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Abstract: Understanding growth patterns at the metropolitan level is instructive for better planning
and policy making on sustainable urban development. Using DMSP/OLS data from 1992 to 2013,
this article aims to investigate growth patterns of major metropolitans in Mainland China from the
aspects of intensification and expansion. We start by calibrating the DMSP/OLS data and selecting
45 major metropolitans. On intensification, results suggest that aggregately, metropolitans displayed
cyclical pattern over time and large metropolitans tended to have higher levels of intensification than
moderate or small ones. Individually, metropolitans with similar intensification over time could be
clustered together using Dendrogram, and evolution pattern of the clusters exhibited similarity to the
aggregated one. On expansion, results show that aggregately metropolitans displayed a decreasing
trend over time, and moderate or small metropolitans tended to have higher levels of expansion
than large ones. Particularly, moderate metropolitans were more likely to expand adjacently, and
small ones were more likely to experience scatter or corridor expansion. Each metropolitan can be
represented by a mixed expansion model over time, which might tell where and how much expansion
occurred in the current year. Furthermore, intensification is highly correlated with expansion over
time for small metropolitans, but they are poorly correlated for large or moderate ones. Lastly, the
high correlation of intensification and expansion with the change of GDP in each year indicates the
reliability of our work.

Keywords: DMSP/OLS data; metropolitan growth; intensification; expansion; sustainable
urban development

1. Introduction

According to the reports of the United Nations [1], it is reported that around 54% of the world
population or 48% of the Asian population resided in cities in 2014 and it is expected that the percentage
will continue to grow in the coming decades. It is also reported that population in suburban area
grow faster than the central cities in some metropolitans of the US [2]. The large-scale rural-urban
demographic shift and the population growth in urban and suburban areas have converted a large
amount of unexploited land (such as grassland, forest, et al.) into impervious surfaces through which
water cannot penetrate, such as rooftops, roads, or other land used by mankind [3]. This process is
mainly concentrated on developing countries [4]. In this process, cities become much more linked with
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the surrounding towns or villages by the movement of people, goods, or information [5,6]. Hence,
they are known as metropolitans in the literature [7], which functions as a single unit by representing
intensive interactions and mixtures in socioeconomic and demographic aspects [4].

Metropolitan growth involves both urban growth and suburban growth [3,8], which is a dynamic
complex phenomenon and particularly true for the metropolitans in Mainland China due to the huge
amounts of investment on infrastructures of urban and suburban areas. With the unprecedented rate of
metropolitan growth, there is an increasing demands and competitions for the limited available land,
which requires government agencies to devise effective and sustainable plans of land use. Besides, the
metropolitan growth can lead to several ongoing and emerging challenges, such as environmental
pollution [9], agricultural land loss [10], biodiversity degradation [11,12], and lack of infrastructure [13].
How to tackle these problems also needs the knowledge of growth patterns for a better planning and
policy making on sustainable development. In this context, a comparative and systematic investigation
on growth patterns at the metropolitan level is essential for achieving urban sustainability. Thanks
to the availability of Nighttime light (NTL) data from Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP/OLS), we can investigate growth patterns across metropolitans
in a systematic way.

NTL data can be regarded as proxies of anthropogenic development on the earth’s surface [14,15],
and hence they are the perfect source to monitor growth patterns in rapidly urbanizing cities around
the world. On one hand, previous findings had suggested strong relationships between digital number
(DN) values with urban population density [16], built area density [17], house vacancy rate [18],
and other socio-economic indicators [19–23]; On the other hand, they have a relative high temporal
frequency of observation. Previous studies mainly focused on the dynamics of urbanization in
general [24–28] or urban expansion itself in particular [29–31], and they ignored the influence from the
non-urban lit-pixels [3,8,32,33]. In addition, there were many other studies focusing on the dynamics
of urbanization or urban expansion from the pixel perspective [26], for individual megacities [34,35],
at a local or region level [13,36], at a country level [27,37], or even in a long time period [38]. However,
a systematic and comparative investigation on the across-metropolitan similarities and discrepancies
using the high temporal frequency of NTL data over long time period is not fully reported [4].

Mainland China has experienced dramatic growth since the late 1978 in terms of demographic
dynamics [39], socio-economic development and spatial expansion [40]. Specifically, the dramatic
growth occurred completely within metropolitans, which are delineated by the central government
of China and have the same boundaries as the administrative divisions [39]. At the metropolitan
level, this study differs from the previous work in two folds. Firstly, it employs every single lit-pixel
to examine the growth patterns instead of placing its emphasis only on the urban lit-pixels as most
previous studies; Secondly, the growth patterns are modeled from the aspects of both intensification
and expansion, which is different from most previous studies concentrating either on dynamics of
urbanization [24,28] or on urban expansion itself [30,31]. In our study, intensification is characterized
as the change of DN values, which is related to human activities in terms of demographic dynamics
and economic development; expansion is presented as the change of DN extent and its spatial types,
which is also related to human activities by consuming unexploited land. Bearing with these thinking,
we aim to investigate the growth patterns of 45 major metropolitans in Mainland China using the NTL
data from 1992 to 2013. Through this study, we can answer the following two questions: (1) How to
measure intensification or expansion quantitatively and what are their evolution patterns? (2) How
intensification is related to expansion for individual metropolitans?

