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Abstract:



Remote sensing images have been used in many fields, such as urban planning, military, and environment monitoring, but corruption by stripe noise limits its subsequent applications. Most existing stripe noise removal (destriping) methods aim to directly estimate the clear images from the stripe images without considering the intrinsic properties of stripe noise, which causes the image structure destroyed. In this paper, we propose a new destriping method from the perspective of image decomposition, which takes the intrinsic properties of stripe noise and image characteristics into full consideration. The proposed method integrates the unidirectional total variation (TV) regularization, group sparsity regularization, and TV regularization together in an image decomposition framework. The first two terms are utilized to exploit the stripe noise properties by implementing statistical analysis, and the TV regularization is adopted to explore the spatial piecewise smooth structure of stripe-free image. Moreover, an efficient alternating minimization scheme is designed to solve the proposed model. Extensive experiments on simulated and real data demonstrate that our method outperforms several existing state-of-the-art destriping methods in terms of both quantitative and qualitative assessments.
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1. Introduction


In recent years, remote sensing images have been used in a wide range of fields, such as urban planning, military, and environment monitoring. In real applications, however, due to the inconsistent responds between different detectors, photon effects, and calibration error [1], remote sensing images are unavoidably contaminated by various types of noise, like stripe noise and Gaussian noise. Recently, many different denosing methods which mainly aim at random noise have been proposed for restoration of remote sensing images [2,3,4,5,6]. However, many images are badly degraded by stripe noise, and the stripe noise in remote sensing images not only greatly degrades the image quality, but also results in low accuracy in classification [7], sparse unmixing [8,9,10], object segmentation [11], and target detection [12]. Therefore, destriping also has became an essential and inevitable issue before the subsequent analysis and applications of remote sensing images.



In the past decades, many destriping methods have been proposed under different frameworks, which can be roughly divided into three categories: digit filtering-based methods, statistics-based methods, and optimization-based methods. Filtering-based methods suppress the stripe noise by constructing a filter on a transformed domain, such as Fourier transform [1,13], wavelet analysis [14,15], and the combined domain filter [16,17]. These methods assume that the stripe noise is periodic and can be recognized in the power spectrum. Thus, filtering-based methods can perform good results on the periodic stripe noise. However, the filter employed to remove the stripe noise may also affect the structural details with the same frequencies as stripes related to the useful signal, which results in blurring or ringing artifacts of the output images. To conquer this drawback, Münch et al. [16] proposed a Fourier and wavelet combined filter with satisfactory destriping results, which identifies the stripe noise more precise via wavelet decomposition.



The statistics-based methods mainly rely on the statistical properties of digital number for each sensor [18,19,20,21,22,23]. Wherein, moment matching [18,22] and histogram matching [20,21] are typical techniques in destriping field. The moment matching supposes that the mean and standard deviation of each sensor are consistent, while the histogram matching attempts to remove the stripe noise by matching the histogram of an uncalibrated signal to the reference signal [20]. In summary, statistics-based methods can obtain competitive destriping results when the scenes are homogeneous, and the computational process is fast. However, these methods are greatly determined by the preestablish reference moment or histogram.



Recently, some optimization-based destriping methods regard the stripe noise removal issue as an ill-posed inverse problem [24,25,26,27]. To find a better solution, prior knowledge of the ideal image is used to regularize the destriping problem. Introducing prior information, an estimation of the desired image can be computed by minimizing an energy function under a constrain term. In [24], Shen and Zhang proposed a maximum a posterior framework based on Huber-Markov regularization for both destriping and inpainting problems. Considering stripe noise has a clear direction signature, Bouali and Ladjal [25] developed a sophisticated unidirectional total variation (TV) model for stripe noise removal in MODIS data. Later, many researchers have proposed some improved unidirectional TV models by using different regularization [26,27,28,29,30]. Chang et al. [26] considered a combined unidirectional TV and framelet regularization method for stripe noise removal as well as preserving more details. Zhang et al. [27] proposed a unidirectional TV-Stokes model, which avoids excessive over-smoothing by distinguishing stripe regions and stripe-free regions. In addition, for multispectral and hyperspectral images destriping, researchers taken full advantage of the high spectral correlation between the images in different bands [31,32,33]. In [32], the authors proposed the graph-regularizer low-rank representation (LRR) for destriping of hyperspectral images.



Although the above mentioned methods have achieved satisfactory destriping results, they implement the destriping by directly estimating the desired images while ignoring the characteristics of stripe noise, which often causes damages to the image details along with the stripes. Recently, some optimization-based methods achieve commendable destriping results from a different perspective by estimating and separating the stripe noise from the stripe image [34,35]. However, there still existing many drawbacks. For instance, in [34], the authors only considered the characteristics of stripe noise and ignored the important image prior. In addition, the authors used global sparsity prior to describe the characteristic of stripe noise, but the sparsity characteristic is disappeared when the stripes are too dense. In [35], Chang et al. proposed stripe noise removal model from an image decomposition perspective, which combines the image prior and the stripe prior. However, the low rank prior for the stripe noise will be violated in real remote sensing images, such as the stripes with small fragment cases [35]. In summary, the prior of these methods fail to apply various stripes, and it may obtain favorable results for specified images. To improve this deficiencies, the goal of this work is to explore stripe prior for generic stripes and achieve better stripe noise removal results.



In this paper, we construct a new prior for stripe noise by excavating the intrinsically directional and structural features and propose a novel method for stripe noise removal by using image decomposition framework. In this framework, the stripe image is decomposed into two components: image component and stripe component, then the priors of these two components can be simultaneously considered under this framework. For the stripe component prior, we explore the directional and structural signatures by implementing statistical analysis, and the unidirectional TV and group sparsity regularization are used to depict the prior of stripe component. Since the TV regularization is a very popular approach in image processing because of its effectiveness in preserving edge information and the spatial piecewise smoothness [2,36,37], we employ TV regularization to describe the image component prior. Finally, we establish an image decomposition framework based optimization model to remove stripe noise, which jointly combines image component prior and stripe component prior. Since the proposed model should optimize two components simultaneously, we employ an alternating minimization algorithm to find the minimizer of such an objective function efficiently. Experimental results on simulated and real data illustrate the higher performance of the proposed method for remote sensing images destriping by comparing with other state-of-the-art destriping methods. The main ideas and contributions of the proposed method are summarized as follows:

	
The image decomposition framework is studied and applied to the stripe noise removal of remote sensing images. From image decomposition perspective, we construct a convex sparse optimization model to remove various of stripes, which can simultaneously estimate the stripe noise and underlying image.



	
The directional and structural characteristics of the stripe noise are analyzed in detail via implementing statistical analysis, and we utilize unidirectional TV and group sparsity regularization to depict them, respectively.



	
The alternating minimization algorithm is designed to solve the proposed model. Numerical experimental results, including simulated and real experiments, demonstrate that the proposed method outperforms the state-of-the-art results.








The rest of this paper is organized as follows: In Section 2, the image observation model and image decomposition framework are introduced. The characteristics of image and stripe components are analyzed in Section 3. In Section 4, the proposed model and its optimization procedure are formulated. To verify the effectiveness and robustness of the proposed method, both the simulated and real data experiments are described and analyzed in Section 5. Section 6 discusses the experimental results and analyses the sensitivity of parameters. Finally, concluding remarks are in Section 7.




2. Problem Formulation and Image Decomposition Framework


In remote sensing images stripe noise removal problem, the stripe effects can be regarded as additive noise [24,25,35], and the degradation model can be given by


[image: there is no content]



(1)




where for [image: there is no content], [image: there is no content], M and N denote the number of rows and columns of the 2-D gray-level image, respectively. Here, [image: there is no content], [image: there is no content], [image: there is no content], and n(x,y) stand for the pixel values of the observed image, the ground-truth image, the additive stripe component, and the Gaussian white noise at the location [image: there is no content], respectively.



We use upper-case in bold letters for matrices (i.e., 2-D gray-level image), e.g., [image: there is no content]. Mathematically, the matrix form of (1) can be extended as [3,35]


[image: there is no content]



(2)




where [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content][image: there is no content] represent the matrix version of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], respectively. The goal of this work is to estimate the ground-truth image [image: there is no content] and the additive stripe component [image: there is no content] simultaneously.



