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Abstract: Endmember extraction (EE) is one of the most important issues in hyperspectral mixture
analysis. It is also a challenging task due to the intrinsic complexity of remote sensing images
and the lack of priori knowledge. In recent years, a number of EE methods have been developed,
where several different optimization objectives have been proposed from different perspectives.
In all of these methods, only one objective function has to be optimized, which represents a specific
characteristic of endmembers. However, one single-objective function may not be able to express all
the characteristics of endmembers from various aspects, which would not be powerful enough to
provide satisfactory unmixing results because of the complexity of remote sensing images. In this
paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to
tackle the problem of EE, where two objective functions, namely, volume maximization (VM) and
root-mean-square error (RMSE) minimization are simultaneously optimized. Experimental results on
two real hyperspectral images show the superiority of the proposed MODPSO with respect to the
single objective D-PSO method, and MODPSO still needs further improvement on the optimization
of the VM with respect to other approaches.

Keywords: hyperspectral remote sensing; endmember extraction; multi-objective; particle
swarm optimization

1. Introduction

Each pixel of hyperspectral image (HSI) has tens or hundreds of values corresponding to its
spectral bands, which can effectively represent the unique ground objects [1,2]. Hyperspectral images
have been successfully applied to a wide range of fields [3]. However, mixed pixels, constituting more
than one distinct material, may widely exist in the HSI due to the limited spatial resolution, which
makes one single pixel not pure and brings troubles to accurate precision analysis of HSIs [4–6]. Spectral
unmixing (SU) is an effective technique to resolve the mixed pixels problem, which decomposes the
mixed pixels into a collection of pure materials, named endmembers, as well as the corresponding
abundances [7]. SU has two tasks: EE and abundance estimation. It is usually assumed that there are
some pixels that contain only one kind of ground object in the image, and EE is to find out such pure
pixel for basic ground objects [8]. Abundance estimation is the process to estimate different proportion
of each endmember in a mixed pixel. This paper mainly focuses on the task of EE.

The studies of mixed pixels are mostly based on the linear mixture model (LMM) in which
each observed pixel in the image can be represented as the linear combination of a set of spectrally
pure constituent endmembers, weighted by the corresponding abundance coefficients that establish
the proportion of each endmember in the pixel [9]. Under the LMM, assuming that the image

Remote Sens. 2017, 9, 558; doi:10.3390/rs9060558 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9060558
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 558 2 of 17

scene is dominated by P kinds of distinct materials with L bands, mathematically, a pixel vector
y = [y1, y2, · · · , yL]

T can be written as:

y =
P

∑
i=1

siai + n = As + e (1)

where A = [a1, a2, · · · , aP] is an L× P endmember matrix, with each column being an endmember
signature vector. The number of endmember P is a pre-defined parameter, which can be estimated
by existing methods, and the commonly used ones are the virtual dimensionality (VD) estimation
method [10] and the hyperspectral subspace identification (HySime) method [11]. s = [s1, s2, · · · , sP]

T

is a P-dimensional column vector composed of abundance coefficients of the corresponding
endmembers for the pixel, and e represents the L × 1 additive observation noise and error vector.
Generally, there are various kinds of noise in HSIs, and this work assumed that the error is represented
by the additive white Gaussian noise [12]. The LMM for all N observed pixels can be expressed by the
matrix notation:

Y = AS + E (2)

where Y = [y1, y2, · · · , yN ], S = [s1, s2, · · · , sN ], and E = [e1, e2, · · · , eN ]. Due to physical constraints,
the abundance vector is subject to the nonnegative constraint (ANC, si ≥ 0, i = 1, 2, · · · , P) and the
abundance sum-to-one constraint (ASC, 1Ts = 1).