The remainder of this article is organized as follows. In Section 2, we introduce the DMSP/OLS
NTL data and the methodologies. In Section 3, we present the results on growth patterns of 45 major
metropolitans. Several issues and limitations are discussed in Section 4. Conclusions are drawn in
Section 5.
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2. Nighttime Light Data and the Methodologies

2.1. DMSP/OLS Data Description

DMSP/OLS is used to produce NTL data recording the manmade/natural fires, city lights, and
natural gas flaring. It is initially designed to observe the global distribution of clouds and cloud top
temperatures, but the use of the OLS’s photo-multiplier tube (PMT) at night gives the OLS a unique
capability to gather the low lights data of the earth’s surface. The DMSP/OLS satellites move in a
sun-synchronous low altitude polar orbit with a swath width of 3000 km, and they have the capability
of collecting a complete set of NTL data with a global coverage twice a day [41]. NTL data have a
spatial resolution of 1 km at the equator and 0.8 km at 40◦N, and they can be freely downloaded
since 1992 for each year. In fact, the data for each year are a global annual cloud-free composite of
DMSP/OLS visible band imageries captured on the individual orbits of one satellite. Apart from
the minimum influences of atmospheric effects, the data were screened by automatic algorithms to
improve the quality by excluding the detections from sunlit, glare, moonlit, and clouds [41,42]. For
this study, we downloaded the annual stable lights products from 1992 to 2013, as shown in Figure 1a
for the data of Mainland China in 2002. It should be noted that the impacts from fires, ephemeral lights
and background noise were also removed from the NTL data by employing detection techniques [15].
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Figure 1. Study area and its DN values: (a) NTL data of Mainland China in 2002 by DMSP/OLS;
(b) summation of DN values over years for different satellites before inter-calibration.
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However, the time series of NTL data cannot be directly used to examine the growth patterns.
This might be attributed to two reasons. Firstly, NTL data were collected by different satellites, and
the OLS sensors do not have on-board calibration [43]. Secondly, NTL data collected by different
satellites in the same year had no strict inter-calibration [24,43]. Without on-board calibration and
inter-calibration, NTL data might contain a significant number of unstable lit-pixels, which could cause
large discrepancies in DN values between two satellites for the same year and abnormal fluctuations
in DN values for the same satellite in different years. As shown in Figure 1b, we plot the summation
of DN values over years for different satellites. It can be clearly seen that there is a large discrepancy
of DN values in 1994 for two satellites F10 and F12 and that abnormal fluctuations of DN values are
observed for satellite F15 between 2002 and 2003. Hence, it is requisite to preprocess the time series
of NTL data to rectify the unstable lit-pixels, which makes the DN values between different years or
among different satellites continuous and comparable.

2.2. DMSP/OLS Data Preprocessing

Firstly, we adopt the method proposed by [43] to inter-calibrate the NTL time series data. The
essence of this method is to construct a quadratic polynomial regression model to correct the observed
DN values. In this study, we constructed the regression model for each NTL image with R-squared
value greater than 0.92. After inter-calibration, the quality of NTL time series data is significantly
improved in terms of compatibility and continuity. As shown in Figure 2a, the summation of DN values
is plotted over years for different satellites, where discrepancies of DN values between two satellites in
the same year are diminished and abnormal fluctuations of DN values for the same satellite in different
years are reduced. However, small discrepancies are not completed removed, for instance, F10-1994
and F12-1994. Hence, the inter-calibrated NTL time series data should be further preprocessed for the
compatibility and consistency of DN values.
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Figure 2. Summation of DN values over years for different satellites after preprocessing:
(a) inter-calibration; (b) intra-annual composition and inter-annual correction.

Secondly, intra-annual composition and inter-annual correction are conducted sequentially on
the time series of NTL data, which aims to further improve the compatibility and consistency of DN
values [30]. The objective of intra-annual composition is to make use of the information derived from
two satellites for the same year. The calibrated DN values are zero if the pixels are detected by only one
satellite, and they are otherwise assigned by the average values of two NTL imageries. The purpose of
inter-annual correction is to ensure the DN values of NTL data are not decreasing from 1992 to 2013
and to reflect the actual growth situations of metropolitans in Mainland China. This calibration is based
on the assumption that DN extent in metropolitan is expanding and DN values are becoming much
brighter (Please refer to [30] for detailed technique). After intra-annual composition and intra-annual
correction, as shown in Figure 2b, we find that the total DN values of NTL data is gradually increased
from 1992 to 2013 and that a significant increase occurred from 2009 to 2010.
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2.3. Selecting Major Metropolitans in Mainland China

Metropolitans in Mainland China have the same boundaries as the administrative divisions,
which typically include central cities and the surrounding counties or towns [39]. In this study, a
total number of 45 major metropolitans were selected owing to the availability of socioeconomic
data. Basically, the metropolitans should be selected with a good spatial coverage. As shown in
Figure 3, according to the population in 2013, we selected 7 cities (with population greater than 10
million) as large major metropolitans, 21 cities (with population greater than 5 million but less than 10
million) as moderate major metropolitans, 17 cities (with population less than 5 million) as small major
metropolitans. As shown in Figure 3, the selected metropolitans are in general evenly distributed in
Mainland China. Besides, simple statistic information suggests that the selected metropolitans take a
proportion of 21.6% in population and have a percentage of 44.4% in Gross Domestic Product (GDP)
in 2013.
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2.4. Measuring Metropolitan Growth with Intensification and Expansion

It is our assumption that the growth of metropolitan might resemble the evolution of street
network [44] or airport network [45], which hints that the growth can be modelled as a gradual progress
mixed with intensification and expansion. In reality, intensification can be seen as the dynamics of
housing units, roads, or even land use changes, which is related to human activities in terms of
demographic dynamics or economic development, and expansion can be observed as low density
development at urban fringe, which is also related to human activities by consuming unexploited
land and displays different spatial types. Hence, intensification and expansion in metropolitan can
be examined using the change of lit-pixels, because it has already been confirmed that DN values are
highly correlated with population or other socioeconomic factors.