In this study, we consider the stripe image as the combination of image component and stripe component. The problem of solving the image component [image: there is no content] and stripe component [image: there is no content] from (2) is an ill-posed inverse problem. For such ill-posed inverse problem, regularization is a popular tool of exploiting the prior knowledge about the unknown ([image: there is no content] and [image: there is no content] in this case).



Based on the image decomposition model form [35], the stripe noise removal model for remote sensing images can be formulated as


minU,S12∥F-U-S∥F2+λR(U)+τR(S),



(3)




where [image: there is no content] is the data-fidelity term, which denotes that the sum of image component [image: there is no content] and stripe component [image: there is no content] is close to the stripe image [image: there is no content]; [image: there is no content] and [image: there is no content] are the regularization terms, which describe the prior information of image component and stripe component, respectively. [image: there is no content] and [image: there is no content] are positive regularization parameters used to balance the three terms. Clearly, to accurately estimate the image component and stripe component, the key issue now is to design appropriate regularization terms on [image: there is no content] and [image: there is no content] to separate them so as to remove stripes.




3. Image and Stripes Characteristics Analysis


In this Section, we will detailedly present how to construct appropriate regularization terms for the image component and stripe component, respectively.



3.1. TV Regularization


In past decades, regularization methods are used in many fields [38,39], and two kinds of regularization are well known. One class is the Tikhonov-like regularization [40]: [image: there is no content], where [image: there is no content] denotes some finite difference operators. Since the Tikhonov-like regularization terms are quadratic, it is relatively simple to minimize the objective function by solving system of linear equations. However, Tikhonov-like regularization always make the recovering images oversmooth, thus they fail to preserve image details and sharp edges.



TV-based is another classic kind of regularization, which was first proposed to solve the gray image denoising by Rudin et al. [41]. Nowadays, the TV regularization is widely extended to other fields, such as nature image restoration [42,43] and tensor completion [44]. Comparing with Tikhonov-like regularization, TV regularization has a better ability to effectively preserve sharp edges and promote piecewise smooth objects.



For a 2-D gray-level image [image: there is no content], the TV of [image: there is no content] can be divided into: anisotropic and isotropic [45].


∥U∥TV:=Σi|(DxU)i|+|(DyU)i|,(anisotropic);Σi(DxU)i2+(DyU)i2,(isotropic).



(4)







Recently, anisotropic TV based methods have been used to remote sensing images processing and achieved comparable results, including hyperspectral images restoration [2,4,5], and sparse unmixing [8,9]. Thus, to remove stripe noise and random noise from the observed image, we use anisotropic TV regularization which has a wide array of applications in digital imaging as well as preserving sharp edges to recover the clean image. Moreover, the anisotropic TV regularization is convex and easy to be performed. In this work, we regard the horizontal direction as x-direction and y-direction denotes the vertical direction. Therefore, the [image: there is no content] of the decomposition model (3) can be formulated as


[image: there is no content]



(5)




where [image: there is no content] and [image: there is no content] represent the linear first-order difference operator in the x-direction and y-direction, respectively. [image: there is no content] represents the sum of absolute value of all elements.




3.2. The Characteristic of Stripe Noise


Different from other forms of noises, the stripe noise not only has clear direction property, but also has obviously structure property. Therefore, we may design corresponding regularization terms from the mentioned two perspectives.



We can verify the two properties from visual and quantitative analysis. To avoid the influence of randomness, we choose three different types of methods to extract the stripe component. The filtering-based method [16] (WAFT), statistics-based method [23] (SLD) and optimization-based method [35] (LRSID) are used to remove the stripe noise in MODIS band 33 image, and the results are shown in Figure 1. In the meantime, the stripe component is obtained by the difference between the observed image and image component for WAFT and SLD methods, and LRSID method estimates the stripe component by its stripe removal model. The estimated stripe component is shown in Figure 2a–c, and the vertical gradient of stripe component is shown in Figure 2d–f, respectively.


Figure 1. Image component of destriping results in Terra MODIS band 33: (a) original image; (b) WAFT; (c) SLD; and (d) LRSID.



[image: Remotesensing 09 00559 g001]





Figure 2. Stripe component of destriping results in Terra MODIS band 33 by (a) WAFT; (b) SLD; (c) LRSID; (d) The vertical gradient of (a); (e) the vertical gradient of (b); (f) the vertical gradient of (c). (g) The [image: there is no content]-norm values for each column of (a); (h) the [image: there is no content]-norm values for each column of (b); (i) the [image: there is no content]-norm values for each column of (c).



[image: Remotesensing 09 00559 g002]






From Figure 2d–f to see, we can find that the three gradient images can be regarded as a sparse matrix, which indicates that the stripe component has good smoothness in vertical direction. In other words, the [image: there is no content] regularization accounts for the number of zero elements in gradient matrix so as to yield the sparse result in vertical direction. However, the solution of the [image: there is no content] regularization is a NP-hard optimization problem, thus we use the [image: there is no content]-norm to approximate it. Therefore, the regularization term [image: there is no content] of stripe component can be formulated as


[image: there is no content]



(6)







The analysis of the above only describes the direction property of stripe component. Furthermore, Figure 2a–c show that the stripe component is different with random noise, and it presents special column structure. To further explore the property of stripe component, we plot the bar chart shown in Figure 2g–i. The horizontal axis denotes the column number, and the vertical axis stands for the [image: there is no content]-norm of each column of the stripe component. From the three bar charts, we can see that there are a few clear embossing which values are greater than others in the chart, and the values of most vertical bars are close to zero. Moreover, the raised locations of the three bar charts are almost the same. Combining with Figure 2a–c, we find that the raised locations of bar chart just correspond to the stripe noise locations, and the locations where the values close to zero are regarded as stripe-free locations. In fact, the pixel values are all zeros in stripe-free lines, so the small values can be considered as calculation error of the models.



Here, we consider that the stripe component is constituted by stripe lines and stripe-free lines, and each line can be viewed as a group. This is to say, since the [image: there is no content]-norm of a group is close to zero, thus its elements within a group tend to be all zeros. Based on this property, the group sparse structure is employed to constrain the solution of stripe component. It can reduce the degrees of freedom in the solution by constraining the group sparsity structure information, thereby resulting in better recovery ability. In [46], the authors used the mixed [image: there is no content]-regularization to denote group sparsity. In addition, the group sparsity regularization is a powerful tool in remote sensing images processing. In [10], the authors employed group sparsity to constrain abundance matrix, since many row of the corresponding abundance matrix tend to be zero. In [6], the authors used group sparse nonnegative matrix factorization for hyperspectral image denoising. Therefore, we introduce the group sparsity that is depicted by [image: there is no content]-norm to describe the inner structure of stripe component. Finally, the [image: there is no content] regularization of decomposition model (3) can be written as follows


[image: there is no content]



(7)




where [image: there is no content], [image: there is no content] denotes the i-th group of [image: there is no content].





4. Methodology


From the perspective of image decomposition model (3), it can effectively decompose the stripe image into image component and stripe component. For the image component, we use TV regularization to obtain images containing piecewise smooth objects. Since the stripe component have a clearly directional property and structural property, the gradient domain sparsity and spatial domain group sparsity priors are employed to extract the stripe component.



4.1. The Proposed Model


From the above analysis, we can obtain the proposed model by putting [image: there is no content] in (5) and [image: there is no content] in (7) to the image decomposition model (3). Finally, the stripe noise removal model can be constructed as follows


argminU,S12∥F-U-S∥F2+λ1∥DxU∥1+λ2∥DyU∥1+τ1∥DyS∥1+τ2∥S∥2,1,



(8)




where [image: there is no content] and [image: there is no content] are positive parameters used to control the tradeoff between the data-fidelity term and the TV terms; [image: there is no content] and [image: there is no content] are parameters to balance the data-fidelity term and regularization terms of the stripe component.



