed and three features, i.e., the period, the Doppler offset, and the bandwidth, are extracted
from the time-frequency spectrogram at each radar sensor. Since the human object is observed with
dual-band radar sensors at the same time, the dimension of the extracted features is increased by
feature fusion, which is helpful to improve the classification accuracy compared to using only single
radar sensor [28,29]. The fused features are input into the one-versus-one support vector machine
(SVM) to achieve the classification. The experimental results based on measured data demonstrate that
the proposed method works well to classify the three gaits of interest and the classification accuracy
using dual-band radar is higher than that of single radar operating alone, whether the single band
radar is X-band radar alone or K-band radar alone.

The remainder of this paper is organized as follows. Section 2 describes the field experiment setup
with X-band and K-band CW radars. Section 3 presents the detailed steps of the proposed method.
Experimental results on the measured data are presented in Section 4. Conclusion is given in Section 5.

2. Experimental Setup

Two CW mode radars, which adopt the I/Q demodulation because it is possible to discriminate
between positive and negative frequencies corresponding to front and back micro-motions, are used
in our experiments. The carrier frequency and the base-band sampling frequency are 25 GHz and
2 kHz for the K-band radar system, respectively, and the carrier frequency and the base-band sampling
frequency are 9.8 GHz and 2 kHz for the X-band radar system, respectively. The power output of the
X-band radar and K-band radar are 18 dBm and 16 dBm, respectively. The gain of horn antenna used in
the X-band radar and K-band radar are 10 dB and 18 dB, respectively. Figure 1a shows the experimental
scene, where two radars are located on a platform suspended one meter above the ground in an indoor
environment under the line-of-sight condition. The distance between two radars is two meters, and one
person walks directly toward the radars with a constant speed. The initial range between the person
and the radar sensors is 10 m. Three different human gaits are considered, as shown in Figure 1b, i.e.,
gait A: walking with no bag; gait B: walking with only one carry-on baggage in one hand; and gait C:
walking with one carry-on baggage in one hand and one handbag in another hand.

For each gait, 20 recordings per personnel target were collected and each 4-s time interval was
recorded as a signal segment. Five personnel targets took part in the experiment and only a single
subject was observed by both radar sensors for each trial. Three men and two women, all of them
students of the Tsinghua University, served as volunteers to acquire the experiment data. Five
volunteers were denoted as individual 1, 2, 3, 4, and 5, respectively. The information on the volunteers
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(age, sex, height, weight, etc.) are described as follows. Individual 1: female, 25 years old, height
1.6 m, weight 45 kg; individual 2: female, 25 years old, height 1.68 m, weight 60 kg; individual 3: male,
20 years old, height 1.7 m, weight 55 kg; individual 4: male, 25 years old, height 1.8 m, weight 75 kg;
and individual 5: male, 20 years old, height 1.75 m, weight 60 kg. The amplitudes of arms swinging
when they walking at a normal speed were about forward 0.3 m and backward 0.2 m distance from
the torso for all of the subjects. The total number of recordings was (2 radars) × (5 persons) × (3 gaits)
× (20 measurements) = 600. The size and the weight of the handbag used in the experiment were
approximately 0.2 m × 0.4 m × 0.1 m and 3 kg, respectively, while the size and the weight of the
carry-on baggage were approximately 0.4 m × 0.5 m × 0.2 m and 10 kg, respectively.
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Figure 1. (a)The experiment scene; (b) Three kinds of gaits in the experiment.

3. The Proposed Method

The proposed method consisted of three major steps, which will be described in details in
this section.

3.1. Time-Frequency Analysis

The first step was to obtain the micro-Doppler information from the measured data, which
was carried out by the short-time Fourier transform (STFT). In the time-frequency spectrogram,
the strongest components, which mainly spread in the low Doppler frequency area, corresponded to
the movement of the torso. The value of the torso’s Doppler frequency indicated the walking speed
of the person. The periodic micro-Doppler components stood for the motions of limbs, and the peak
value of micro-Doppler component corresponded to the largest speed of swinging limbs. Time-frequency
spectrograms of three kinds of gaits obtained by the X-band and K-band radar sensors are shown in Figure 2.
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Figure 2. Spectrograms of three kinds of human gaits: (a) Gait A is observed by K-band radar; (b) Gait
B is observed by K-band radar; (c) Gait C is observed by K-band radar; (d) Gait A is observed by
X-band radar; (e) Gait B is observed by X-band radar; (f) Gait C is observed by X-band radar.

3.2. Feature Extraction

Here, three features, i.e., the period, the Doppler offset, and the bandwidth, were extracted from
the time-frequency spectrogram [15,23]. In order to obtain the exact feature values, two envelopes of
the time-frequency signal needed to be extracted firstly, i.e., the positive-frequency envelope and the
negative-frequency envelope. There have been many approaches on envelope extraction [30,31]. After
extracting two envelopes, the three features can be extracted from the time-frequency domain, which
will be described in details as follows.