To quantitatively measure the intensification, we propose intensification level (IL), which can be
calculated as the change of DN values normalized by metropolitan area as shown in Equation (1).

IL (t) =
∑i∈CP(t) ∆DNi

NCP(t) × DNmax
×

AreaCP(t)

AreaMetropolitan
(1)

where in the year t, IL(t) is the intensification level, CP(t) is the set of changed pixels, ∆DNi is the
changed DN value of the ith pixels, NCP(t) is the number of changed pixels, DNmax is the saturated



Remote Sens. 2017, 9, 571 6 of 17

DN value of 63, AreaCP(t) is the area of changed pixels, and AreaMetropolitan is the area of metropolitan.
In this respect, we can see that information contained in IL is more related to the actual change of
the brightness in two consecutive years by filtering out the brightness of DN values contaminated by
the same source (such as the atmospheric scattering) to a certain degree. As shown in Figure 4a, an
illustration is given to depict the concept of changed pixels and its application on calculating the IL.

Remote Sens. 2017, 9, 571  6 of 17 

 

value of 63, AreaCP(t) is the area of changed pixels, and AreaMetropolitan is the area of metropolitan. In this 
respect, we can see that information contained in IL is more related to the actual change of the 
brightness in two consecutive years by filtering out the brightness of DN values contaminated by the 
same source (such as the atmospheric scattering) to a certain degree. As shown in Figure 4a, an 
illustration is given to depict the concept of changed pixels and its application on calculating the IL. 

To quantitatively measure the expansion, we firstly define new pixels as the ones lit in the 
current year but not in the previous year and old pixels as the ones lit in two consecutive years (c.f. 
Figure 4a). Secondly, we propose the concept of expansion level (EL). EL is defined as the change of 
DN extent normalized by metropolitan area as shown in Equation (2). 

( )( ) NP t

Metropoli tan

Area
EL t

Area
=  (2) 

where in the year t, EL(t) is the expansion level, NP(t) is the set of new pixels, and AreaNP(t) is the 
extent of new pixels. Thirdly, expansion in metropolitan is examined by using spatial aggregation 
method on new pixels to identify three spatial types, namely adjacent, scatter, and corridor 
expansion (c.f. Figure 4a). Adjacent expansion can be detected as the agglomeration of new pixels 
that are spatially adjacent to at least one old pixel; scatter expansion can be identified as the 
agglomeration of new pixels that are isolated from any old pixels and has a relative large value of 
shape index (SI); corridor expansion is similar to the definition of scatter expansion except that it has 
a relative small value of SI. In this study, the shape index (SI) of the agglomeration is defined as 
Equation (3). 

4ASI Pi
P P

= × ×
×

 (3) 

where A is the area and P is the total perimeter. Ideally, SI value ranges from 0 to 1, where it has a 
large value for a circle-like shape and a small value for a belt-like shape. As shown in Figure 4b, we 
select the optimal SI as 0.75 to distinguish scatter expansion from corridor expansion by checking the 
shapes of all possible agglomerations. Fourthly, similar to the definition of expansion level, we 
define the adjacent expansion level (AEL), scatter expansion level (SEL), and corridor expansion 
level (CEL) as the following Equation (4). 

( ) ( ) ( )( ) ( ) ( )
Adjacent Scatter Corridor
NP t NP t NP t

Metropolitan Metropoli tan Metropolitan

Area Area Area
AEL t ;SEL t ;CEL t

Area Area Area
= = =  (4) 

 

 
(a) 

Remote Sens. 2017, 9, 571  7 of 17 

 

(b) 

Figure 4. (a) An illustration of measuring intensification and expansion, where 3 agglomerations of 
adjacent expansion, 1 agglomeration of scatter expansion and 1 agglomeration of corridor expansion 
are identified; and (b) Probability distribution of SI with respect to different shapes of 
agglomerations, and a threshold value of 0.75 is determined via a direct visual observation on these 
dominant shapes. 