In summary, the proposed model can simultaneously capture the image component and stripe component information. The TV constraint can enhance the piecewise smooth and preserve sharp edges of image component, and the stripe constrain terms can remain the directional feature and column structural characteristic for the stripe component. The framework of the proposed method is illustrated in Figure 3.


Figure 3. The framework of the proposed model.



[image: Remotesensing 09 00559 g003]







4.2. Optimization Procedure


The goal of our decomposition model is to simultaneously optimize two components, which can be solved by an alternating minimization algorithm. The alternating minimization means when optimizing one variable, we should fix other variables. Therefore, the optimization problem of model (8) can be divided into two subproblems: a subproblem of optimizing image component and a subproblem of optimizing stripe component. As for the two subproblems, since the [image: there is no content]-norm terms are nondifferentiable and inseparable, we utilize the alternating direction method of multipliers (ADMM) algorithm [47,48] to solve them efficiently. As the alternating iterative progress, we gradually separate the stripe component from the stripe image and obtain an image component with the spatial structure of piecewise smoothness.



(1) Image component optimize: Fixing stripe component [image: there is no content], the image component [image: there is no content] can be updated from the following optimization problem:


[image: there is no content]



(9)







Since the [image: there is no content]-norm is not differentiable, we make a variable substitution by introducing two auxiliary variables [image: there is no content] and [image: there is no content]. Thus, the minimization of (9) is equivalent to the constrained problem


argminU,X,Y12∥F-U-S∥F2+λ1∥X∥1+λ2∥Y∥1s.t.X=DxU,Y=DyU.



(10)







Next, according [47,48], the augmented Lagrange of problem (10) is


argminU,X,Y12∥F-U-S∥F2+λ1∥X∥1+λ2∥Y∥1+<P1,X-DxU>+<P2,Y-DyU>+β2(∥X-DxU∥F2+∥Y-DyU∥F2),



(11)




where [image: there is no content] and [image: there is no content] denote the Lagrange multipliers, and [image: there is no content] is the positive penalty parameter. Therefore, the optimization problem (9) can be solved by following three simpler subproblems.



	
[image: there is no content]-subproblem is followed by


argminXλ1∥X∥1+<P1,X-DxU>+β2∥X-DxU∥F2.



(12)







The [image: there is no content]-subproblem problem (12) can be efficiently solved by following soft-threshold shrinkage operator [49]


[image: there is no content]



(13)




where


[image: there is no content]



(14)




and the convention [image: there is no content] is assumed.



	
Similarly, we solve the [image: there is no content]-subproblem as follows


argminYλ2∥Y∥1+<P2,Y-DyU>+β2∥Y-DyU∥F2,



(15)






[image: there is no content]



(16)







	
The [image: there is no content]-subproblem is described as follows


argminU12∥F-U-S∥F2+<P1,X-DxU>+<P2,Y-DyU>+β2(∥X-DxU∥F2+∥Y-DyU∥F2),



(17)




which is a quadratic optimization and differentiability. Thus, by the first derivations to [image: there is no content], it is equivalent to the following linear system of equation


[image: there is no content]



(18)







Under the periodic boundary conditions for [image: there is no content], both [image: there is no content] and [image: there is no content] are block circulant matrices with circulant blocks. For the detailed discussion, we refer the reader to [50]. Therefore, they can diagonalization by the 2D discrete Fourier transforms. Using the convolution theorem of Fourier transforms, we can obtain the solution of [image: there is no content] as follows


[image: there is no content]



(19)




where [image: there is no content], “*” denotes complex conjugacy, “∘” denotes component-wise multiplication, and the division is component-wise as well, [image: there is no content] represents the fast Fourier transform and [image: there is no content] denotes its inverse transform.






Finally, the Lagrange multipliers [image: there is no content] and [image: there is no content] are updated in each iteration as follows


[image: there is no content]



(20)







(2) Stripe component optimize: Fixing image component [image: there is no content], the stripe component [image: there is no content] can be updated from the following optimization problem


S^=argminS12∥F-U-S∥F2+τ1∥DyS∥1+τ2∥S∥2,1.



(21)







Similarly, by introducing two auxiliary variables [image: there is no content] and [image: there is no content], the minimization of (21) is equivalent to the following problem


argminS,H,W12∥F-U-S∥F2+τ1∥H∥1+τ2∥W∥2,1+<Λ1,H-DyS>+<Λ2,W-S>+μ2(∥H-DyS∥F2+∥W-S∥F2),



(22)




where [image: there is no content] and [image: there is no content] denote the Lagrange multipliers, and [image: there is no content] is the positive penalty parameter. Therefore, the minimization problem (21) can be solved by following three simpler subproblems.



	
[image: there is no content]-subproblem is given by


argminHτ1∥H∥1+<Λ1,H-DyS>+μ2∥H-DyS∥F2.



(23)







Is is easy to obtain the solution by soft-threshold shrinkage


[image: there is no content]



(24)







	
W-subproblem is described as follows


argminWτ2∥W∥2,1+<Λ2,W-S>+μ2∥W-S∥F2.



(25)







Simple manipulation shows that subproblem (25) is equivalent to


argminWτ2∥W∥2,1+μ2∥W-S+Λ2μ∥F2.



(26)







Let [image: there is no content], then the ith column of optimal solution of [image: there is no content] is given as (see [51])


Wk+1(:,i)=∥qi∥-τ2μ∥qi∥qi,ifτ2μ<∥qi∥,0otherwise.



(27)







	
[image: there is no content]-subproblem is followed by


argminS12∥F-U-S∥F2+<Λ1,H-DyS>+<Λ2,W-S>+μ2(∥H-DyS∥F2+∥W-S∥F2).



(28)







This subproblem is similarly with [image: there is no content]-subproblem optimization, and the solution can be used FFT as follows


[image: there is no content]



(29)










Finally, updating the Lagrangian multipliers


[image: there is no content]



(30)







From the above, we take advantage of the alternating minimization scheme to separate the difficult optimization problem (8) into two convex subproblems: an [image: there is no content]-regularized (9) and an [image: there is no content] combine [image: there is no content]-regularized (21) least square problem. We can see that every step of ADMM for solving the two subproblems has a closed form solution by using the efficient soft-thresholding operator or FFT. Moreover, the Lagrange multipliers can be updated parallelly. Thus the method can be efficiently implemented. As for the convergence of the alternating minimization scheme, applying the results of [52] (Theorem 4.1), we conclude that every cluster point of the solution sequence generated by the alternating minimization algorithm is a stationary point of model (8). In detail, let [image: there is no content] be the sequence derived from the alternating minimization scheme. Then, [image: there is no content] converges to a coordinate-wise minimum [image: there is no content] (up to a subsequence), i.e., for any [image: there is no content], one has


E(U^,S^)≤E(U,S^)andE(U^,S^)≤E(U^,S).











The [image: there is no content] denotes the solution sequence, and [image: there is no content] is a cluster point. Therefore, we can always obtain a commendable destriping result by selecting proper regularization parameters and penalty parameters. The algorithm for solving our model (8) is summarized as Algorithm 1.








	Algorithm 1 The proposed destriping algorithm



	Input: Stripe image [image: there is no content], parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].

	1:

	
Initialize: [image: there is no content], [image: there is no content].  




	2:

	
for [image: there is no content] : N do




	3:

	
 Image component update:  




	4:

	
 Solve [image: there is no content], [image: there is no content] and [image: there is no content] via (13), (16) and (19), respectively.  




	5:

	
 Update Lagrange multipliers [image: there is no content] and [image: there is no content] by (20).  




	6:

	
 Stripe component update:  




	7:

	
 Obtain [image: there is no content], [image: there is no content] and [image: there is no content] by solving (24), (27) and (29), respectively.  




	8:

	
 Update the two Lagrange multipliers [image: there is no content] and [image: there is no content] by (30).  




	9:

	
end for 






Output: Image component [image: there is no content] and stripe component [image: there is no content].








