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Abstract: For this research, the Random Forest (RF) classifier was used to evaluate the potential of
simulated RADARSAT Constellation Mission (RCM) data for mapping landcover within peatlands.
Alfred Bog, a large peatland complex in Southern Ontario, was used as a test case. The goal of
this research was to prepare for the launch of the upcoming RCM by evaluating three simulated
RCM polarizations for mapping landcover within peatlands. We examined (1) if a lower RCM noise
equivalent sigma zero (NESZ) affects classification accuracy, (2) which variables are most important
for classification, and (3) whether classification accuracy is affected by the use of simulated RCM
data in place of the fully polarimetric RADARSAT-2. Results showed that the two RCM NESZs
(−25 dB and −19 dB) and three polarizations (compact polarimetry, HH+HV, and VV+VH) that
were evaluated were all able to achieve acceptable classification accuracies when combined with
optical data and a digital elevation model (DEM). Optical variables were consistently ranked to be
the most important for mapping landcover within peatlands, but the inclusion of SAR variables
did increase overall accuracy, indicating that a multi-sensor approach is preferred. There was no
significant difference between the RF classifications which included RADARSAT-2 and simulated
RCM data. Both medium- and high-resolution compact polarimetry and dual polarimetric RCM data
appear to be suitable for mapping landcover within peatlands when combined with optical data and
a DEM.

Keywords: RADARSAT-2; RADARSAT Constellation Mission; Landsat; Random Forest;
peatlands; wetlands

1. Introduction

Peatlands are a unique class of wetlands with many important functions including storing carbon,
providing habitat for several wildlife species, mitigating floods and droughts, as well as retaining,
purifying, and releasing water [1]. Peatlands account for roughly 12% of Canada’s land cover [2],
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and approximately 40% of the world’s peatlands are found within Canada [3]. Peatlands can be defined
as land that has a surface layer of naturally accumulated peat [4], and peat is described as soil that
contains a minimum of 30% (by dry mass) dead organic material [5]. Bogs and fens are two sub-classes
of peatlands. Rainwater is the main source of water and mineral nutrients for bogs, while fens obtain
their mineral rich water from soil [3].

Peatlands that have remained in their natural state for years are able to store carbon because
typically the rate of plant production and peat accumulation is greater than the rate of organic
matter decomposition [6]. However, the agriculture and forestry industries often drain peatlands,
transforming them from carbon sinks into net sources of Greenhouse Gases (GHGs) [6]. In recent
years, there has been concern over how peatlands are being managed and how they will react to
climate change in the future. It is expected that the increases in temperature and evapotranspiration
anticipated with climate change will result in surface drying and a decreased water table in many
wetlands [7]. In order to sustainably manage and conserve peatlands an up-to-date peatland inventory
is needed to track peatland loss and estimate emissions of GHGs.

Remote sensing technology offers a practical approach to map and monitor peatlands
systematically, and at large spatial scales. Many of Canada’s peatlands are in remote locations, making
the collection of ground data challenging and costly [8,9]. Optical satellites have been used to map
wetlands, including peatlands, for many years [10–14]. Several optical satellites have data in the visible,
near infrared and shortwave infrared portions of the electromagnetic spectrum. The near-infrared
bands have been shown to improve class separability of wetland types because they can better detect
different hydrological conditions and plant species [8]. Nevertheless, optical satellites are passive
sensors that require the sun to detect reflected and emitted energy. Thus, they can only acquire
images in daylight and can be hindered by cloud cover and haze. Additionally, optical sensors cannot
penetrate vegetation canopies, which often preclude the discrimination of classes on the basis of
sub-canopy or ground surface conditions like the volumetric moisture of soil, which tends to vary
among different wetland types. This makes mapping densely vegetated areas difficult [15].

Due to the limitations with optical satellites and the complexity of mapping wetlands, many
remote sensing scientists have begun fusing optical and SAR data to classify wetlands (e.g., [16–22]).
SAR systems operate at longer wavelengths, allowing incident microwaves to penetrate the vegetation
canopy to some degree. Thus, SAR backscatter can provide information on sub-surface conditions
like soil moisture, though it is also affected by other properties of ground targets, including surface
roughness, surface water, and vegetative biomass [20]. In addition to wavelength, SAR backscatter
is also affected by incidence angle and polarization [20]. Consequently, a variety of wavelengths,
polarizations, and incidence angles will provide more information about the surface, potentially
improving the ability to detect different wetland types.

Currently, many SAR satellites are multi-polarized, which has improved the detection of soil
moisture and inundation compared to single polarized systems [23,24]. In a single polarized SAR
system, both the transmitted and received energy sent by the satellite fall along the same plane:
horizontally (H) or vertically (V), relative to the SAR look direction. Dual polarized SAR systems can
send and receive energy as either co-polarized (both the transmitted and received energy are HH or
VV, where the first letter denotes the transmitted polarization and the last letter denotes the received
polarization) or cross-polarized (transmitted and received as HV or VH).

Quad-polarized (i.e., fully polarimetric) SAR sensors are able to transmit and receive the signal in
four planes (HH, VV, HV, and VH) [25], and measure the relative phase between channels. The latter
represents the time it takes for the radar signal sent from the satellite to reach the ground target and
return [26]. The additional information provided by the phase allows for the SAR backscatter to
be decomposed into different scattering types important for wetland mapping, including: specular
scattering, which is when no energy is returned to the satellite and results from smooth surfaces
(e.g., smooth, open water); rough surface scattering, when objects return a single bounce to the satellite
(e.g., small shrubs or rough water); volume scattering, defined as backscatter return in multiple
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directions, which can be caused by features like vegetation canopies; and double-bounce, which arises
when two smooth surfaces make a right angle that redirects the incoming radar signal off both surfaces,
resulting in most of the signal being returned to the satellite (e.g., emergent vegetation surrounded by
smooth open water) [25–30].

2. Background

Quad-polarized RADARSAT-2 data has proven useful for wetland mapping [25,31–33].
Nonetheless, this polarization is only available in a narrow swath size, limiting the ability to map
wetlands operationally, and for large areas. Canada is planning to launch the next generation of
C-band SAR satellites, called the RADARSAT Constellation Mission (RCM), which will have multiple
different polarizations available (Table 1). It is anticipated to be launched in 2018 and will mainly
focus on operational monitoring. RCM will be comprised of three identical C-band SAR satellites
launched simultaneously allowing for daily coverage over Canada with 350 km imaging swaths [34].
This will allow for a much shorter repeat cycle, offering a coherent change detection (CCD) timeframe
of 4 days (resulting from the three satellites) [34], temporal datasets, and more flexibility and reliability
compared to RADARSAT-1 and RADARSAT-2 [35]. One of the primary polarization options will be
compact polarimetry (CP), which will be available for all RCM imaging modes. The focus of this
study was to investigate the potential of a single RCM scene for peatland classification since acquiring
processing and analysing multi-temporal data is computationally expensive and, as shown in this case,
may not be necessary if one has optical data. Future research will focus on evaluating CCD with RCM
for mapping seasonal changes in wetlands, as RADARSAT-2 has shown promising results [36].