3. Results 

3.1. Growth Patterns from Intensification 

We calculate the values of IL for individual metropolitans in each year. Aggregately, annual IL 
seems to display a cyclical pattern in the two decades (c.f. Figure 5a). Using variance ratio test at the 
significant level of 5% [46], we confirm that the cyclical pattern is subject to the underlying 
deterministic process instead of a stochastic process due to the remaining spurious variability in the 
time series of NTL data. More specifically, it can be roughly divided into a weak rhythm from 1993 
to 1999 with a peak in 1994 and a strong rhythm from 2000 to 2013 with a peak in 2010, which 
coincides well with the stable development period under the reform and opening up policy (such as 
the approval of specific economic zones for some coastal cities in 1994) and the rapid development 
period under the coordinated development policy (such as the Western Region Development Plan in 
2000) respectively. In addition, as shown in Figure 5b, we display the spatial distribution of the 
average value of IL for each metropolitan from 1992 to 2013. The map gives two interesting findings. 
Firstly, it indicates that IL in large metropolitans are on average 48.4% higher than moderate 
metropolitans and 133.9% higher than small metropolitans. Secondly, Chongqing, as a large 
metropolitan, displays a low level of intensification, and Shihezi, as a small metropolitan, shows a 
high level of intensification. This counter-intuitive finding suggests the effect of geographic 
constraint on the metropolitan intensification. For instance, Chongqing, known as the mountain city, 
has around 76% of mountain area in its administrative boundary; Shihezi is a small and flattened 
area located in the north of Tianshan Mountain and in the south of Gulbentonggut desert. 

To display the characteristics of individual metropolitans, we use polar plot where IL is plotted 
in temporal counter-clockwise direction with value increasing from the centre to circumference. Two 
findings can be reported. Firstly, metropolitans seem to display evolution pattern with variations in 
each year. Specifically, the maximum variations occurred in 1994 and 2010 respectively, where the 
coast large metropolitans including Shenzhen and Shanghai experienced the most in 1994 and the 
inland moderate metropolitans including Wuxi and Ningbo experienced the most in 2010. Secondly, 
metropolitans seem to show evolution pattern with similar trend over the years. The similar pattern 
is further verified by a quantitative spearman correlation analysis on each pair of metropolitans. As 
shown in Figure 5d, 99% of pairs are positively correlated with each other and 73% of them have the 
spearman correlation coefficient values larger than 0.4. It reveals the macro universal pattern of the 
evolution of intensification among metropolitans guided by the implementations of the top-down 
based institutional forces, although five metropolitans including Dali, Heihe, Lhasa, Shiheze, and 
Shenzhen show weak correlations with others (say the average correlation values are less than 0.4), 
which puts forward an open question. 

Figure 4. (a) An illustration of measuring intensification and expansion, where 3 agglomerations of
adjacent expansion, 1 agglomeration of scatter expansion and 1 agglomeration of corridor expansion
are identified; and (b) Probability distribution of SI with respect to different shapes of agglomerations,
and a threshold value of 0.75 is determined via a direct visual observation on these dominant shapes.

To quantitatively measure the expansion, we firstly define new pixels as the ones lit in the current
year but not in the previous year and old pixels as the ones lit in two consecutive years (c.f. Figure 4a).
Secondly, we propose the concept of expansion level (EL). EL is defined as the change of DN extent
normalized by metropolitan area as shown in Equation (2).

EL(t) =
AreaNP(t)

AreaMetropolitan
(2)

where in the year t, EL(t) is the expansion level, NP(t) is the set of new pixels, and AreaNP(t) is the extent
of new pixels. Thirdly, expansion in metropolitan is examined by using spatial aggregation method
on new pixels to identify three spatial types, namely adjacent, scatter, and corridor expansion (c.f.
Figure 4a). Adjacent expansion can be detected as the agglomeration of new pixels that are spatially
adjacent to at least one old pixel; scatter expansion can be identified as the agglomeration of new
pixels that are isolated from any old pixels and has a relative large value of shape index (SI); corridor
expansion is similar to the definition of scatter expansion except that it has a relative small value of SI.
In this study, the shape index (SI) of the agglomeration is defined as Equation (3).

SI =
A

P× P
× 4× Pi (3)

where A is the area and P is the total perimeter. Ideally, SI value ranges from 0 to 1, where it has a
large value for a circle-like shape and a small value for a belt-like shape. As shown in Figure 4b, we
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select the optimal SI as 0.75 to distinguish scatter expansion from corridor expansion by checking the
shapes of all possible agglomerations. Fourthly, similar to the definition of expansion level, we define
the adjacent expansion level (AEL), scatter expansion level (SEL), and corridor expansion level (CEL)
as the following Equation (4).

AEL(t) =
AreaAdjacent

NP(t)

AreaMetropolitan
; SEL(t) =

AreaScatter
NP(t)

AreaMetropolitan
; CEL(t) =

AreaCorridor
NP(t)

AreaMetropolitan
(4)

3. Results

3.1. Growth Patterns from Intensification

We calculate the values of IL for individual metropolitans in each year. Aggregately, annual
IL seems to display a cyclical pattern in the two decades (c.f. Figure 5a). Using variance ratio test
at the significant level of 5% [46], we confirm that the cyclical pattern is subject to the underlying
deterministic process instead of a stochastic process due to the remaining spurious variability in the
time series of NTL data. More specifically, it can be roughly divided into a weak rhythm from 1993 to
1999 with a peak in 1994 and a strong rhythm from 2000 to 2013 with a peak in 2010, which coincides
well with the stable development period under the reform and opening up policy (such as the approval
of specific economic zones for some coastal cities in 1994) and the rapid development period under the
coordinated development policy (such as the Western Region Development Plan in 2000) respectively.
In addition, as shown in Figure 5b, we display the spatial distribution of the average value of IL for
each metropolitan from 1992 to 2013. The map gives two interesting findings. Firstly, it indicates
that IL in large metropolitans are on average 48.4% higher than moderate metropolitans and 133.9%
higher than small metropolitans. Secondly, Chongqing, as a large metropolitan, displays a low level
of intensification, and Shihezi, as a small metropolitan, shows a high level of intensification. This
counter-intuitive finding suggests the effect of geographic constraint on the metropolitan intensification.
For instance, Chongqing, known as the mountain city, has around 76% of mountain area in its
administrative boundary; Shihezi is a small and flattened area located in the north of Tianshan
Mountain and in the south of Gulbentonggut desert.