5. Experiment Results


To verify the effectiveness of the proposed method for remote sensing images stripe noise removal, we employ both simulated and real data experiments and compare the experimental results with qualitatively, quantitatively and visually. Moreover, we compare the proposed method with four state-of-the-art destriping methods: filtering-based methods [16] (WAFT), statistics-based method [23] (SLD), optimization-based method [34] (GSLV) and from image decomposition perspective method [35] (LRSID) which also belongs to optimization-based methods. To highlight the destriping differences between the five compared methods, we mark some obvious differences by red circles or squares in the destriping images. For example, the residual stripes exist in the image, or some image details are destroyed, or image structures are distorted problems. All experiments are run in MATLAB (R2016a) on a desktop of 16GB RAM, Inter (R) Core (TM) i5-4590 CPU, @3.30GHz.



Parameter setting: Selecting suitable parameter is a common difficulty for many algorithms, and tuning empirically is a popular method for determining parameter [53]. The proposed method involves four regularization parameters [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], and the parameters rest with the specific stripe noise levels. For the positive penalty parameters [image: there is no content] and [image: there is no content], we set [image: there is no content]. Although our method involve many parameters, the parameters perform better robustness and select within a small scale. Since our experiments involve many stripe levels, according to the different degradation levels of test images in our experiments, we empirically set the parameters range as [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and penalty parameters [image: there is no content]. As to the parameters in the four compared methods, we have tried our best to tune their parameters according to the authors’ suggestions in their paper to obtain the best results [54].



5.1. Simulated Data Experiments


In our simulated experiments, the hyperspectral image of Washington DC Mall that is available from the website [54], Moderate Resolution Imaging Spectroradiometer (MODIS) image band 32 downloaded from on website [55] and IKONOS subimage downloaded from the website [56] are used to assess the performance of the proposed method. To demonstrate the robustness of the proposed method, the simulated images are degraded by three different types of stripe noise, i.e., periodic stripes, nonperiodic stripes, and stripes with Gaussian mixed noise. Before the simulation process, the clean images are scaled to an 8-bit for convenience. Then the synthetic stripes with intensity [image: there is no content] are added into the ground-truth image based on the degradation model (2). Finally, the stripe images are scaled into the interval [image: there is no content] in our experiments.



To evaluate the quality of destriping images, some qualitative and quantitative indices are employed. The visual impact and the mean cross-track profile belong to qualitative indices. For the quantitative indices, since the availability of ground-truth images in simulated experiments, two objective quality indices—namely peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [57]—are employed in our study, with higher PSNR and SSIM indicating better destriping and reconstruction performance.



(1) Periodic stripes: In this case, one [image: there is no content] hyperspectral subimage is chosen to add periodic stripes. In the degraded process, four stripe lines in every ten lines are periodically added into the ground-truth subimage, and the initial four stripe locations are randomly selected. Moreover, the absolute value of the stripe line pixels is 50, and the noise intensity of each stripe line is equal. Figure 4 shows the destriping results of the five methods for periodic stripes case. From Figure 4, we can see that all of the test methods can well remove the obvious stripes. In Figure 4c,d, it is clear that some residual stripes still exist in the image. Although GSLV method can remove the stripes as shown in Figure 4e, the image details are destroyed, which indicates image distortion and blur problems. Clearly, LRSID and the proposed method perform the best destriping results for removing stripes and preserving image details.


Figure 4. Destriping results with the simulated periodic stripes case. (a) Original hyperspectral image; (b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f) LRSID; (g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k) LRSID; (l) the proposed method; (m) mean value comparison between the stripes estimated by SLD, GSLV, LRSID, the proposed method, and the original one (h).
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Since SLD, GSLV and LRSID methods involve the stripe component estimation, we compare the estimated stripes between the three methods and the proposed method with original stripes. Figure 4h shows the true stripes, the estimated stripes by our method as shown in Figure 4l. It is shown that the stripe component estimated by our method is almost the same as the added stripes. From Figure 4j, we can find that the GSLV destroys the stripe-free regions information. Figure 4m shows the mean value of stripe component, the horizontal axis represents the column number, and the vertical axis denotes the mean value of each stripe component line. From Figure 4m, we can find that the GSLV fails to precisely estimate the stripe component. Moreover, all methods create some minor errors in stripe-free regions, but comparing with other three methods, the proposed method relatively more closer to the original zero values. That is to say, the proposed method has the ability of preserving stripe-free information in the destriping process.



(2) Nonperiodic stripes: To illustrate our method can be applied to nonperiodic stripes in push-broom imaging devices, we perform the simulated experiment on ground-truth MODIS image band 32 degraded by nonperiodic stripes. In this case, we randomly select [image: there is no content] of the columns to add stripes, and the absolute value of stripe line pixels is between the range of [image: there is no content]. Moreover, the intensity value (different stripe lines are with different intensity values) of each stripe line is randomly distributed on the image. Figure 5 shows the different destriping results for the simulated nonperiodic stripes case. By comparing the destriping results of the five methods, it can be seen that the proposed method obtains the best results, effectively separating and removing the stripe noise and preserving the image details as shown in Figure 5g. Moreover, the stripe component is estimated by our method shown in Figure 5l, which is almost the same as the added stripes shown in Figure 5h. From Figure 5c–e, there are some residual stripes still existing in the image. Although LRSID can remove the stripe noise completely, there is some image details smoothed and lost. When comparing the stripe component with original stripes, it is clear that the proposed method without introducing obvious errors in stripe-free regions. It demonstrates again that the proposed method has the ability of preserving stripe-free information in the destriping process.


Figure 5. Destriping results with the simulated nonperiodic stripes case. (a) Original hyperspectral image; (b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f) LRSID; (g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k) LRSID; (l) the proposed method. (m) mean value comparison between the stripes estimated by SLD, GSLV, LRSID, the proposed method, and the original one (h).
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(3) Stripes with Gaussian mixed noise: In real word, remote sensing images not only degraded by stripe noise, but also suffer from random noise. To evaluate our method can efficiently solve this problem, we choose noise-free IKONOS subimage to add stripes with Gaussian mixed noise. In the degraded process, the ground-truth image first add periodic stripes with three lines per ten, and the absolute value of the stripe line pixels is 40, then the zero-mean Gaussian noise with standard deviation [image: there is no content] is added to the image. Finally, the noise image is scaled into the interval [image: there is no content]. Figure 6 displays the results of removing the mixed noise. From Figure 6c–e, we can see that WAFT, SLD and GSLV fail to remove Gaussian noise, and some residual stripes are also existing in the image. The result of LRSID can remove Gaussian noise, but there are some stripes existing in image as shown in Figure 6f. Figure 6g shows the denoised result by the proposed method, we can see that our method outperforms the comparing methods, removing all the noises and reconstructing the fine spatial structures simultaneously. Furthermore, from Figure 6l–m, our method still precisely estimates the true stripe component.


Figure 6. Destriping results with the simulated mixed noise case. (a) Original hyperspectral image; (b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f) LRSID; (g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k) LRSID; (l) the proposed method; (m) mean value comparison between the stripes estimated by SLD, GSLV, LRSID, the proposed method, and the original one (h).
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(4) Qualitative assessment: To illustrate the effectiveness of the proposed method, the qualitative index of mean cross-track profile is adopted. Figure 7 shows the column mean cross-track profile of Figure 5 as an example. The horizontal axis denotes the column number, and the vertical axis represents the mean digital number value of each column in Figure 7. Because of the existence of stripe noise, there are rapid fluctuations in Figure 7a. After destriping by the five methods, the fluctuations are mainly suppressed. Comparing with original image mean cross-track profile, we can find that WAFT, SLD, GSLV and LRSID methods fail to reconstruct the original image shown in Figure 7b–e. It illustrates that the destriping images estimated by the four methods are existing some residual stripes or distorted. In contrast, as displayed in Figure 7f, it can be observed that the profile produced by the proposed method performs best and just hold the same curve with the original image profile. This is in accordance with the visual impact shown in Figure 5, and the column mean cross-track profile results for other simulated experiments case can obtain similar observations.