Circular-linear CP SAR systems send out a circularly polarized wave and receive the signal on
the linear, horizontal, and linear vertical planes, while maintaining the phase [37]. The rationale
for offering a CP mode is that users can be provided with nearly the same information content as
quad-polarization data, but at a much larger swath width [34]. In order to be able to provide an
increase in swath width, however, there will be a higher noise equivalent sigma zero (NESZ, loss in
radiometry, resulting in less sensitivity to low values of backscatter) for all RCM polarizations. In
addition, CP will have less polarization diversity compared to the quad polarimetric data available on
RADARSAT-2, because it will only capture two channels of data: RH (right circular—linear horizontal
polarization) and RV (right circular—linear vertical polarization). In contrast, RADARSAT-2 captures
data measured coherently in four channels: HH, HV, VH, and VV [38].

To prepare for the upcoming RCM, the Canadian Space Agency (CSA) has provided funding to
Canadian Government Departments to evaluate a variety of RCM polarization options and provide
recommendations regarding the effect of polarization, resolution and noise floor for monitoring a
variety landscapes operationally. Environment and Climate Change Canada (ECCC) is responsible for
providing CSA with RCM recommendations focused around wetland mapping. These preferences
will be considered by the CSA when determining the background mission.

2.1. Random Forest

Random Forest (RF) is a machine learning classifier that is commonly used to fuse multiple
sources of remote sensing data for wetland mapping [39–41]. RF grows several individual decision tree
classifiers using random bootstrap aggregated sampling (bagging) [42]. For supervised classifications,
a bootstrap sample (two thirds) from user provided training data is used to build each decision tree,
and the remaining training samples (one third) are used for internal validation, referred to as the out
of bag error (OOBE). The training data are returned to the data pool after each bootstrapping iteration,
which allows for different training subsets for all trees. The algorithm selects the best fitting predictor
variable from a random group of predictor variables to determine the split at each node and create
smaller binary classes [43,44]. A voting mechanism is used to determine the final class prediction.
This is achieved by running values down all built trees. Each tree then provides a single vote, and the
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majority vote is calculated. This approach attempts to eliminate errors within individual trees because
it assumes that these errors have not been included in the majority of trees [45–48].

Table 1. A description of the RADARSAT Constellation Mission (RCM) imaging mode parameters [29].

Imaging Mode Polarization Options
Resolution
(m) (Range

and Azimuth)

Number of
Looks (Range
and Azimuth)

NESZ (dB) Image Swath
Width (km)

Accessible
Swath

Width (km)

Low resolution
100 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

100 × 100 8 × 1 −22 500 500

Low noise Single Pol, Dual Pol
(HH+HV, VV+VH), CP 100 × 100 4 × 2 −25 350 500

Medium
Resolution 50 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

50 × 50 4 × 1 −22 350 500

Medium
Resolution 30 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

30 × 30 2 × 2 −24 125 350

Medium
Resolution 16 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

16 × 16 1 × 4 −25 30 250

High Resolution
5 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

5 × 5 1 × 1 −19 30 500

Very High
Resolution 3 m

Single Pol, Dual Pol
(HH+HV, VV+VH,
HH+VV), CP

3 × 3 1 × 1 −17 20 500

Spotlight Single Pol, Dual Pol
(HH+HV, VV+VH), CP 3 × 1 1 × 1 −17 Spot size 5 × 5 350

Quad-Pol Quad Pol 9 × 9 1 × 1 −24 20 250

Ship Detection Single Pol, Dual Pol
(HH+HV, VV+VH), CP Variable Variable Variable 350 600

RF generates two measures of variable importance, the Gini Index and the Mean Decrease in
Accuracy. The Gini Index provides an estimate of how pure the node is for each variable, and the Mean
Decrease in accuracy calculates the relative change in accuracy when the variable is removed from the
model. A higher value in either suggests that the variable is more important [39,42,44]. These measures
allow the user to determine which variables have the best predictive power in the final classification.
Additionally, variables can be removed from the models that have low importance rankings, which
can decrease processing times and improve model accuracy [40,49,50].

The RF algorithm has a number of advantages over some traditional classification methods.
For example, RF can be used with data that is not normally distributed [42]. In contrast, this is an
underlying assumption of the Maximum Likelihood approach [51]. By determining the split at each
node, correlation between individual trees is reduced, and allows for the use of both independent and
dependent data [42,45,52–54]. Additionally, because only a portion of the variables are used when
deciding the split at each node, RF is more computationally efficient than other methods, increasing
the ability to incorporate highly dimensional datasets [45,52,53].

2.2. Objectives

The goal of this research was to evaluate three RCM polarizations and two NESZ to assess the
suitability of RCM for mapping landcover within peatlands using the RF classifier. To achieve this
objective, we performed the following:

1. We compared RF models using simulated RCM data and a NESZ of −19 dB and −25 dB in
combination with Landsat-8 and a DEM to determine if the difference in radiometry affects the
accuracy of mapping landcover within peatlands. Two RCM beam modes that will be of interest
for mapping landcover within peatlands are the 16 m medium resolution beam mode (NESZ
−25 dB) and the 5 m high resolution beam mode (NESZ −19 dB).
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2. We compared RF models with three simulated RCM polarizations (HH+HV, VV+VH, and CP) in
combination with Landsat-8 and a DEM to assess if the difference in polarization improves the
ability to classify peatlands.

3. We determined whether a multi-sensor RF model approach is needed for peatland mapping by
evaluating which predictor variables are ranked to be the most important, so that unnecessary
variables could be removed to maintain classification accuracy and decrease processing times.

4. We compared RF models with simulated RCM data to an RF model with RADARSAT-2 data both
in combination with Landsat-8 and a DEM to evaluate if the loss in polarization diversity in RCM
results in a loss of accuracy in classifying peatlands.

3. Materials and Methods

3.1. Study Area

Alfred Bog is the largest boreal peatland complex in Southern Ontario (45.4929◦N, 74.8421◦W),
spanning 17 km2 (Figure 1, [55]). The three main peatland classes found within Alfred Bog are (1) poor
fen, (2) open shrub bog, and (3) treed bog, which can be challenging to separate via image classification,
due to their similar vegetation and topography [49]. Alfred Bog provides habitat for a variety of plants
and wildlife, some of which are threatened or endangered, including the Bog Elfin butterfly, Fletcher’s
dragonfly, spotted turtle, white fringed orchid, Atlantic sedge, and rhodora [55]. Encompassing this
peatland is a variety of agricultural crops, coniferous, deciduous, and mixed forest. For this research,
we used Alfred Bog to evaluate the ability of the upcoming RCM to classify peatlands using the
RF classifier.
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Figure 1. Location map of Alfred Bog [56]. The map in the top left shows Alfred Bog (red star) in
relation to the rest of Canada. The lower map is a zoomed in view of Eastern Ontario, and the extent of
Alfred Bog is shown as a green polygon to the east. Alfred Bog is located approximately 70 km from
the well-known RAMSAR Mer Bleue bog, shown as a green polygon to the west. Mer Bleue and Alfred
Bog have very similar land cover classes.
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3.2. Data

3.2.1. Land Cover Classes and Training Data

This research is an extension of Millard and Richardson [49] who investigated various aspects of
training data sample selection and classification settings for Random Forest Classifications. Alfred Bog
was used as a case study, and the classification of this peatland was thoroughly assessed. Therefore,
we focused on the comparison of RADARSAT-2 and RCM and used the same training data and land
cover classes from [49]. Five hundred randomly generated points were spread across the study area
with a minimum spacing of 8 m. We then assigned the training points (330) a landcover class (fen (43),
open bog (49), treed bog (78), mixed forest (51), agriculture (109)), based either on site visits or image
interpretations from high- (Google Earth) and medium-resolution (Landsat) optical imagery [49]. This
approach was used to ensure the proportion of training data for each landcover class was representative
of the proportion of the landcover classes in Alfred Bog [49]. For a more complete description of the
vegetation classes and the collection of training points refer to [49].