To display the characteristics of individual metropolitans, we use polar plot where IL is plotted
in temporal counter-clockwise direction with value increasing from the centre to circumference. Two
findings can be reported. Firstly, metropolitans seem to display evolution pattern with variations in
each year. Specifically, the maximum variations occurred in 1994 and 2010 respectively, where the
coast large metropolitans including Shenzhen and Shanghai experienced the most in 1994 and the
inland moderate metropolitans including Wuxi and Ningbo experienced the most in 2010. Secondly,
metropolitans seem to show evolution pattern with similar trend over the years. The similar pattern
is further verified by a quantitative spearman correlation analysis on each pair of metropolitans. As
shown in Figure 5d, 99% of pairs are positively correlated with each other and 73% of them have the
spearman correlation coefficient values larger than 0.4. It reveals the macro universal pattern of the
evolution of intensification among metropolitans guided by the implementations of the top-down
based institutional forces, although five metropolitans including Dali, Heihe, Lhasa, Shiheze, and
Shenzhen show weak correlations with others (say the average correlation values are less than 0.4),
which puts forward an open question.
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Figure 5. Characteristics of intensification: (a) Annual average IL over years; (b) Map of the average
IL for each metropolitan from 1992 to 2013; (c) Polar plot of IL with time, where metropolitans are
colored from blue to red according to its average value, and cities with the maximum, 30 percentiles, 70
percentiles, and the minimum average value of IL are Wuxi, Beijing, Xining, and Jiuquan respectively;
(d) Spearman correlation coefficients of IL for each pair of metropolitans.

The evolution with similar trend in intensification further points out a clustering of metropolitans.
It means that some metropolitans are more likely to be clustered together with high correlation values,
while others may be separated from each other due to poor correlation. For instance, Hangzhou and
Ningbo are related with correlation coefficient value as high as 0.94. To obtain the clusters, we use the
bottom-up based hierarchical clustering method, which group metropolitans based on the spearman
correlation coefficients. More specifically, each metropolitan starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy in a greedy manner, and eventually a Dendrogram
is constructed when all the metropolitans are merged as one cluster. As shown in Figure 6a, clusters
in different scales could be derived using different correlation coefficient threshold values. For the
purpose of illustration, we use threshold value as 0.4 to obtain 7 clusters. As show in Figure 6b, we find
that metropolitans with the similar evolution of intensification tend to be spatially clustered together,
and these clusters suggest new spatial pattern from the aspect of individual metropolitans. For instance,
the first cluster includes metropolitans (such as Beijing, Tianjin, Dalian, Jinan, Qingdao, Shijiazhuang,
and Taiyuan) in the Bohai Economic Rim and metropolitans (Such as Shanghai, Hangzhou, and Ningbo)
in the Yangtze River Delta. However, Shenzhen shows a dissimilar evolution pattern compared with
other metropolitans and forms the fourth cluster of itself, which can be mainly attributed to the specific
economic zone policy issued as early as in 1980.

Using the polar plot, we present the change of IL with time for each cluster. As shown in Figure 6c,
we can observe that the fourth cluster (Shenzhen) experienced the highest level of intensification with
an average value of 0.015 and the seventh cluster (Kashgar, Lhasa, and Yinchuan) presented the lowest
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level of intensification with 0.003. In addition, we report that the evolution patterns at the cluster level
are similar to both the aggregated one (Figure 5a) and the individual one (Figure 5c).
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Figure 6. Clustering of major metropolitans: (a) Dendrogram of major metropolitans; (b) Map of the 7
clusters; (c) Polar plot of IL over time with respect to the clusters.

3.2. Growth Patterns from Expansion

Apart from the analysis on the intensification, the growth patterns can be also understood from the
expansion or particularly the change of DN extent in the metropolitans. By applying our method to the
new pixels of individual metropolitans, we could identify three types of expansion in terms of adjacent,
scatter, and corridor. Aggregately, we report that annual EL displays a decreasing trend over time (c.f.
Figure 7a), which is different from the cyclical pattern of annual IL shown in Figure 5a. We find that EL
in moderate metropolitans seem to be on average 71.2% higher than large metropolitans and 21.0%
higher than small metropolitans. In addition, we present the spatial distribution of the average values
of AEL (c.f. Figure 7b), SEL (c.f. Figure 7c) and CEL (c.f. Figure 7d) for individual metropolitans, which
indicates that inland moderate and small metropolitans are much more likely to display high level of
expansion than coast large metropolitans. Statistically, the results suggest that (1) AEL in moderate
metropolitans seem to be on average 73.1% higher than large metropolitans and 24.1% higher than
small metropolitans; and that (2) SEL (CEL) in small metropolitans seem to be on average 28.6% higher
than (equal to) moderate metropolitans and 80.0% (200%) higher than large metropolitans. Hence, we
infer that moderate metropolitans are more likely to expand adjacently and small metropolitans are
relatively more fragmented in terms of scatter or corridor expansion.
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Figure 7. Characteristics of expansion: (a) Annual average EL (AEL, SEL, CEL) over years; and Map of
the average values of (b) AEL, (c) SEL, (d) CEL for metropolitans.