Figure 7. Column mean cross-track profiles of Figure 5. (a) Striped image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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(5) Quantitative assessment: To further demonstrate the robustness of the proposed method, we also perform the experiments with different degradation degrees for the stripe noise. Table 1 and Table 2 present the quantitative indices PSNR and SSIM results for the five destriping methods in simulated stripe image experiments, respectively. Moreover, to illustrate our method can remove stripes with Gaussian mixed noise, Table 3 shows the PSNR and SSIM values for different mixed noise types in simulated experiments. The parameter r in Table 1, Table 2 and Table 3 means the proportion of stripe lines within the image, and the intensity parameter represents the mean absolute value of the stripe lines. The parameter [image: there is no content] in Table 3 represents zero-mean with standard deviation [image: there is no content] Gaussian noise. It is worth noting that intensity = 0–100 illustrates that the degradation levels of different stripe lines is different, which makes the situation more complicated. The highest PSNR and SSIM values are highlighted in bold. From Table 1 and Table 2, it can be observed that the proposed method achieves the best PSNR and SSIM values in almost all simulated experiments than those of the comparing four destriping methods, further indicating that the proposed method outperforms the other four state-of-the-art methods in destriping. What is more, the IKONOS image degraded by stripe noise and Gaussian noise as shown in Table 3. From the table, we can find that the proposed method can still obtain the best results, which shows the effectiveness of the proposed method for removing the mixed noise. From above, the results of quantitative assessment are consistent with the visual impact.



Table 1. PSNR (dB) results of the test methods for different stripe noise types.







	
Image

	
Method

	
r = 0.2

	
r = 0.4

	
r = 0.6

	
r = 0.8




	
Intensity

	
Intensity

	
Intensity

	
Intensity




	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100






	
Hyperspectral periodic stripes

	
Degrade

	
35.22

	
21.24

	
15.22

	
20.82

	
32.21

	
18.23

	
12.21

	
17.40

	
30.45

	
16.47

	
10.45

	
15.46

	
29.20

	
15.22

	
9.20

	
14.27




	
WAFT

	
41.91

	
37.69

	
37.69

	
30.83

	
38.20

	
32.94

	
32.89

	
27.53

	
33.12

	
32.65

	
32.11

	
25.53

	
35.37

	
32.70

	
32.22

	
24.89




	
SLD

	
41.73

	
38.82

	
34.87

	
35.44

	
39.66

	
37.61

	
34.77

	
33.94

	
38.84

	
34.49

	
33.84

	
31.73

	
39.11

	
34.51

	
33.84

	
28.86




	
GSLV

	
35.24

	
29.86

	
31.52

	
29.58

	
32.23

	
30.31

	
31.43

	
29.98

	
31.51

	
30.17

	
31.17

	
29.68

	
31.29

	
31.46

	
31.60

	
27.91




	
LRSID

	
40.40

	
37.00

	
35.78

	
34.69

	
39.43

	
36.42

	
34.96

	
32.17

	
37.81

	
34.20

	
33.32

	
30.17

	
38.14

	
35.12

	
33.57

	
27.95




	
Proposed

	
45.02

	
44.66

	
42.29

	
45.66

	
42.79

	
38.34

	
36.54

	
38.90

	
39.74

	
35.94

	
35.60

	
35.42

	
40.33

	
36.17

	
35.25

	
33.73




	
Hyperspectral nonperiodic stripes

	
Degrade

	
35.14

	
21.16

	
15.14

	
20.12

	
32.13

	
18.15

	
12.13

	
6.57

	
30.34

	
16.36

	
10.34

	
15.42

	
29.10

	
15.12

	
9.10

	
14.07




	
WAFT

	
37.91

	
28.23

	
24.42

	
27.26

	
35.63

	
26.62

	
24.50

	
25.86

	
34.43

	
25.60

	
24.42

	
25.02

	
33.78

	
25.43

	
24.16

	
25.31




	
SLD

	
39.79

	
32.33

	
28.61

	
31.99

	
38.34

	
30.77

	
26.17

	
29.77

	
36.80

	
29.52

	
24.58

	
29.49

	
37.08

	
29.68

	
25.12

	
29.98




	
GSLV

	
35.15

	
29.20

	
27.04

	
28.12

	
32.13

	
28.70

	
24.86

	
28.03

	
30.35

	
29.21

	
24.07

	
28.04

	
31.69

	
30.06

	
23.95

	
28.79




	
LRSID

	
39.25

	
31.33

	
27.39

	
30.52

	
38.21

	
29.39

	
24.73

	
28.51

	
36.26

	
28.46

	
23.76

	
28.18

	
36.42

	
28.56

	
24.09

	
29.07




	
Proposed

	
42.52

	
41.43

	
38.78

	
39.89

	
40.79

	
35.37

	
31.81

	
33.30

	
37.03

	
30.45

	
26.54

	
32.91

	
36.98

	
29.76

	
25.94

	
31.61




	
MODIS periodic stripes

	
Degrade

	
35.12

	
21.14

	
15.12

	
20.27

	
32.11

	
18.13

	
12.11

	
17.18

	
30.35

	
16.37

	
10.35

	
14.98

	
29.10

	
15.12

	
9.10

	
14.11




	
WAFT

	
49.33

	
45.43

	
41.55

	
37.18

	
44.97

	
42.50

	
38.80

	
35.37

	
49.22

	
44.94

	
36.08

	
29.98

	
49.66

	
48.80

	
45.42

	
31.65




	
SLD

	
51.90

	
46.42

	
41.11

	
38.33

	
50.47

	
41.53

	
38.81

	
33.40

	
51.22

	
43.24

	
39.56

	
31.25

	
52.20

	
49.88

	
41.64

	
32.92




	
GSLV

	
42.55

	
38.97

	
38.96

	
38.48

	
42.37

	
37.92

	
37.75

	
36.83

	
38.01

	
37.64

	
37.46

	
32.31

	
39.93

	
40.29

	
39.93

	
32.47




	
LRSID

	
49.70

	
47.02

	
46.72

	
39.50

	
49.33

	
44.48

	
41.83

	
35.65

	
49.32

	
45.20

	
38.90

	
32.05

	
49.64

	
47.76

	
48.12

	
33.97




	
Proposed

	
51.28

	
47.66

	
47.76

	
45.94

	
48.10

	
45.11

	
44.06

	
43.91

	
48.35

	
42.70

	
40.42

	
42.71

	
52.31

	
51.13

	
50.53

	
40.99




	
MODIS nonperiodics tripes

	
Degrade

	
35.12

	
21.14

	
15.12

	
19.79

	
32.11

	
18.13

	
12.11

	
17.68

	
30.35

	
16.37

	
10.35

	
15.18

	
29.10

	
15.12

	
9.10

	
14.20




	
WAFT

	
44.46

	
35.40

	
31.52

	
36.39

	
42.83

	
34.65

	
31.64

	
34.22

	
41.04

	
31.17

	
28.25

	
31.46

	
38.20

	
30.52

	
27.68

	
30.30




	
SLD

	
46.81

	
39.40

	
34.36

	
39.26

	
45.69

	
35.25

	
30.82

	
35.03

	
43.25

	
33.70

	
27.75

	
32.56

	
40.42

	
31.07

	
25.22

	
31.31




	
GSLV

	
39.52

	
38.35

	
33.22

	
38.30

	
39.34

	
35.73

	
32.21

	
35.71

	
39.48

	
33.22

	
26.38

	
31.73

	
39.34

	
30.17

	
21.83

	
29.68




	
LRSID

	
45.11

	
38.28

	
35.31

	
38.20

	
43.98

	
35.13

	
30.74

	
35.12

	
41.94

	
33.95

	
27.80

	
32.45

	
39.76

	
31.39

	
23.23

	
31.58




	
Proposed

	
49.66

	
45.84

	
43.00

	
42.88

	
45.02

	
43.60

	
39.56

	
44.77

	
41.44

	
35.45

	
35.20

	
38.30

	
39.98

	
34.27

	
30.89

	
35.48










Table 2. SSIM results of the test methods for different stripe noise types.