3.2.2. RADARSAT-2 and Landsat-8 Images

Two Wide Fine Quad-Polarimetric (FQ1W) RADARSAT-2 images were used to represent spring
and summer conditions (2 May 2014 and 13 July 2014). Both images were ordered as Single Look
Complex, had an incidence angle of −17.5–21.2◦, a nominal resolution of 5.2 × 7.6 m, a nominal pixel
spacing of 4.7 × 5.1 m, and a nominal swath width of 50 km.

Two Landsat-8 images (24 April 2014 and 27 June 2014) were downloaded from the USGS
website [57]. Both images were ordered as Landsat surface reflectance (radiometric calibration and
atmospheric correction have been applied). For details on how the atmospheric correction was applied
refer to the USGS Landsat-8 Surface Reflectance Code (LaSRC) Product Guide [58].

The first seven bands were used in the Random Forest model (Table 2). Cloud and haze was
removed from all seven bands by selecting pixels flagged in band 9 (Cirrus) and converting them to no
data using EASI modelling in focus, PCI Geomatica 2015.

Table 2. Name of the Landsat-8 bands, their wavelength and resolution that we included in the
RF models.

Landsat-8 Band Wavelength (Micrometers) Resolution (Meters)

Band 1—Coastal aerosol 0.43–0.45 30
Band 2—Blue 0.45–0.51 30

Band 3—Green 0.53–0.59 30
Band 4—Red 0.64–0.67 30

Band 5—Near Infrared (NIR) 0.85–0.88 30
Band 6—SWIR 1 1.57–1.65 30
Band 7—SWIR 2 2.11–2.29 30

3.3. Satellite Image Processing

Processing to create RF predictor variables (Figure 2) from the RADARSAT-2 images was
done using a model built in PCI Geomatica 2015 (Figure 3). The raw images were imported as
non-symmetrized scattering matrices (S4C) in Sigma-Naught (σ◦), and then converted either to
a symmetrized covariance matrix (C3RC3) or a symmetrized coherency matrix (T3RC3), which
is the necessary data format for many PCI algorithms. Small window sizes are appropriate for
small study areas in order to maintain natural and artificial boundaries [59]. Previous research has
shown that this window size and SAR filter are suitable for mapping wetlands [33]. Therefore,
a 5 × 5 box car filter was used to reduce speckle and increase the effective number of looks prior
to calculating the intensity channels, total power, intensity ratios, pedestal height, HH-VV phase
difference, magnitude and phase of the correlation coefficient, Freeman–Durden decomposition,
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Cloude–Pottier decompositions, Touzi decomposition, and the Touzi discriminators. Two Shannon
Entropy channels were also produced using PolSAR pro because this algorithm was not available in
PCI Geomatica 2015. All 50 RADARSAT-2 predictor variables (Figure 4) were combined into one PCI
pix file, and then orthorectified using the rational function model in PCI’s orthoengine. Definitive
orbit information, and Shuttle Radar Topographic Mission (SRTM) digital surface model (DSM) were
provided as inputs to the model, and the output pixel spacing was set to 5 m. The RADARSAT-2 pix
file was resampled to 30 m to match the Landsat-8 image and the SRTM.
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Figure 4. A sample of the processing steps used in the RCM simulator software to produce the
predictor variables in the simulated RCM RF models. For the dual pol models 14 predictor variables
were available, while for the compact polarimetry (CP) models 32 were available. The simulator was
run once with a noise equivalent sigma zero (NESZ) of −19 dB and a second time with a NESZ of
−25 dB.

To simulate the RCM dual pol and CP data we used software created by the Canada Centre for
Remote Sensing (Figure 4). The raw RADARSAT-2 images were ingested into the software, and then a
−19 dB NESZ and a −25 dB NESZ were simulated for the HH+HV dual polarization, VV+VH dual
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polarization, and the CP datasets. The −25 dB NESZ was used to simulate the medium resolution
16 m RCM imaging mode, and the −19 dB NESZ was to simulate the high resolution 5 m imaging
mode (Table 1). To account for the effects of speckle, all variables were calculated over a 5 × 5 window.
At the time of this research, the RCM simulator did not generate the HH+VV polarization, so it was
not considered in this study. Furthermore, the outputs from the RCM simulator for the medium- and
high-resolution polarizations were not able to achieve a root-mean-square-error (RMSE) within a pixel
when orthorectified in PCI Geomatica 2015, so we were also unable to compare the resolution of the
different polarizations in RCM. To enable the use of PCI’s Rational Functions model, we maintained
the original RADARSAT-2 resolution. This model achieved a RMSE of less than one pixel.

For both dual pol polarizations we manually calculated the total power and intensity ratio using
the raster calculator in PCI Geomatica 2015. For the CP polarization, the RCM simulator outputs the
Cloude Alpha S, circular ratio, conformity, relative phase, degree of polarization, m-χ decomposition,
m-∆δ decomposition, intensity channels, Shannon Entropy, and the stokes vector. All parameters
for each polarization (Figure 4) were combined into one PCI pix file for each of the two noise floors,
resampled to 30 m, and finally combined with the Landsat-8 and DEM variables.

3.4. RF Classification

We used the open-source statistical software R to produce all of the RF classifications. Within
R, we used the randomForest [44] and raster [60] packages. We chose to grow 1000 trees because it is
thought that variable importance is more consistent with a larger number of trees [44]. The number
of variables tried at each split in node (mtry) was left at the default value (equal to the square root of
the number of input variables) because it often achieves results that are close to optimal. The same
set of training points (330) and validation points (170) was provided to all models to allow for direct
comparison of performance as a function of both polarization information and NESZ (i.e., R-2 vs.
RCM). K-fold validation would have been too computationally expensive to run given the number
of different datasets considered in this analysis. To assess the accuracy of the RF classifications, we
used the “out of bag error” (OOBE), Kappa Statistic, per class User’s Accuracy (UA) and Producer’s
Accuracy (PA), all generated automatically in R, as well as an independent validation. The independent
validation was done by reserving 170 points from the training data used in the classification. These
170 points, which had already been assigned a land cover class, were then compared against the final
classification. Overall independent accuracy was measured by taking the number of misclassified
points divided by the total number of points [49]. The 170 validation points were also used to calculate
the UA, PA, and Kappa Statistic.