Individually, we argue that the expansion of each metropolitan should be represented by a
mixture of three spatial types evolving with time. For the ease of illustration, three metropolitans
are selected with large values of AEL, SEL, and CEL. Firstly, Hefei is selected as a representative
of adjacent expansion. As shown in Figure 8a, it displayed pure contiguous expansion in 11 years,
and map in Figure 8b visualized where adjacent expansion occurred in 1998, and map in Figure 8c
displayed the actual spatial changes of land cover in Landsat TM images with an overall accuracy (OA)
of 86.9%. Secondly, Qiqihar is selected as a representative of scatter expansion. As shown in Figure 8d,
it displayed scatter expansion from 1993 to 2013 although its proportion was in a decreasing trend,
and map in Figure 8e illustrated the intensely distributed scatter expansion with malachite green color
in 1995, and map in Figure 8f displayed the actual spatial changes of land cover in Landsat TM images
with an OA of 78.4%. Thirdly, Shihezi is selected as a representative of corridor expansion. As shown in
Figure 8g, we can see that it only experienced adjacent and corridor expansion in the two decades and a
corridor expansion occurred in 2007. Map in Figure 8h depicted a clear belt-shaped corridor expansion
near the south of its administrative boundary with yellow color, and map in Figure 8i displayed the
actual spatial changes of land cover in Landsat TM images with an OA of 56.3%. Therefore, these
results can be useful for the policy making or planning under sustainable urban development.
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Figure 8. Mixed expansion patterns and accuracy assessments for selected metropolitans: (a) Hefei
from 1993 to 2013; (b) Map of Hefei in 1998; (c) Accuracy assessment of expansion where residency
areas were densified; (d) Qiqihar from 1993 to 2013; (e) Map of Qiqihar in 1995; (f) Accuracy assessment
of expansion where both roads or houses were identified; (g) Shihezi from 1993 to 2013; (h) Map of
Shihezi in 2007; (i) Accuracy assessment of expansion where a road appeared.

3.3. Relationship between Intensification and Expansion for Each Metropolitan

Until now we have elaborated the growth patterns from the aspects of intensification and
expansion, this section intends to understand how intensification is related to expansion for each
metropolitan. To answer this question, we take a look at the relationship between IL and EL over
time for individual metropolitans, because each metropolitan might reveal a distinct relationship. As
shown in Table 1, two facts could be obtained. First, remarkable linear relationships can be observed
for small metropolitans, such as Lhasa and Kashgar, but they have different slope values indicating
the different velocities of expansion given per unit increase of intensification. Specifically, it is reported
that Heihe is the metropolitan with the fastest speed of expansion owing to the largest slope value.
Second, there are no clear relationships for large or moderate metropolitans as the slope values are
fluctuated around zero, which indicates that the change of DN values in intensification has nothing to
do with the change of DN extent in expansion.

Table 1. Relationships between intensification and expansion over time for individual metropolitans
(Note: Slope is the slope value of the linear relationship between IL and EL, * indicates significance at
0.1 level; ** indicates significance at 0.05 level; *** indicates significance at 0.01 level).

Metropolitan Slope Metropolitan Slope Metropolitan Slope Metropolitan Slope Metropolitan Slope

Chenzhou 2.07 ** Lanzhou 0.54 * Changsha −0.27 Nanjing −0.06 Xian 0.06
Dali 3.95 *** Lhasa 3.65 *** Dalian −0.36 Nanning 0.65 * Zhengzhou −0.04

Guilin 1.65 ** Shihezi 0.03 Fuzhou 0.36 Ningbo 0.00 Beijing 0.56 ***
Guiyang −0.41 Taiyuan 0.30 Harbin 0.52 Qingdao -0.03 Chengdu −0.07
Haikou 1.84 *** Urumqi 0.92 * Hangzhou −0.07 Qiqihar 3.76 *** Chongqing −0.20
Heihe 6.13 *** Xiamen −0.01 Hefei −0.47 Shenyang −0.04 Guangzhou −0.08

Hohehot 1.85 ** Xining 0.86 * Jinan −0.02 Shijiazhuang −0.03 Shanghai 0.00
Jiuquan 4.33 *** Yinchuan 0.77 ** Kunming 1.51 *** Wuhan 0.26 Shenzhen 0.00
Kashgar 4.48 *** Changchun 1.28 * Nanchang 0.06 Wuxi 0.02 Tianjin 0.00

4. Discussion and Limitations

4.1. On Growth Patterns in Terms of Intensification and Expansion

Our study borrows the idea from the evolution of networks [44,45], which regards growth in
metropolitan as a gradual progress mixed with intensification and expansion in terms of DN change.
This makes our work different from other studies in the literature from three aspects: (1) growth
patterns were examined at the metropolitan level instead of at the urban level [27,47]; (2) growth
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patterns were examined by employing all lit-pixels instead of the urban-pixels [4,32,38]; (3) growth
patterns were modeled by integrating intensification and expansion together instead of concentrating
on either urban expansion [30,31,47] or urbanization [25,28].