	
Image

	
Method

	
r = 0.2

	
r = 0.4

	
r = 0.6

	
r = 0.8




	
Intensity

	
Intensity

	
Intensity

	
Intensity




	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100

	
10

	
50

	
100

	
0–100






	
Hyperspectral periodic stripes

	
Degrade

	
0.961

	
0.646

	
0.422

	
0.667

	
0.926

	
0.458

	
0.216

	
0.464

	
0.904

	
0.348

	
0.113

	
0.366

	
0.867

	
0.280

	
0.088

	
0.292




	
WAFT

	
0.992

	
0.985

	
0.985

	
0.955

	
0.980

	
0.964

	
0.963

	
0.936

	
0.957

	
0.963

	
0.962

	
0.927

	
0.973

	
0.963

	
0.962

	
0.911




	
SLD

	
0.993

	
0.992

	
0.989

	
0.987

	
0.988

	
0.989

	
0.988

	
0.987

	
0.993

	
0.988

	
0.986

	
0.984

	
0.993

	
0.988

	
0.987

	
0.977




	
GSLV

	
0.961

	
0.960

	
0.966

	
0.964

	
0.926

	
0.975

	
0.978

	
0.971

	
0.974

	
0.977

	
0.978

	
0.973

	
0.976

	
0.980

	
0.979

	
0.967




	
LRSID

	
0.993

	
0.991

	
0.988

	
0.986

	
0.992

	
0.989

	
0.983

	
0.972

	
0.988

	
0.981

	
0.981

	
0.966

	
0.990

	
0.985

	
0.982

	
0.958




	
Proposed

	
0.997

	
0.997

	
0.995

	
0.997

	
0.997

	
0.994

	
0.990

	
0.992

	
0.994

	
0.989

	
0.987

	
0.987

	
0.994

	
0.990

	
0.985

	
0.980




	
Hyperspectral nonperiodic stripes

	
Degrade

	
0.964

	
0.667

	
0.443

	
0.682

	
0.935

	
0.487

	
0.230

	
0.467

	
0.908

	
0.369

	
0.126

	
0.368

	
0.875

	
0.294

	
0.081

	
0.286




	
WAFT

	
0.985

	
0.945

	
0.910

	
0.936

	
0.976

	
0.936

	
0.910

	
0.923

	
0.974

	
0.922

	
0.907

	
0.914

	
0.968

	
0.922

	
0.909

	
0.921




	
SLD

	
0.992

	
0.986

	
0.975

	
0.985

	
0.994

	
0.984

	
0.968

	
0.982

	
0.992

	
0.978

	
0.950

	
0.977

	
0.992

	
0.980

	
0.950

	
0.981




	
GSLV

	
0.964

	
0.966

	
0.954

	
0.964

	
0.935

	
0.971

	
0.950

	
0.967

	
0.908

	
0.971

	
0.930

	
0.963

	
0.976

	
0.976

	
0.918

	
0.965




	
LRSID

	
0.993

	
0.981

	
0.957

	
0.969

	
0.992

	
0.968

	
0.944

	
0.965

	
0.989

	
0.961

	
0.916

	
0.958

	
0.988

	
0.959

	
0.921

	
0.961




	
Proposed

	
0.997

	
0.996

	
0.986

	
0.994

	
0.996

	
0.992

	
0.985

	
0.990

	
0.993

	
0.971

	
0.956

	
0.980

	
0.992

	
0.974

	
0.945

	
0.978




	
MODIS periodic stripes

	
Degrade

	
0.902

	
0.329

	
0.130

	
0.356

	
0.826

	
0.213

	
0.076

	
0.235

	
0.763

	
0.163

	
0.055

	
0.165

	
0.903

	
0.326

	
0.127

	
0.302




	
WAFT

	
0.997

	
0.993

	
0.992

	
0.982

	
0.993

	
0.993

	
0.991

	
0.984

	
0.996

	
0.995

	
0.964

	
0.979

	
0.997

	
0.997

	
0.997

	
0.977




	
SLD

	
0.998

	
0.994

	
0.982

	
0.986

	
0.998

	
0.979

	
0.977

	
0.949

	
0.998

	
0.979

	
0.984

	
0.986

	
0.998

	
0.998

	
0.997

	
0.989




	
GSLV

	
0.997

	
0.991

	
0.991

	
0.993

	
0.997

	
0.996

	
0.996

	
0.994

	
0.997

	
0.998

	
0.996

	
0.992

	
0.996

	
0.996

	
0.995

	
0.969




	
LRSID

	
0.998

	
0.996

	
0.995

	
0.989

	
0.998

	
0.989

	
0.980

	
0.994

	
0.998

	
0.992

	
0.981

	
0.989

	
0.998

	
0.998

	
0.998

	
0.989




	
Proposed

	
0.999

	
0.998

	
0.998

	
0.998

	
0.998

	
0.998

	
0.997

	
0.996

	
0.998

	
0.998

	
0.995

	
0.995

	
0.999

	
0.999

	
0.999

	
0.993




	
MODIS nonperiodic stripes

	
Degrade

	
0.919

	
0.410

	
0.189

	
0.398

	
0.838

	
0.256

	
0.099

	
0.249

	
0.813

	
0.227

	
0.083

	
0.183

	
0.798

	
0.210

	
0.074

	
0.182




	
WAFT

	
0.994

	
0.985

	
0.980

	
0.986

	
0.992

	
0.982

	
0.978

	
0.983

	
0.989

	
0.977

	
0.972

	
0.979

	
0.987

	
0.974

	
0.970

	
0.975




	
SLD

	
0.997

	
0.994

	
0.988

	
0.993

	
0.996

	
0.994

	
0.986

	
0.995

	
0.996

	
0.993

	
0.978

	
0.992

	
0.996

	
0.986

	
0.956

	
0.986




	
GSLV

	
0.993

	
0.993

	
0.987

	
0.993

	
0.994

	
0.994

	
0.936

	
0.993

	
0.996

	
0.992

	
0.925

	
0.988

	
0.997

	
0.985

	
0.830

	
0.983




	
LRSID

	
0.997

	
0.993

	
0.988

	
0.992

	
0.996

	
0.995

	
0.989

	
0.994

	
0.995

	
0.990

	
0.974

	
0.989

	
0.994

	
0.987

	
0.910

	
0.987




	
Proposed

	
0.999

	
0.995

	
0.994

	
0.994

	
0.997

	
0.996

	
0.991

	
0.996

	
0.995

	
0.991

	
0.989

	
0.989

	
0.995

	
0.990

	
0.980

	
0.989










Table 3. PSNR (dB) and SSIM results of the test methods for different stripes with Gaussian mixed noise types.







	
Image

	
Methods

	
r = 0.3, intensity = 40

	
r = 0.5, intensity = [0, 50]

	
r = 0.7, intensity = [50, 100]