3.2.1. Period

Period is the time interval between the adjacent two highest positive peaks. The period can be
obtained through auto-correlation [32]. The mathematical expression of auto-correlation function can
be written as:

RSS(τ) =
LS

∑
t=0

s(t)s∗(t − τ), (1)

where s(t) is the time-frequency signal, which is obtained by the STFT of the raw data, * is the
conjugate, τ is the time delay, and LS is the length of the time-frequency signal. If the time delay
τ is zero, the value of the auto-correlation function reaches the maximum. By calculating the time
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interval between the peaks of the absolute value of the autocorrelation function, the period of the
time-frequency signal can be estimated.

3.2.2. Doppler Offset

In order to better describe the following two features, i.e., Doppler offset and bandwidth,
the torso’s Doppler frequency, the positive peak value, and the negative peak value are denoted as f0,
f+ and f−, respectively, as shown in Figure 3a. We found that there were many peak frequency values
during the observation time. The strongest component in the time frequency domain corresponded
to the torso’s Doppler frequency f0, which was estimated by accumulating the time-frequency signal
over the time axes and finding the peak of frequency spectrum, as shown in Figure 3b. We also
extracted the positive-frequency envelope and the negative-frequency envelope by using the method
in Reference [31], as shown in Figure 3c. After extracting two envelopes from the time-frequency
spectrogram, several peak values, i.e., f+ and f− were estimated by peak finding.
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The Doppler offset indicates the symmetry of the frequency components and would be zero if the
swinging limbs forward and backward are exactly symmetric. Here, the length of each step along the
time axes means the distance from the location of the middle position of f (n−1)

+ and f (n)+ to the location

of the middle position of f (n)+ and f (n+1)
+ . The definition of the Doppler offset can be expressed as:

FO =
1
N

N

∑
n=1

[(
f (n)+ − f0

)
−
(

f0 − f (n)−

)]
=

1
N

N

∑
n=1

(
f (n)+ + f (n)− − 2 f0

)
, (2)
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where N is the total number of steps during the observation time, and f (n)+ and f (n)− denote the positive
and negative values of the micro-Doppler peaks in the n-th step, respectively.

3.2.3. Bandwidth

Bandwidth is the frequency range that the received signal occupies. Employing the same method
as the Doppler offset, several peak values, i.e., f+ and f−, can be estimated from the positive-frequency
and negative-frequency envelopes. The bandwidth can be described as:

FB =
1
N

N

∑
n=1

[(
f (n)+ − f (n)−

)]
, (3)

From Figure 2 and the definition of the three features, we can find that the period of gait B is
almost two times as that of gait A and gait C due to the asymmetry of the motions of the left arm and
the right arm in gait B. The bandwidths of gait A and gait B are at the same level and much larger
than that of gait C, because the motions of arms are limited in gait C. The Doppler offset of gait B
is obviously different from that of gait A and C, because only one arm is swinging and another arm
keeps almost static during the observation time in the case of gait B. The combination of bandwidth
and Doppler offset or the combination of bandwidth and period can classify gait A from gait B and
gait C. Thus, the period, the Doppler offset, and the bandwidth are capable of classifying the three
gaits of interest.

Figure 4 shows the feature distribution of the experimental data using K-band radar sensor alone
and using X-band radar sensor alone, in which there are one hundred data recordings and three
selected features for each gait. The three axes denote the three features used for classification, namely
the period, the Doppler offset, and the bandwidth. From Figure 4, we can see that the feature vectors
of the three gaits are clustered in different space regions, which gives an intuitional interpretation of
the effectiveness of classification of the three gaits based on the selected three features. After fusing the
features extracted by dual-band radar, the dimension of the features will be six.
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3.3. Classification

The final step of the proposed method is to input the features extracted by both the X-band radar
and K-band radar into a proper classifier and execute the process of classification. Since dual-band
radar is used to observe the same human object, the dimension of features used as the input of the
classifier is two times as that of one radar operating alone. In this paper, we adopted the one-versus-one
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SVM method to deal with the multi-class classification problem [33,34]. The one-versus-one SVM
strategy operates by constructing one SVM classifier for each pair of classes. Therefore, for a problem
with k classes, k (k − 1)/2 SVMs are trained to distinguish all possible pairs of classes. Then, the majority
voting is performed to obtain the final classification result. The actual steps were as follows: Firstly,
we built three double-class SVMs named SVM1, SVM2, and SVM3, respectively. SVM1 was obtained
with the training data of gait A and gait B. Similarly, SVM2 was obtained with the training data of
gait B and gait C, and SMV3 was obtained with the training data of gait C and gait A. Note that the
training data of each class were selected randomly from the entire data set, and the rest were used
as the test data. The test data were input into the three classifiers separately. With the outputs of the
three classifiers, a majority vote operation was applied; if more than one classification result labels
were the same, then this label was chosen as the final classification result for the test data. If all the
class labels put out by the three classifiers were different from each other, the randomly selected result
of any classifier was used as the final result, since one cannot exactly determine which classification
result is more reliable in this case.