Aggregately, our results suggest that annual IL displays a cyclical trend and annual EL shows a
decreasing trend. Large metropolitans tend to have a higher level of intensification than moderate or
small metropolitans, while moderate or small metropolitans tend to have a higher level of expansion
than large ones. Specifically, by decomposing the expansion into adjacent, scatter, and corridor
expansion, we report that moderate metropolitans are likely to experience high level of adjacent
expansion and small metropolitans are likely to appear as scatter or corridor expansion.

Individually, our results reveal that metropolitans with the similar evolution of intensification tend
to be spatial clustered together. This finding not only can be used to confirm the intensification patterns,
but also provides a new spatial division to be compared with government specified urban economic
rims. Our results further elaborate that metropolitans display different evolution of expansion with a
mixture of three spatial types. Given a metropolitan, we can give the policy makers or urban planners
the information on how much and where the three types of expansion occurred in the current year.

In addition, we take a look at the relationship between intensification and expansion. Our results
indicate that intensification in metropolitan is not necessarily related to its expansion. Specifically,
small metropolitans tend to have remarkable linear relationships between their IL and EL, and large
or moderate metropolitans have no relationship at all. These findings suggest that large or moderate
metropolitans have already been aware of the negative effects from expansion and they might have
made policies to curb it. However, small metropolitans are still undergoing a high speed of expansion
due to intensification, and hence, more attention should be paid to them.

4.2. On Socio-Economic Correlation with IL and EL in Each Year

It has been reported widely in the literature that DN values were highly correlated to many
socio-economic indicators [19,22,28,48,49]. As the measurements on growth patterns, it is interesting
to examine whether IL and EL are related to socio-economic indicator such as Gross Domestic Product
(GDP) or population (POP). By doing so, we can also verify the feasibility of employing IL and EL
on measuring growth in metropolitans. To keep the consistency, we compute the change of GDP or
POP per unit area in two consecutive years, which is denoted as ∆GDP and ∆POP respectively. Our
correlation results suggest that IL and EL are highly correlated with ∆GDP but are poorly correlated
with ∆POP across metropolitans in each year. As shown in Table 2, we display the linear models of
IL and EL with ∆GDP. It can be generally found that IL is positively correlated with ∆GDP and EL is
negatively correlated with ∆GDP. On average, we can say that around 49.2% of variability in GDP
change per unit area can be explained by IL and EL. Therefore, we argue that IL and EL can be used as
reliable measurements to examine the growth patterns, although a thorough understanding on the
underlying mechanism needs further investigation.

Table 2. Linear models of IL and EL with ∆GDP across metropolitans in each year (Note: *, **, and
*** indicate significance at 0.1, 0.05, and 0.01 level respectively; source: National Bureau of Statistics
of China).

Year
∆GDP

Year
∆GDP

Year
∆GDP

IL EL R2 IL EL R2 IL EL R2

1993 1.02 *** −0.06 *** 0.59 2000 0.55 *** −0.09 * 0.71 2007 1.55 *** −0.42 0.50
1994 0.30 *** −0.01 0.78 2001 0.71 * −0.18 0.38 2008 2.19 ** −1.36 * 0.37
1995 0.83 *** −0.02 0.42 2002 0.59 *** −0.06 0.51 2009 −0.40 −1.62 ** 0.17
1996 1.76 * −0.14 * 0.25 2003 4.33 *** −0.61 *** 0.43 2010 1.09 *** −0.39 0.44
1997 5.55 *** −0.33 *** 0.82 2004 1.34 *** −0.19 * 0.67 2011 6.59 *** −1.80 * 0.51
1998 1.19 *** −0.05 0.47 2005 2.87 * −0.20 0.30 2012 1.27 −2.81 * 0.20
1999 2.79 *** −0.13 *** 0.96 2006 2.17 *** −0.28 0.52 2013 2.72 *** −1.06 0.36
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4.3. Limitations

Three limitations can be found in this study. Firstly, although this study attempts to verify the
reliability of our results by using statistical significance test and Landsat TM image, there is still a large
room to reduce the impacts of spurious variability in the image time series on the growth patterns. For
instance, the usage of advanced preprocessing techniques, such as the empirical orthogonal function
analysis [15] and the sampling strategy by identifying pseudoinvariant features [50], will be our
future work.

Secondly, the quick saturation problem of DMSP/OLS sensors is a potential limitation on using
IL. For instance, an increase in radiance for a saturated pixel would not be detected if its DN value was
already 63 in the previous year. To quantitatively understand this limitation, we compute the average
percentages of saturated pixels (DN value = 63) and unsaturated pixels (DN value < 63) from 1993 to
2013 for individual metropolitans respectively. As shown in Figure 9, three facts can be observed: (1)
All major metropolitans have a larger percentage of unsaturated pixels than saturated pixels; (2) For
each metropolitan on average, 98% of lit-pixels are unsaturated, and only 2% of them are saturated; (3)
The top three metropolitans with the largest percentages of saturated pixels are Shenzhen with 24%;
Shanghai with 19%; and Beijing with 8%. Hence, the results on the growth patterns of Shenzhen and
Shanghai require further investigation, but the results on all other metropolitans should be reliable
due to the negligible influence of quick saturation problem on growth patterns. This is another major
reason why we examine growth patterns using lit-pixels.