	
[image: there is no content] = 2.55

	
[image: there is no content] = 5.1

	
[image: there is no content] = 2.55

	
[image: there is no content] = 5.1

	
[image: there is no content] = 2.55

	
[image: there is no content] = 5.1




	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
IKONOS periodic stripes

	
Degrade

	
21.27

	
0.480

	
21.10

	
0.471

	
22.13

	
0.541

	
21.92

	
0.527

	
12.23

	
0.154

	
12.21

	
0.154




	
WAFT

	
34.21

	
0.962

	
31.70

	
0.894

	
33.28

	
0.959

	
31.15

	
0.892

	
29.74

	
0.939

	
28.68

	
0.874




	
SLD

	
33.95

	
0.958

	
31.42

	
0.889

	
34.16

	
0.964

	
31.54

	
0.896

	
28.26

	
0.920

	
27.32

	
0.853




	
GSLV

	
32.68

	
0.961

	
30.88

	
0.894

	
32.36

	
0.951

	
30.24

	
0.884

	
31.55

	
0.960

	
30.48

	
0.890




	
LRSID

	
33.76

	
0.965

	
32.63

	
0.943

	
34.60

	
0.967

	
33.21

	
0.945

	
29.39

	
0.949

	
28.87

	
0.927




	
Proposed

	
38.81

	
0.971

	
35.68

	
0.947

	
38.54

	
0.971

	
35.57

	
0.948

	
37.27

	
0.968

	
34.91

	
0.945




	
IKONOS nonperiodic stripes

	
Degrade

	
21.28

	
0.527

	
21.11

	
0.514

	
22.69

	
0.585

	
22.46

	
0.566

	
12.03

	
0.152

	
12.01

	
0.152




	
WAFT

	
31.14

	
0.949

	
29.71

	
0.884

	
34.92

	
0.961

	
32.07

	
0.894

	
23.95

	
0.916

	
23.65

	
0.854




	
SLD

	
32.16

	
0.954

	
30.13

	
0.885

	
34.97

	
0.962

	
30.34

	
0.889

	
26.82

	
0.945

	
25.96

	
0.877




	
GSLV

	
34.62

	
0.964

	
31.69

	
0.896

	
35.63

	
0.966

	
32.47

	
0.898

	
26.46

	
0.942

	
25.56

	
0.874




	
LRSID

	
34.75

	
0.965

	
33.25

	
0.943

	
36.56

	
0.969

	
34.26

	
0.945

	
26.76

	
0.828

	
26.56

	
0.819




	
Proposed

	
38.05

	
0.970

	
35.23

	
0.947

	
38.37

	
0.970

	
35.45

	
0.947

	
28.02

	
0.940

	
26.98

	
0.926











5.2. Real Data Experiments


In this section, six real-world test data sets are used in our experiments to further test the performance of the proposed method. The six data sets include: three periodic stripe images of cross-track-based imaging systems and three nonperiodic stripe images of push-broom-based imaging systems. The stripe images are chosen from MODIS image which can be downloaded online [55], and Hyperion image can be available from the website [58]. Before the destriping process, the gray values of each stripe image are scaled into the interval [image: there is no content].



(1) Nonperiodic stripes: It is shown that the data in Figure 8a, Figure 9a and Figure 10a are degraded by nonperiodic stripes. In particular, Figure 9a is highly contaminated by stripe noise. Figure 8, Figure 9 and Figure 10 show the destriping results of WAFT, SLD, GSLV, LRSID, and the proposed method for three nonperiodic stripe images. From the results, we can see that SLD method cannot remove noticeable stripes. The stripes in SLD destriping results, such as Figure 8c and Figure 10c, are significant. Figure 9c shows that SLD can remove most stripes, the main reason is that it assumes the rank-1 model for the stripes. However, this assumption is false for Figure 8a and Figure 10a. WAFT and GSLV methods can remove the most stripes and improve the visual impact of image. Nonetheless, some residual stripes still exist in the images. In Figure 8, Figure 9 and Figure 10e, it can be seen that LRSID method can effectively remove stripes and obtain satisfactory destriping results, but it also creates oversmoothing effect in Figure 9e. In comparison with the four methods, the proposed method can completely suppress the stripes and achieve a best visual quality while still well preserving the detailed information in the images.


Figure 8. Destriping results of nonperiodic stripes in Terra MODIS band 34. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 9. Destriping results of nonperiodic stripes in Hyperion band 211. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 10. Destriping results of nonperiodic stripes in Terra MODIS band 33. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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(2) Periodic stripes: Figure 11, Figure 12 and Figure 13 present the destriping results for the three periodic stripe images. The stripes are still obvious in Figure 12 and Figure 13c, which indicates that SLD method is not robust because favorable results are only obtained for specified images. WAFT method can remove noticeable stripes, but some residual stripes still exist in the image. Especially, WAFT, SLD, GSLV and LRSID methods fail to remove the stripes in the dark regions, and the burr-like stripes are still remained in this regions shown in Figure 12b–e. In contrast, the proposed method can completely remove stripes with few artifacts as shown in Figure 12f. In addition, Figure 14 shows the zoomed images for the red square regions in Figure 13, it can be clearly observed that the comparative methods hard to remove the stripes, and residual stripes are remained in the zoomed images. On the contrary, the proposed method can effectively remove stripes and preserve the detail structures in Figure 14f. In general, the results shown in Figure 11, Figure 12, Figure 13 and Figure 14f demonstrate that the proposed method outperforms the other four destriping methods, completely removing the stripes and effectively remaining the image details.


Figure 11. Destriping results of periodic stripes in Terra MODIS band 30. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 12. Destriping results of periodic stripes in Aqua MODIS band 5. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 13. Destriping results of periodic stripes in Aqua MODIS band 30. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 14. Zoomed results of Figure 13. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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(3) Quantitative and qualitative assessments: To illustrate the effectiveness of the proposed method for real data, we give the quantitative and qualitative analysis. For the quantitative evaluation, since without the ground-truth images as reference, we choose no-reference evaluation indices noise reduction (NR) [24,25,32] and mean relative deviation (MRD) [24,32] to evaluate the performance of the proposed method. NR is used to evaluate the ratio of stripe noise reduction in the frequency domain , and MRD is employed to assess the performance of preserving the original healthy pixel in stripe-free regions. In particular, to avoid the influence of external factors, five [image: there is no content] homogeneous regions are randomly chosen to calculate MRD, then obtain the mean MRD. Note that the larger values of NR and lower MRD mean the better quantitative results. The qualitative assessments include the mean cross-track profile and power spectrum.



The NR and MRD evaluation results are shown in Table 4. It is worth noting that the proposed method always obtains the highest NR values, except in the case of Hyperion band 211. Although LRSID obtains higher NR values than the proposed method, it pays oversmoothing effect shown in Figure 9e. As for MRD index, both SLD and the proposed method achieve quite satisfactory results, but SLD fails to remove stripe noise completely. Overall, the quantitative results of the proposed method are consistent for the visual performance. Moreover, comparing with other methods, the proposed method not only exhibits better destriping results, but also has the more excellent ability of preserving image structure information.



Table 4. Quantitative indices NR and MRD results of the test methods for real experiments.







	
Image

	
Index

	
WAFT

	
SLD

	
GSLV

	
LRSID

	
Proposed






	
Terra MODIS band 34

	
NR

	
1.18

	
1.14

	
1.28

	
1.66

	
1.70




	
MRD (%)

	
1.82

	
1.56

	
4.00

	
2.29

	
1.97




	
Hyperion band 211

	
NR

	
3.69

	
3.45

	
3.97

	
4.65

	
4.00




	
MRD (%)

	
4.93

	
4.14

	
9.22

	
4.16

	
3.90




	
Terra MODIS band 33

	
NR

	
1.17

	
1.21

	
1.49

	
1.74

	
1.97




	
MRD (%)

	
1.15

	
1.21

	
2.21

	
1.28

	
1.44




	
Terra MODIS band 30

	
NR

	
3.04

	
3.02

	
3.19

	
3.87

	
3.97




	
MRD (%)

	
2.44

	
2.25

	
2.09

	
2.73

	
2.07




	
Aqua MODIS band 5

	
NR

	
1.90

	
1.06

	
1.79

	
2.66

	
3.17




	
MRD (%)

	
1.44

	
1.06

	
6.24

	
2.22

	
1.85




	
Aqua MODIS band 30

	
NR

	
7.64

	
4.85

	
7.84

	
8.27

	
8.92




	
MRD (%)

	
3.61

	
3.43

	
4.14

	
3.23

	
2.63










Figure 15 and Figure 16 display the mean cross-track profiles of Terra MODIS band 34 and Hyperion band 211 as example, respectively. The rapid fluctuations in Figure 15a and Figure 16a illustrate the existence of stripes in original images. Taking Figure 15 as an example, it still can be seen that the curves show some mild fluctuations in Figure 15b–e, due to the destiping results obtained by WAFT, SLD and GSLV are still existing some residual stripes. Comparing with the results of WAFT, SLD and GSLV, LRSID and the proposed method provide smoother curves, which suggests that the stripes are completely removed as shown in Figure 8e–f.