The first iteration of each RF model used all of the predictor variables from the SAR satellite
(RADARSAT-2 or simulated RCM), Landsat-8, and the DEM (Table 3). The RF RADARSAT-2 model
began with 50 predictor variables, the simulated RCM compact polarimetry model 32 predictor
variables, and the simulated RCM dual polarimetric models had 14 variables. Previous research has
shown that model accuracy increases when variables that are ranked to be the least important are
removed [49,50]. Thus, we used the Mean Decrease in Accuracy and Gini Index values to manually
remove the top five predictor variables with the lowest importance values. For the RF RADARSAT-2
models, this process was continued until the models had 15 predictor variables remaining, after which
three variables were removed, and then one until only 9 variables were left. We opted to not continue
to remove variables because there were only the Landsat and DEM variables left, or in some cases one
SAR variable remained. It was beyond the scope of this paper to evaluate if the classification accuracy
increased if we continued to remove variables when only Landsat-8 and SRTM variables remained.
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Table 3. Combinations of variables used in the RF mapping of landcover within peatlands. Each of
the 14 models was first run using a spring RADARSAT-2, simulated RCM, and/or Landsat-8 image.
All models were re-run using a summer RADARSAT-2, simulated RCM, and/or Landssat-8 image.
For models that used simulated RCM data as predictor variables the models were first run with a NESZ
of −19 dB, and a second time with a NESZ of −25 dB.

Variables Used in Random Forest Models

RADARSAT-2, Landsat-8, DEM, Slope, and Aspect
Simulated RCM CP, Landsat-8, DEM, Slope, and Aspect

Simulated RCM HH+HV, Landsat-8, DEM, Slope, and Aspect
Simulated RCM VV+VH, Landsat-8, DEM, Slope, and Aspect

RADARSAT-2, DEM, Slope, and Aspect
Simulated RCM CP, DEM, Slope, and Aspect

Simulated RCM HH+HV, DEM, Slope, and Aspect
Simulated RCM VV+VH, DEM, Slope, and Aspect

Landsat-8, DEM, Slope, and Aspect
Radarsat-2 only

Simulated RCM CP only
Simulated RCM HH+HV only
Simulated RCM VV+VH only

Landsat-8 only

For the RF models that contained the RCM dual polarimetric data, variables were removed one at
a time until 9 variables remained. For these models, variables were removed one at a time because the
models started off with very few predictor variables.

In addition, all RF models were run with (1) the SAR data, DEM, slope, and aspect, (2) Landsat-8
data, DEM, slope, and aspect, (3) SAR data only, and (4) Landsat-8 data only, to determine if
the combination of SAR and optical data produced the highest classification accuracies (Table 3).
This process was repeated for both the 2 May 2014 and the 13 July 2014 dates, and for the simulated
RCM models with a noise floor of −19 dB and −25 dB (Table 3).

The McNemar test [59,61,62] was used to compare pairs of classifications with the highest
independent overall accuracy after variable reduction (e.g., RCM CP and RCM HH+HV). We used
the same validation points used in the independent accuracy assessment to determine if the pairs of
classifications were statistically significantly different. When the same training points are used for
accuracy assessment of classifications, the samples are related and the McNemar test should be used
to determine if the two classifications are statistically different [63,64]. The McNemar test needs the
number of grids cells that were (1) correctly classified by both classifications, (2) incorrectly classified
by both classifications, and (3) correctly classified by the first classification and not the second and the
other way around [61,62], which were calculated from the OOBE and independent error confusion
matrices. The assumptions of the McNemar test are as follows: (1) the sample must be random,
(2) the sample must have one nominal dependent variable with two categories and one categorical
independent variable with two related groups, and (3) the two groups in the dependent variable must
be mutually exclusive.

4. Results and Discussion

4.1. Effect of Noise Floor on Mapping Landcover within Peatlands

The difference in NESZ (6 dB) for the three simulated RCM polarizations evaluated in this study
did not significantly affect the classification accuracy. This result is sensible since a higher NESZ is
only expected to compress the dynamic range of features with low backscatter values [65], such as
water and bare soil; two classes that only make up a very small portion of this study area. Both the
spring and summer RF models with a −19 dB and −25 dB NESZ look visually similar (Figures 5 and 6)
and achieved comparable independent accuracies, OOBE values, and Kappa Statistic values (Table 3).
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In most cases, the RF models with a NESZ of −25 dB had slightly higher independent accuracies,
but the increase in accuracy was very small and the McNemar test showed the classifications were
not statistically different (p-value > 0.5, Table 4). It is worth noting here that it is possible that the
McNemar test was affected by the low number of validation points (170) included in this analysis
and that including a larger sample size may have shown a significant difference between the pairs
of classifications.

Further research is needed to confirm whether the classification of wetlands would also be affected
by differences in a NESZ, especially large areas of marsh and open water, which tend to exhibit low
backscatter values and therefore would likely be compressed as a result of a higher NESZ. Additionally,
while a lower NESZ does not appear to significantly affect classification accuracy for simulated RCM
data, it is possible that differences in image resolution will have some impact. Specifically, the increase
in spatial resolution from 16 m (NESZ −25 dB) stripmap polarization to 5 m (NESZ −19 dB) high
resolution polarization that will be offered on RCM may provide additional, relevant information that
could increase accuracy when mapping landcover within peatlands. While we could not address this
impact of resolution on classification accuracy in this analysis, we hope to do so in the future when the
simulator software is capable of applying orthorectification.

4.2. Effect of Simulated RCM Polarization on Mapping Landcover within Peatlands

We determined that the RCM polarizations evaluated in this study are suitable for mapping
landcover within peatlands when combined with optical data and a DEM. Comparable independent
accuracies, OOBE, and Kappa Statistic values were achieved for all simulated RCM polarizations for
both the spring and summer RF models (Table 4). There was less than a 3% difference between the
independent Overall Accuracies for the spring and summer RF models, and the McNemar statistic
showed this difference was not statistically significant (p-values > 0.05, Table 5). All spring-simulated
RCM RF models had Independent Overall Accuracies above 80%, and all summer models above 78%.
A lower accuracy in the summer imagery is likely related to the fact that SAR imagery is better able to
separate bog from fen and fen vegetation types in spring relative to summer when the incidence angle
is steep [66,67], because the increased penetration of the signal allows for stronger backscattering, and
in turn better separation of wetland classes [67]. Additionally, the quality of the summer Landsat-8
image was affected by cloud and haze, despite the appropriate atmospheric corrections being applied.