Remote Sens. 2017, 9, 571  14 of 17 

 

4.3. Limitations 

Three limitations can be found in this study. Firstly, although this study attempts to verify the 
reliability of our results by using statistical significance test and Landsat TM image, there is still a 
large room to reduce the impacts of spurious variability in the image time series on the growth 
patterns. For instance, the usage of advanced preprocessing techniques, such as the empirical 
orthogonal function analysis [15] and the sampling strategy by identifying pseudoinvariant features 
[50], will be our future work. 

Secondly, the quick saturation problem of DMSP/OLS sensors is a potential limitation on using 
IL. For instance, an increase in radiance for a saturated pixel would not be detected if its DN value 
was already 63 in the previous year. To quantitatively understand this limitation, we compute the 
average percentages of saturated pixels (DN value = 63) and unsaturated pixels (DN value < 63) from 
1993 to 2013 for individual metropolitans respectively. As shown in Figure 9, three facts can be 
observed: (1) All major metropolitans have a larger percentage of unsaturated pixels than saturated 
pixels; (2) For each metropolitan on average, 98% of lit-pixels are unsaturated, and only 2% of them 
are saturated; (3) The top three metropolitans with the largest percentages of saturated pixels are 
Shenzhen with 24%; Shanghai with 19%; and Beijing with 8%. Hence, the results on the growth 
patterns of Shenzhen and Shanghai require further investigation, but the results on all other 
metropolitans should be reliable due to the negligible influence of quick saturation problem on 
growth patterns. This is another major reason why we examine growth patterns using lit-pixels. 

 
Figure 9. Average percentages of saturated and unsaturated pixels from 1992 to 2013 for individual 
metropolitans. 

Thirdly, the DMSP/OLS NTL data have a relative coarse spatial resolution, which could 
constrain their application on small scale of metropolitan studies. Therefore, our attention will be 
paid to examine the socio-economic activities within metropolitans or regions using the data with 
fine resolution from new sensors, such as the imageries obtained from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) and the National Polar-orbiting Operational Environmental Satellite 
System (NPOESS). 

5. Conclusions  

Using DMSP/OLS data, this study contributes to the literature with a new perspective to 
examine growth patterns at the metropolitan level by integrating intensification and expansion 
together. We propose IL and EL to examine the intensification and expansion in metropolitans over 
two decades. In this respect, we select 45 major metropolitans in Mainland China, and their growth 
patterns are reported. 

The results suggest that aggregately annual IL displayed a cyclical pattern with two peaks in 
1994 and 2010 respectively, while annual EL exhibited a fluctuated decreasing trend over time. Large 
metropolitans tended to have a higher level of intensification than moderate or small metropolitans, 
while moderate or small metropolitans tended to have a higher level of expansion than large ones. 
Particularly, moderate metropolitans were likely to experience adjacent expansion, and small 
metropolitans were likely to encounter fragmented development in terms of scatter or corridor 

Figure 9. Average percentages of saturated and unsaturated pixels from 1992 to 2013 for
individual metropolitans.

Thirdly, the DMSP/OLS NTL data have a relative coarse spatial resolution, which could constrain
their application on small scale of metropolitan studies. Therefore, our attention will be paid to examine
the socio-economic activities within metropolitans or regions using the data with fine resolution from
new sensors, such as the imageries obtained from the Visible Infrared Imaging Radiometer Suite
(VIIRS) and the National Polar-orbiting Operational Environmental Satellite System (NPOESS).

5. Conclusions

Using DMSP/OLS data, this study contributes to the literature with a new perspective to examine
growth patterns at the metropolitan level by integrating intensification and expansion together. We
propose IL and EL to examine the intensification and expansion in metropolitans over two decades.
In this respect, we select 45 major metropolitans in Mainland China, and their growth patterns
are reported.

The results suggest that aggregately annual IL displayed a cyclical pattern with two peaks
in 1994 and 2010 respectively, while annual EL exhibited a fluctuated decreasing trend over
time. Large metropolitans tended to have a higher level of intensification than moderate or small
metropolitans, while moderate or small metropolitans tended to have a higher level of expansion
than large ones. Particularly, moderate metropolitans were likely to experience adjacent expansion,
and small metropolitans were likely to encounter fragmented development in terms of scatter or
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corridor expansion. Individually, our results show that metropolitans with the similar evolution of
intensification over time were probably to be spatially adjacent to each other, and these clusters provide
a new spatial division to be compared with the government specified urban economic rims, such as
the Bohai Economic Rim or the Yangtze River Delta. Besides, we vividly present the evolution of
expansion for three selected metropolitans, which could answer where and how much the expansion
occurred in each year. Particularly, the spatial expansion is validated by a comparison with the land
cover changes in Landsat TM images, and the results show an overall accuracy of 86.9%, 78.4%, and
56.3% with respect to the three metropolitans.

Lastly, the results reveal remarkable linear relationships between IL and EL over time for small
metropolitans but poor relationship for large or moderate ones. Importantly, we conclude that IL and
EL can be used as reliable measurements to examine the growth patterns in metropolitans owing to
their high correlation with the change of GDP per unit area in each year. We believe that the results
reported can be used for a better planning and policy making in sustainable development.
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