4. Classification Results

The total number of recordings obtained from the field experiment was 600 for the dual-band
radar. To evaluate the classification results, two scenarios were considered. In the first scenario,
the data of all subjects were mixed together, and then a certain proportion of data was selected
as training samples and the rest were employed as test samples. In the second scenario, the data
reflected from two (one male and one female) of the five subjects were used as the training set, and
the data reflected from the other three subjects (two males and one female) were used as the test set.
That is to say, in the second scenario, the training and testing data were from different volunteers.
Generally speaking, the second scenario is more realistic because it classifies the gaits of unknown
individuals based on the data from known human subjects. For the first scenario, 20% of the total
recordings were used in the training phase and the remaining 80% of recordings were used as test
data to obtain the confusion matrices, which indicated the classification accuracy/error. This process
was repeated one hundred times with a randomly chosen set of samples for training to validate the
classifier performance. The accuracy/error rates of classification using different types of radars are
shown in Tables 1–3, respectively. For the second scenario, the data measured from individual 1 and 3
were used for training, and the data measured from individual 2, 4, and 5 were used for testing. This
experiment aims to validate the proposed method in the condition of recognizing the human gaits of
unknown personnel targets. The accuracy/error rates of classification using different types of radars
are shown in Tables 4–6, respectively.

Table 1. The first scenario: confusion matrix using only the X-band radar.

Gait A Gait B Gait C

Gait A 92.46% 0.63% 6.91%
Gait B 15.41% 81.77% 2.82%
Gait C 10.30% 0.50% 89.20%

Table 2. The first scenario: confusion matrix using only the K-band radar.

Gait A Gait B Gait C

Gait A 98.51% 0.23% 1.26%
Gait B 1.01% 98.99% 0.00%
Gait C 1.68% 0.91% 97.41%
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Table 3. The first scenario: confusion matrix using the dual-band radar data fusion.

Gait A Gait B Gait C

Gait A 99.41% 0.30% 0.42%
Gait B 1.00% 99.00% 0.00%
Gait C 1.55% 1.01% 97.44%

Table 4. The second scenario: confusion matrix using only the X-band radar.

Gait A Gait B Gait C

Gait A 97.00% 0.00% 0.00%
Gait B 17.00% 82.00% 1.00%
Gait C 12.00% 0.00% 88.00%

Table 5. The second scenario: confusion matrix using only the K-band radar.

Gait A Gait B Gait C

Gait A 99.00% 0.00% 1.00%
Gait B 1.00% 99.00% 0.00%
Gait C 0.00% 0.00% 100%

Table 6. The second scenario: confusion matrix using the dual-band radar data fusion.

Gait A Gait B Gait C

Gait A 100% 0.00% 0.00%
Gait B 1.00% 99.00% 0.00%
Gait C 0.00% 0.00% 100%

The values in the tables stand for the classification rate, where columns represent the real groups,
and rows represent the classified groups. Thus, the diagonal entries are the accuracy rates and others
are the error rates. From the tables, it can be seen that the classification accuracy of using only the
K-band radar sensor is higher than that of the X-band radar sensor. This is because the K-band radar is
more sensitive to the torso motion and the swings of arms and legs. As the target is observed with
the dual-band radar at the same time, the dimension of features extracted from the dual-band radar
sensors is two times that obtained by only one radar sensor, which increases the classification accuracy
as indicated in Tables 1–6. Comparing the classification results of the two scenarios, we can find that
the classification accuracy in the second scenario is slightly higher than that in the first scenario. This
is because the percentage of training data in the second scenario is larger than that in the first scenario.

5. Conclusions

In this paper, we investigate how to improve the classification accuracy of personnel targets
with different baggage by using dual-band radar. The human activities we are interested in include
walking with no bag, walking with only one carry-on baggage held by one hand, and walking with
one carry-on baggage held by one hand and one handbag held by another hand. Three features
are extracted from the time-frequency spectrogram, namely the period, the Doppler offset, and the
bandwidth. Furthermore, classification performances of using only X-band radar, only K-band radar
and dual-band radar are compared. The experimental results on the measured data demonstrate that
higher classification accuracy can be obtained by using dual-band radar compared to only using a
single radar sensor. The potential application of this study is to improve the efficiency of security
checks in airports.
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