Surprisingly, the VV+VH dual polarimetric polarization with a NESZ of −25 dB had the highest
Independent Overall Accuracy in both the spring and summer RF models, indicating that the increased
information offered by the CP imaging mode did not improve class separability. There were some
notable differences in the UA and PA between the three simulated RCM polarizations. For example,
the UA for treed bog was approximately 7% higher for the VV+VH polarization compared to the
simulated CP and HH+HV polarizations (Table 4). These results are consistent with [66], wherein it
was concluded from an analysis of RADARSAT-2 backscatter values in Mer Blue that forested bog
scatters more strongly in the VV polarization compared to HH and HV or VH. Additionally, the PA for
open bog was roughly 8% higher for the VV+VH polarization in relation to the other two simulated
RCM polarizations. The combination of VV and VH (or HV) is often best able to separate forested bog
and non-forested bog [66]. These results suggest that the VV+VH RCM polarization does improve
the overall accuracy of the classification as well as the separation of bog and fen. Nonetheless, all
RCM polarizations when combined with an optical image such as Landsat as well as a DEM achieved
acceptable accuracies in this study.
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Figure 5. Visual results of the spring RF classifications. Models presented here were those with highest overall independent accuracy after variable reduction.
A Landsat-8 image from 27 June 2014 was included for comparison.
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Figure 6. Classification results from the summer RF classifications. Models presented here were those with the highest overall independent accuracy after variable
reduction. A Landsat-8 image from 27 June 2014 was included for comparison.
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Table 4. Out of bag error (OOBE), Independent Overall Accuracy, Kappa Statistic, and per-class UA and PA or the spring and summer RADARSAT-2 and simulated
RCM RF models with the highest Independent Overall Accuracy after variable reduction. All Random Forest models were a combination of either RADARSAT-2 or
simulated RCM data, Landsat-8, and SRTM DEM variables.

RF Model Number of
Variables

OOBE
(%)

Independent
Overall

Accuracy (%)

Kappa
Statistic

Agricultural Fields Treed Bog Open Bog Upland Mixed
Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Spring Imagery: 2 May 2014—RADARSAT-2, 24 April 2014—Landsat-8

R2 10 80 88 0.84 96 94 74 92 94 84 78 82 90 78
RCM CP NF − 19 10 80 84 0.79 90 93 70 83 94 81 70 70 86 78
RCM CP NF − 25 10 80 84 0.80 92 92 69 82 94 81 73 79 86 78

RCM HH+HV NF − 19 12 80 84 0.79 91 94 69 82 95 80 68 70 84 77
RCM HH+HV NF − 25 13 80 84 0.79 90 96 69 82 94 81 71 64 84 77
RCM VV+VH NF − 19 14 78 85 0.80 89 91 77 86 97 88 64 67 88 78
RCM VV+VH NF − 25 14 78 85 0.80 90 92 76 86 97 88 64 69 88 78

Summer Imagery: 13 July 2014—RADARSAT-2, 27 June 2014—Landsat-8

R2 9 74 81 0.74 81 94 69 86 93 68 78 76 89 65
RCM CP NF − 19 10 77 78 0.71 80 92 69 86 83 62 80 78 82 61
RCM CP NF − 25 10 76 79 0.73 81 90 66 89 96 64 74 78 87 65

RCM HH+HV NF − 19 10 75 79 0.72 81 90 63 93 92 61 81 74 87 63
RCM HH+HV NF − 25 10 75 79 0.72 81 90 64 93 92 61 78 74 88 64
RCM VV+VH NF − 19 10 75 79 0.72 81 90 63 93 92 61 81 74 87 63
RCM VV+VH NF − 25 10 77 81 0.74 80 93 69 89 96 70 81 74 82 61
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Table 5. p-values from the McNemar test statistic that was used to compare the RADARSAT-2 and simulated RCM Random Forest models with the highest
independent overall accuracy. All models were not statistically different (p-values > 0.05) at the 95% confidence level. All RF models were a combination of either
RADARSAT-2 or simulated RCM data, Landsat-8, and SRTM DEM variables. The final variables in the model are listed in the appendix. The same validation points
used to calculate the independent overall accuracy were used in the McNemar test.

RF Model 1 RF Model 2 p-Value—Spring RF Model p-Value—Summer RF Model

R2 RCM CP NF − 19 0.67 0.16
R2 RCM CP NF − 25 0.39 0.99
R2 RCM HH+HV NF − 19 0.41 0.41
R2 RCM HH+HV NF − 25 0.47 0.56
R2 RCM VV+VH NF − 19 0.20 0.41
R2 RCM VV+VH NF − 25 0.81 0.80

RCM CP NF − 19 RCM CP NF − 25 0.41 0.29
RCM CP NF − 19 RCM HH+HV NF − 19 0.83 0.80
RCM CP NF − 19 RCM HH+HV NF − 25 0.23 0.59
RCM CP NF − 19 RCM VV+VH NF − 19 0.44 0.80
RCM CP NF − 19 RCM VV+VH NF − 25 0.80 0.37
RCM CP NF − 25 RCM HH+HV NF − 19 0.85 0.26
RCM CP NF − 25 RCM HH+HV NF − 25 0.11 0.41
RCM CP NF − 25 RCM VV+VH NF − 19 0.83 0.26
RCM CP NF − 25 RCM VV+VH NF − 25 0.47 0.80

RCM HH+HV NF − 19 RCM HH+HV NF − 25 0.18 0.32
RCM HH+HV NF − 19 RCM VV+VH NF − 19 0.53 0.99
RCM HH+HV NF − 19 RCM VV+VH NF − 25 0.64 0.59
RCM HH+HV NF − 25 RCM VV+VH NF − 19 0.18 0.32
RCM HH+HV NF − 25 RCM VV+VH NF − 25 0.32 0.78
RCM VV+VH NF − 19 RCM VV+VH NF − 25 0.25 0.59
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4.3. Variable Importance

Variables ranked to be the most important by RF differed between all models (Appendix A,
Tables A1–A14). However, the seven Landsat-8 variables were consistently included in the top nine
most important variables. Thus, it is clear that the Landsat variables were necessary to achieve high
classification accuracies (>80%). In fact, RF models with only Landsat-8 and SRTM variables resulted
in moderate to high overall accuracies (Appendix A, Tables A1–A14). For example, the spring Landsat
image combined with the three SRTM variables (elevation, slope, and aspect) resulted in an overall
independent accuracy of 82% (Appendix A, Table A1), and 76% (Appendix A, Table A8) for the summer
RF model. Despite this, the combination of radar, optical, and SRTM variables often improved the UA
and PA for bog and fen. As a case in point, the simulated RCM VV+VH NESZ -25 dB spring RF model
with the best overall accuracy had a UA of 76% and a PA of 86% for treed bog, and a UA of 88% and a
PA of 78% for fen (Appendix A, Table A7).