Figure 15. Mean cross-track profiles of Figure 8. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 16. Mean cross-track profiles of Figure 9. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 17 and Figure 18 show the power spectrum of Aqua MODIS band 5 and Aqua MODIS band 30 shown in Figure 12 and Figure 13 as example, respectively. The horizontal axis denotes the normalized frequency while the vertical axis represents the mean power spectrum of all rows in the image. For better visualization, very high spectral magnitudes are not plotted. Due to exist detector-to-detector stripe noise, the impulses are clearly located at frequencies of 1/10, 2/10, 3/10, 4/10, and 5/10 cycles shown in Figure 17a and Figure 18a. After destriping by the five methods, the large impulses are strongly reduced. In Figure 17c and Figure 18c, light impulses that still exist due to the destriping results via SLD can be seen many obvious stripes in the images. Although WAFT, GSLV, and LRSID can completely reduce the large impulses, some residual stripes still exist in their results. In Figure 17f and Figure 18f, our method removes all the large impulses, meaning that all the stripes are perfectly removed in the image (see Figure 12f and Figure 13f).


Figure 17. Pow spectrums of Figure 12. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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Figure 18. Pow spectrums of Figure 13. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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6. Discussion


6.1. Experimental Results Analysis


This paper proposes a new convex optimization model for remote sensing images stripe noise removal. The author’s attention is focused on improving a methodology that is applicable to various stripe noise removal problem and can enhance the ability for removing stripes. The novelty of the proposed method consists in its high general versatility.



The experiments on three different types of stripe noise problems which involve different degradation degrees to show the potential of the proposed method for various destriping tasks. The high general versatility of the proposed method is achieved based on the image decomposition framework which can simultaneously consider the stripe noise and image priors.



From Table 1, Table 2 and Table 3, it can be clearly observed that the destriping performances of GSLV are far from satisfactory, as this destriping model assumes that the stripes noise satisfies sparse distribution, and it can not handle the structural feature of stripes noise and consider the spatial piecewise smooth structure of image component. For SLD and LRSID, they can obtain impressive destriping results, since SLD assumes the rank-1 structure model for the stripes, and LRSID enforces the low-rank prior on the structure of stripe noise. Moreover, we add the rank-1 stripes to the ground-truth images in simulated experiments, which can satisfy the condition for SLD and LRSID. WAFT method can achieve acceptable destriping results, since it can truncate stripe information more accurately in a transformed domain. Specifically, the results in Table 1, Table 2 and Table 3 show that the proposed method achieves the best PSNR and SSIM values in almost all experiments than those of the comparing methods. The reason is that the proposed method not only catches the structural characteristic, but also considers the directional feature of stripe noise.



Although SLD and LRSID obtain impressive destriping results in simulated experiments, they fail to apply various stripe noise removal problem in real-world stripe images. Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18 and Table 4 show the qualitative and quantitative assessments for various real-world striping data. For most real remote sensing images, the stripe noise rank-1 assumption will be violated. Therefore, SLD can not remove the stripe noise in real data shown in Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13c, which indicates that SLD method is not applicable to various stripe noise. LRSID effectively improves the destriping performance in most real data by utilizing the TV regularization to preserve the local details and low-rank prior to depict the structure of stripe noise. However, taking Figure 12 as an example, since there are dark fragments in the image, thus the low-rank prior fail to satisfy, which results in unsuccessful stripe noise removal result. Comparing with the four methods, the proposed method further improves the destriping performance by exploiting the directional and structural characteristics for the stripe noise and preserves the local details by incorporating the spatial piecewise smooth structure for the clear image. For example, in Aqua MODIS band 30 experiment, it can be seen that the compared methods fail to remove the stripe noise in the zoomed images shown in Figure 14, but the proposed method can effectively remove stripes and preserve the detail structures in Figure 14f.



In summary, from the extensive experiments to see, the proposed method can apply to various stripe noise removal problems. The main reason is that the image decomposition framework is studied and applied to stripe noise removal, which can simultaneously consider the stripe noise and image priors and precisely estimate them. Moreover, the TV regularization is used to explore the spatial piecewise smooth structure of clear image, and the unidirectional TV regularization and group sparsity regularization are introduced to depict the directional and structural characteristics, respectively. Although LRSID also removes stripe noise from image decomposition perspective, the low-rank prior fails to guarantee in real-world, and without considering the directional characteristic for stripe noise.




6.2. Analysis of the Parameters


There are four regularization parameters involved in our model (8): [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. The parameters rest with the specific stripe noise levels, and selecting suitable parameters is a common difficulty for many algorithms. Tuning empirically is a popular way for determining parameters. To evaluate and analyze the impact and optimal values of these parameters, we employ simulated Figure 5 experiment as an example and use the PSNR values as the evaluation measure. The best technique to select the optimal values of these four parameters is to find the global optimal value of PSNR in the four-dimensional parameter space. However, this will unavoidably need a lot of time and computation. To overcome this difficulty, we use a greedy strategy to select the parameters values one by one. This method may obtain a local optimum, but it can achieve favorable destriping performance, as shown in above experiment results.



(1) [image: there is no content] and [image: there is no content]: Figure 19 plots the experimental results of PSNR values as the function of the regularization parameters [image: there is no content] and [image: there is no content]. From Figure 19a, it can be observed that PSNR performs obvious improvement when [image: there is no content] is increased from 0 to 0.003. Moreover, we also observe that PSNR appears a slight reduction when [image: there is no content] further increasing. In general, the highest PSNR values is achieved with [image: there is no content] in [image: there is no content] nearby. Figure 19b presents the relationship between PSNR and the parameter [image: there is no content], it is shown that PSNR exhibits quite robustness with different values of [image: there is no content]. Therefore, we can conclude that the proposed method is robust with [image: there is no content] and a acceptable range of [image: there is no content]. In our implementation, since there are extensive experiments in this paper, and the different degradation degrees of stripe images in our experiments, we empirically set the parameter with the range [image: there is no content] for [image: there is no content] and [image: there is no content] in the range of [image: there is no content] for all the experiments.


Figure 19. The PSNR curves as function of the regularization parameters. (a) The relationship between PSNR and the parameter [image: there is no content] (with [image: there is no content], [image: there is no content], [image: there is no content]); (b) the relationship between PSNR and the parameter [image: there is no content] (with [image: there is no content], [image: there is no content], [image: there is no content]).
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(2) [image: there is no content] and [image: there is no content]: The relationship between PSNR and the parameters [image: there is no content] and [image: there is no content] are depicted in Figure 20a–b, respectively. From Figure 20a, it is clearly seen that PSNR is rather stable with parameter [image: there is no content] in the range of [image: there is no content]. Relatively speaking, the parameter [image: there is no content] value is lager than other parameters. This is mainly because that the directional property of the stripe component is significantly. In Figure 20b, it can be observed that the performance of the proposed method achieves the best for [image: there is no content], and it is insensitive when [image: there is no content] in the range of 0.005∼0.02. From the evaluation results above, we empirically set the parameter ranging as [image: there is no content], and [image: there is no content] in this paper.


Figure 20. The PSNR curves as function of the regularization parameters. (a) Relationship between PSNR and the parameter [image: there is no content] (with [image: there is no content], [image: there is no content], [image: there is no content]); (b) relationship between PSNR and the parameter [image: there is no content] (with [image: there is no content], [image: there is no content], [image: there is no content]).
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7. Conclusions


In this paper, we have proposed an image decomposition framework based optimization model for remote sensing images stripe noise removal. Different from most existing destriping methods, the image component and stripe component were simultaneously estimated in our work. In the proposed model, the image prior and stripe prior were integrated into a decomposition framework and complement each other, and the image component and stripe component can be solved alternately and iteratively. The TV regularization was employed to preserve the local details without stripe component and further remove the Gaussian noise, by exploiting the spatial structure information. Meanwhile, the unidirectional TV and group sparsity regularizes were utilized to constrain stripe component, which can effectively separate the precise stripe component from image component, by exploring the directional and structural characteristics. Both objective quantitative and subjective qualitative evaluations, including PSNR, SSIM, NR, MRD, the visual inspection, the mean cross-track profile, and the power spectrum, of the experiments have demonstrated that the proposed method achieved better destriping performance than state-of-the-art destriping methods, as well as preserving fine features of the images.



The results show that the proposed method is very competitive, but there are several aspects that could be improved. For instance, the method could be further improved by adaptively determining the regularization parameters. This requires further improvement in our future studies. Moreover, neural network based methods are popular and effective in image processing, such as image denoising and image super-resolution. Our future work will consider the neural network based methods for stripe noise removal of remote sensing images.
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