Lower accuracies were observed for the spring RF model with Landsat and SRTM variables (no
SAR variables), which had a UA of 69% and a PA of 85% for treed bog and a UA of 86% and a PA
of 74% for fen (Appendix A, Table A7). Similarly, in the summer simulated RCM CP NESZ −25 dB
RF model, which had a UA of 96% and a PA of 64% for open bog and a UA of 87% and a PA of
65% for fen. By comparison, the summer Landsat and SRTM variable model had reduced accuracies,
with a UA of 83% and a PA of 61% for open bog, and a UA of 87% and a PA of 64% for fen. Results
from this analysis suggest that, although an acceptable accuracy can be achieved with Landsat and
a DEM alone, the SAR variables are important for improving the class accuracy of bog and fen. It
may also be possible to achieve higher classification accuracies with only SAR variables and a DEM if
multiple SAR images acquired across different dates [68–71], incidence angles [72–74], and moisture
conditions [75] are combined as inputs to the classifier. In some cases, classification accuracy can
increase significantly [75].

The SAR variables ranked to be the most important varied between the spring and summer RF
models. SAR variables were ranked by RF to be less important in the summer, although the overall
model accuracy was also reduced. Usually, the UA and PA of the summer RF models were lower,
with the exception of the PA for treed bog, which was consistently higher in the summer models
(Appendix A, Tables A1–A14). Of the two SAR variables that remained in the final simulated RCM CP
models, the spring model ranked m-delta surface to be important and the summer model RV intensity.

The m-delta surface is a parameter from the m-delta decomposition, which is similar to the
Freeman–Durden decomposition [37]. Other studies have shown that surface scattering is important
for the detection and classification of fen [76] and bogs [74]. This is because at low SAR incidence
angles, there is very little canopy interference, resulting in an increase in surface scattering, most
notably for bogs [74]. Both the spring and summer simulated RCM CP models included the
Shannon Entropy intensity in the model with the highest independent overall accuracy. The Shannon
Entropy is comprised of the intensity and degree of polarization and is a measure of the amount
of disorder within polarimetric SAR data [77] and has previously been used to successfully map
wetlands [78–80]. In particular, the Shannon Entropy has been shown to be useful for classifying
vegetation formations [78] and for separating wetlands from uplands by delineating saturated soil [31].

The spring simulated RCM dual-polarimetric models identified all SAR variables to be important.
In contrast, the summer models that only contained the cross-polarization intensity resulted in the
highest Overall Independent Accuracy. Wet spring conditions and bare agricultural fields probably
contributed to the spring simulated RCM dual-polarimetric model to rank all SAR variables to
be important.

4.4. Comparison of RADARSAT-2 and Simulated RCM on Peatlands Classifications

Some loss of overall accuracy was observed for all three simulated RCM polarization RF models
compared to the RF model that included RADARSAT-2 data (Table 4). The loss in accuracy was much
greater in the spring image compared to the summer image. However, when the classifications with
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the highest Overall Independent Accuracy were compared, they were not significantly different in
either the spring or summer (p-values >0.05, Table 5). These results are consistent with [76], wherein
RADARSAT-2 and WorldView-2 data was used to classify wetlands in Marlborough Forest. The authors
found that the SAR data was better able to discriminate wetlands from uplands in the spring because
of the higher water levels from snow melt, resulting in higher double-bounce backscatter in areas
containing flooded vegetation [81–83].

The lower NESZ in RADARSAT-2 data (−35 dB) may have also contributed to the higher
independent overall accuracy in the spring (87%, Table 4). Wetland targets will appear darker in
the spring due to snow melt, so the higher NESZ found on RCM may have made it more difficult
to detect areas with low backscatter, contributing to the lower classification accuracies observed in
the simulated RCM spring models (~83–85%, Table 4). This research also demonstrates that the
loss in polarization diversity and radiometric sensitivity in the upcoming RCM may have an effect
on the overall accuracy, UA, and PA when classifying peatlands. In particular, agriculture, upland
mixed forest, and fen had lower UAs and treed bog and upland mixed forest had lower PAs in the
spring RF models. In another study, which compared RADARSAT-2 and simulated RCM CP data for
mapping marshes, it was observed that simulated RCM CP data is less sensitive to double-bounce [33],
which may be contributing to the loss of accuracy when mapping treed areas.

Other differences between RF models with RADARSAT-2 and RCM data could have also had
an impact on classifier accuracy. The RF model with RADARSAT-2 data had 50 predictor variables
compared to 32 in the models with the simulated RCM CP data, and 14 in the RCM dual polarimetric
data. At this time, it is not possible to create the equivalent RADARSAT-2 predictor variables with
simulated RCM data such as pedestal height and phase difference. Not having these predictor variables
in the RF-simulated RCM CP models may have contributed to the decrease in classification accuracy.
Additionally, we only have access to simulated RCM data, which may not completely resemble true
RCM data. Nevertheless, the simulated CP data had acceptable independent accuracies (>78%) for
both the spring and summer imagery. The more frequent coverage available from RCM may be more
advantageous for consistent coverage of important peatland areas. It is unclear whether these same
recommendations can be applied to other types of wetlands such as marshes or swamps.

5. Conclusions

The results from this research demonstrate the potential for RCM CP and dual polarimetric data
to be used in combination with optical satellite imagery and a DEM to classify peatlands. Of the
three RCM polarizations evaluated, VV+VH appears to best separate peatland classes. The −25 dB
NESZ had slightly higher overall accuracies compared to the −19 dB NESZ, but the differences were
very small and not statistically significant. While models with just Landsat-8 and SRTM data were
able to achieve acceptable accuracies, the addition of SAR variables did increase overall accuracy,
and improve the separation of bog and fen. There was some loss in overall classification accuracy
when models with simulated RCM data were compared to models that included RADARSAT-2 data;
however, the difference was not statistically significant. Further research is needed to evaluate RCM
data for spatial resolution, the HH+VV polarization and to validate these results with real RCM data
after the satellite is launched.
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Appendix A

Table A1. Statistical results from the RADARSAT-2 (2 May 2014), Landsat-8 (24 April 2014), and Shuttle Radar Topographic Mission (SRTM) variables spring model.
The first iteration was run with all 50 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the
model with the highest independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, Entropy from Claude–Pottier,
SRTM DEM, and the polarimetry from the Shannon Entropy.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

50 78 83 0.78 95 93 68 84 94 70 63 83 90 77
45 78 83 0.78 96 93 68 83 92 71 64 83 91 78
40 78 83 0.78 95 92 68 84 92 71 63 82 91 76
35 79 82 0.77 95 92 65 82 91 72 63 82 91 72
30 80 82 0.77 94 94 65 83 90 73 65 78 91 71
25 79 84 0.79 94 95 68 84 92 76 68 78 92 74
20 80 84 0.80 94 93 68 89 94 77 69 78 89 74
15 80 85 0.81 94 93 69 90 91 78 70 81 86 74
12 79 86 0.82 94 92 74 93 97 80 69 78 88 78
11 79 85 0.81 93 92 72 93 96 82 71 75 88 74
10 80 88 0.84 96 94 74 92 94 84 78 82 90 78
9 77 87 0.82 92 93 75 93 94 83 75 74 92 78

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RADARSAT & SRTM variables 59 55 0.41 65 75 37 64 80 37 46 64 95 12

Landsat only 78 79 0.73 87 88 67 82 93 75 58 61 81 74
RADARSAT only 49 44 0.29 58 51 27 60 69 25 47 79 36 4
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Table A2. Statistical results from the RCM CP NESZ −19 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first iteration was
run with all 50 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest
independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, m-delta surface, Intensity from Shannon Entropy,
and SRTM DEM.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

32 78 80 0.74 90 90 65 79 89 71 60 75 88 74
27 78 80 0.74 87 92 69 79 90 75 59 64 86 74
22 79 79 0.73 88 91 66 79 89 74 58 66 89 74
17 79 80 0.73 88 90 69 76 90 75 55 68 89 77
12 80 82 0.76 91 92 68 79 92 77 61 70 86 78
11 80 83 0.78 90 93 69 79 94 81 66 70 86 78
10 80 84 0.79 90 93 70 83 94 81 70 70 86 78
9 80 83 0.78 90 93 68 85 97 78 67 70 85 74

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM CP & SRTM variables 60 57 0.43 68 73 38 51 66 43 46 71 68 28

Landsat only 78 79 0.73 90 74 88 60 64 67 82 91 85 74
RCM CP only 49 39 0.23 50 39 23 40 61 39 40 66 25 14

Table A3. Statistical results from the RCM CP NESZ −25 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first iteration was
run with all 50 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest
independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, m-delta surface, Intensity from Shannon Entropy,
and SRTM DEM.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

32 78 81 0.75 91 91 66 81 91 71 64 89 80 73
27 79 81 0.75 89 92 69 81 92 71 63 85 74 73
22 79 80 0.74 89 91 68 79 93 71 60 85 74 74
17 80 81 0.75 87 90 68 81 93 76 62 89 70 74
12 82 82 0.77 90 91 69 82 93 78 66 86 74 77
11 79 84 0.79 90 92 69 82 94 80 71 87 73 78
10 80 84 0.80 92 92 69 82 94 81 73 86 79 78
9 79 84 0.79 91 93 67 84 97 79 75 85 78 74

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM CP & SRTM variables 58 56 0.43 69 77 36 56 76 34 48 60 74 20

Landsat only 78 79 0.73 90 74 88 60 64 67 82 91 85 74
RCM CP only 49 38 0.21 53 39 21 43 55 26 38 33 69 13



Remote Sens. 2017, 9, 573 20 of 29

Table A4. Statistical results from the RCM Dual Pol HH+HV NESZ −19 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with
the highest independent overall accuracy (12 variables) in order of decreasing importance were the seven Landsat-8 bands, HH Intensity, HV Intensity, Total Power,
HH/HV ratio, and SRTM DEM.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 80 83 0.78 89 95 71 82 95 80 68 63 81 77
13 82 83 0.78 90 95 69 82 94 80 71 65 81 76
12 80 84 0.79 91 94 69 82 95 80 68 70 84 77
11 80 83 0.77 89 92 70 82 97 80 68 70 80 77
10 80 82 0.77 90 91 70 83 95 78 66 68 79 78
9 79 83 0.78 90 90 74 83 97 83 64 71 81 78

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM HH+HV & SRTM

variables 56 55 0.41 67 37 64 50 55 73 60 42 58 24

Landsat only 78 79 0.73 90 74 88 60 64 67 82 91 85 74
RCM HH+HV only 42 42 0.25 54 53 31 49 52 27 41 60 15 9

Table A5. Statistical results from the RCM Dual Pol HH+HV NESZ −25 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with
the highest independent overall accuracy (13 variables) in order of decreasing importance were the seven Landsat-8 bands, HH Intensity, HV Intensity, Total Power,
HH/HV ratio, SRTM DEM, and SRTM slope.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 80 84 0.78 90 96 71 82 95 81 70 64 83 77
13 80 84 0.79 90 96 69 82 94 81 71 64 84 77
12 80 84 0.79 91 94 69 82 94 81 69 70 85 77
11 80 83 0.77 90 92 69 83 97 79 68 70 80 76
10 80 82 0.77 91 91 69 82 95 78 66 70 78 77
9 80 83 0.78 89 90 74 82 97 83 64 70 82 77

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM HH+HV & SRTM

variables 56 55 0.41 67 73 37 58 63 42 49 57 60 26

Landsat only 78 79 0.73 90 88 64 82 91 74 60 67 85 74
RCM HH+HV only 41 42 0.24 54 54 29 45 47 28 38 55 24 12
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Table A6. Statistical results from the RCM Dual Pol VV+VH NESZ −19 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with
the highest independent overall accuracy (14 variables) in order of decreasing importance were the seven Landsat-8 bands, VV Intensity, HV Intensity, Total Power,
VV/HV ratio, SRTM DEM, SRTM slope, and SRTM aspect.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 78 85 0.80 89 91 77 86 97 88 64 67 88 78
13 78 85 0.80 89 93 75 86 97 86 65 67 89 78
12 78 84 0.80 89 91 75 86 97 86 67 70 89 77
11 79 83 0.78 87 90 73 86 97 84 67 67 86 77
10 79 83 0.78 87 90 73 85 97 83 69 70 84 77
9 80 84 0.79 89 90 75 82 97 84 69 77 82 78

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM VV HV & SRTM variables 56 60 0.48 68 71 48 68 67 47 49 50 60 51

Landsat only 78 79 0.73 90 88 64 82 91 74 60 67 85 74
RCM VV HV only 40 36 0.17 49 50 22 45 40 14 29 35 45 22

Table A7. Statistical results from the RCM Dual Pol VV+VH NESZ −25 dB (2 May 2014), Landsat-8 (24 April 2014), and SRTM variables spring model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with
the highest independent overall accuracy (14 variables) in order of decreasing importance were the seven Landsat-8 bands, VV Intensity, HV Intensity, Total Power,
VV/HV ratio, SRTM DEM, SRTM slope, and SRTM aspect.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 78 85 0.80 90 92 76 86 97 88 64 69 88 78
13 79 85 0.80 90 92 75 86 97 86 65 68 88 78
12 78 85 0.80 89 92 74 86 97 86 67 70 89 77
11 79 84 0.79 87 90 74 86 97 85 68 68 86 78
10 79 83 0.78 87 90 74 85 97 84 68 69 83 78
9 80 84 0.79 89 90 74 82 97 84 70 78 82 77

Landsat & SRTM variables 80 82 0.76 84 90 69 85 97 79 72 69 86 74
RCM VV HV & SRTM variables 56 60 0.48 67 72 48 68 67 46 50 51 63 52

Landsat only 78 79 0.73 90 88 64 82 91 74 60 67 85 74
RCM VV HV only 40 37 0.19 52 49 22 45 41 15 30 39 54 30
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Table A8. Statistical results from the RADARSAT-2 (13 July 2014), Landsat-8 (27 June 2014), and SRTM variables spring model. The first iteration was run with all 50
variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest independent
overall accuracy (9 variables) in order of decreasing importance were the six Landsat-8 bands, Alpha angle, HH+VV real component of the correlation coefficient,
and SRTM DEM).

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

50 75 76 0.68 77 94 62 93 100 46 76 73 81 57
45 74 75 0.75 76 94 62 93 100 42 77 74 81 57
40 75 76 0.68 76 95 63 93 100 43 78 73 82 59
35 75 76 0.68 76 95 63 93 99 43 75 67 85 64
30 74 71 0.61 71 94 61 89 86 38 74 65 76 48
25 76 76 0.68 76 93 64 90 95 51 72 66 87 61
20 76 77 0.69 76 93 65 91 94 54 74 67 88 63
15 77 78 0.71 77 92 67 90 93 56 74 70 89 68
12 78 77 0.70 79 93 64 84 91 61 76 68 82 61
11 79 77 0.70 78 93 66 82 90 61 77 74 82 61
10 78 79 0.73 79 95 70 83 92 66 77 74 84 63
9 74 81 0.74 81 94 69 86 93 68 78 76 89 65

Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64
RADARSAT & SRTM variables 51 53 0.36 59 87 33 50 77 23 51 34 59 33

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RADARSAT only 37 32 0.10 38 51 23 47 54 12 30 29 2 0

Table A9. Statistical results from the RCM CP NESZ −19 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first iteration was run with
all 32 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest independent
overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, RV Intensity, Shannon Entropy Intensity, and SRTM DEM.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

32 76 73 0.64 76 91 65 92 80 45 65 60 83 61
27 78 74 0.66 78 89 64 91 82 50 66 63 87 64
22 77 75 0.67 77 90 66 91 83 53 70 64 86 64
17 77 75 0.67 77 90 62 89 84 51 78 68 83 65
12 76 78 0.71 80 90 65 88 92 60 76 75 83 65
11 76 78 0.71 81 90 64 84 95 63 71 78 84 65
10 77 78 0.71 80 92 69 86 83 62 80 78 82 61
9 77 78 0.71 80 92 68 83 82 62 79 77 82 61

Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64
RCM CP & SRTM variables 50 52 0.37 64 78 41 64 58 30 33 39 65 20

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM CP only 35 38 0.18 46 58 29 41 61 31 22 31 21 4
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Table A10. Statistical results from the RCM CP NESZ −25 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first iteration was run with
all 32 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest independent
overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, HV Intensity, Shannon Entropy Intensity, and SRTM DEM.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

32 74 75 0.68 74 90 70 86 86 50 73 72 81 68
27 75 78 0.70 77 90 71 86 87 58 74 75 84 69
22 74 78 0.70 77 90 70 88 89 57 74 74 84 68
17 76 77 0.70 77 91 68 87 90 58 77 74 80 63
12 76 78 0.71 78 92 70 85 84 59 81 75 79 65
11 77 77 0.70 79 92 68 83 83 61 81 75 78 62
10 76 79 0.73 81 90 66 89 96 64 74 78 87 65
9 76 79 0.72 81 90 64 88 94 63 72 77 89 65

Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64
RCM CP & SRTM variables 49 51 0.34 57 76 38 57 43 23 52 32 61 40

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM CP only 28 34 0.13 41 47 21 43 36 22 44 29 43 14

Table A11. Statistical results from the RCM Dual Pol HH+HV NESZ −19 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the
highest independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, HV Intensity, SRTM DEM, and SRTM slope.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 75 77 0.70 81 90 58 87 95 59 84 79 78 61
13 75 78 0.71 81 90 59 91 95 58 84 78 85 61
12 75 78 0.71 81 90 60 90 93 59 84 78 84 61
11 75 79 0.72 81 90 62 93 92 59 82 78 87 62
10 75 79 0.72 81 90 63 93 92 61 81 74 87 63

9 (no radar) 75 79 0.73 82 90 65 93 91 64 77 73 88 65
Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64

RCM HH+HV & SRTM
variables 52 47 0.31 62 70 31 43 70 33 25 32 44 32

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM HH+HV only 31 33 0.12 42 49 27 35 34 18 24 31 28 17



Remote Sens. 2017, 9, 573 24 of 29

Table A12. Statistical results from the RCM Dual Pol HH+HV NESZ −25 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first
iteration was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the
highest independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, HV Intensity, SRTM DEM, and SRTM slope.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 74 77 0.70 81 90 59 85 96 58 81 79 76 61
13 75 77 0.70 81 90 59 88 94 59 80 76 83 61
12 75 78 0.71 81 90 60 91 93 58 84 78 84 61
11 75 79 0.72 81 90 62 91 92 60 81 78 86 63
10 75 79 0.72 81 90 64 93 92 61 78 74 88 64

9 (no radar) 75 79 0.73 82 90 65 93 91 64 77 73 88 65
Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64

RCM HH+HV & SRTM
variables 54 49 0.33 63 71 32 40 65 36 28 36 44 34

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM HH+HV only 29 35 0.13 44 56 23 32 47 23 23 25 19 10

Table A13. Statistical results from the RCM Dual Pol VV+VH NESZ −19 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first iteration
was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest
independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, HV Intensity, SRTM DEM, and SRTM slope.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 74 78 0.71 82 90 61 86 92 62 80 74 79 65
13 75 78 0.71 82 90 61 89 92 63 76 74 82 61
12 75 78 0.72 83 90 62 90 92 63 77 74 83 63
11 75 78 0.71 81 90 62 90 92 61 79 74 83 62
10 75 79 0.72 81 90 63 93 92 61 81 74 87 63
9 76 78 0.71 82 90 63 88 92 61 70 74 89 65

Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64
RCM VV HV & SRTM variables 51 53 0.38 68 78 36 55 59 37 35 28 43 32

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM HH+HV only 31 36 0.16 45 51 27 50 53 19 20 18 36 25
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Table A14. Statistical results from the RCM Dual Pol VV+VH NESZ −25 dB (13 July 2014), Landsat-8 (27 June 2014), SRTM variables summer model. The first iteration
was run with all 14 variables, and variables ranked to be unimportant were then removed until 9 variables remained. The final variables in the model with the highest
independent overall accuracy (10 variables) in order of decreasing importance were the seven Landsat-8 bands, HV Intensity, SRTM DEM, and SRTM slope.

Number of Variables
OOBE

(%)
Independent Overall

Accuracy (%)
Kappa

Statistic
Agricultural Fields Treed Bog Open Bog Upland Mixed Forest Fen

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

14 75 79 0.72 77 93 68 90 95 59 83 74 84 63
13 75 78 0.71 77 93 68 91 95 58 80 74 87 61
12 76 79 0.72 77 93 68 91 96 60 81 74 87 61
11 76 79 0.72 78 93 68 90 96 63 80 74 84 61
10 77 81 0.74 80 93 69 89 96 70 81 74 82 61
9 76 79 0.73 80 92 68 82 96 71 74 73 79 62

Landsat & SRTM variables 76 76 0.69 77 89 67 83 83 61 75 73 87 64
RCM VV HV & SRTM variables 51 52 0.35 61 80 39 51 62 30 33 25 47 38

Landsat only 77 75 0.67 77 87 63 82 83 58 74 74 80 61
RCM HH+HV only 31 31 0.11 42 40 22 44 60 18 19 22 21 18
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