With the LMM, the geometrical interpretation of the HSI is that if e = 0 and there are pure
pixels of all kinds of materials in the image (pure pixel assumption), all the pixels are contained in a
simplex whose vertices are corresponding to the endmembers [13]. Based on the convex geometry
theory, the EE problem can be converted into finding the simplex vertices. Typical methods include
the pixel purity index (PPI) [14], N-FINDR [15], the simplex growing algorithm (SGA) [16], vertex
component analysis (VCA) [17], as well as some new algorithms proposed in recent years [18–22].
However, the classic algorithms such as N-FINDR and VCA have been shown easily affected by noise
and outliers [23]. One progress in recent years lies on the intelligent optimization methods to enhance
the EE results in real HSIs [8,23–27]. Most of these algorithms [8,23–25] consider the EE problem as a
combination optimization problem, and seek the optimal endmember combination that minimizes
the root-mean-square error (RMSE) between the original image and its remixed image. It is showed
that intelligent optimization methods such as D-PSO can get a smaller RMSE compared to N-FINDR
and VCA [24]. Different from the above methods, the MOAQPSO method in [26] takes the VM as the
objective function, and the experimental results showed the conflicts between the RMSE minimization
and the VM objective functions. Specifically, the two objective functions did not achieve their best
values for the same endmember combination. If one method got the optimal endmember combination
in terms of the volume value, then there would be another method superior to it in terms of the
RMSE value. From the previous studies [23,26,28], although the RMSE minimization-based methods
can get superior results than the VM-based methods in terms of the RMSE value (or the VM-based
methods can get superior results than the RMSE minimization-based methods in terms of the volume
value), neither of them can prove completely superior to the other when comparing each one of those
endmember spectra with the reference. The VM-based methods have an obvious advantage over the
RMSE minimization-based methods when extracting rare endmembers, while in VM-based methods
the noises and outliers located within the bounds of the data simplex may be identified incorrectly as
endmembers; the RMSE minimization-based methods are more robust to noises and outliers, while
they usually ignore the rare endmembers. Effective EE results can be achieved if there is a good match
between the characteristic expressed by the objective function and the characteristic of the real image.
However, no a priori knowledge is provided in practice, and different complex hyperspectral remote
sensing images usually have different characteristics. It is concluded that the generalization ability
of one single objective function is poor, and it may not be enough to provide satisfactory EE results
for various images. Hence, it is natural to simultaneously optimize several objective functions so as
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to capture the different data characteristics. In this article, the two widely used objective functions,
the VM [13] and the RMSE minimization [24] objective functions, are integrated to be simultaneously
optimized. In this way, the problem of endmember extraction is transformed into multiobjective
optimization (MOO) problem.

Some MOO methods have been suggested to solve various multiobjective problems [29–32],
in which the PSO-based MOO methods have attracted a lot of attention, and this kind of method is
chosen as the optimization method of this paper due to the simplicity and good search ability of PSO.
Although the existing MOO methods have provided us some ideas on how to solve MOO problems,
to our knowledge, no previous works are reported for EE problem, and the difficulty lies on that
the distribution characteristics of search spaces and solution spaces of different problems are usually
different, so existing methods that are effective for other problems may not work while solving the EE
problem. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO)
is proposed to perform the task of EE for hyperspectral images. The work includes three aspects:
(1) The update strategy of particles’ velocity and position in D-PSO method [24] is selected as the
basic searching strategy for the proposed MOO method. Since the search space and solution space
of the EE problem are both discrete, the particle’s position and the velocity must also be discrete
to ensure the validity of the solution, so the update strategy of the particles should be modified to
make it suitable to the EE problem. (2) For the proposed MOO method, the two objective functions
often conflict with each other during the process of optimization, which means that finding a solution
that optimizes both objective functions at the same time is almost impossible during the process of
optimization [33]. This brings a trouble for the acquisition of the particle’s personal best position (pbest)
and the population’s global best position (gbest) in the multiobjective searching space. The nondominated
sorting algorithm [34] is used to determine pbest and gbest according to the multiobjective function values.
(3) Different from the single objective optimization, there is more than one gbest for the population in the
MOO, and all of the non-dominated solutions are gbests. This brings the problem to determine which
gbest should be chosen when updating the velocity of each particle. To solve the problem, the Sigma
method is utilized to find best local guides for each particle of the population [35]. With all of the
above works, the multiobjective discrete particle swarm optimization algorithm (MODPSO) is finally
formed to perform the task of endmember extraction for hyperspectral images. Like common EE
methods, MODPSO is based on the pure pixel assumption, and needs the number of endmembers as a
priori parameter.

As far as we know, this is the first attempt to use MOO for the purpose of EE. The remainder of
this paper is organized as follows. Section 2 gives a detailed description of the proposed MODPSO
algorithm for EE. Section 3 reports the experimental results of the MODPSO method and several
representative single objective optimization EE algorithms. Conclusions are drawn in Section 4.

2. MODPSO

The proposed MODPSO method implements the task of EE through a MOO technique, and it aims
at finding the Pareto-optimal solutions for simultaneously optimizing multiple objective functions.
Hence, the establishment of the objective functions and the optimization strategy for the multiple
objective functions are two key elements of the MODPSO method. In the following, we will introduce
them in detail.

2.1. Objective Functions for MODPSO

Two kinds of objective functions are elaborately chosen for the proposed algorithm. One is the
maximum volume objective function, which is based on the convex geometry theory, and the other
is to minimize the RMSE obtained after reconstructing the hyperspectral scene by only assuming
the presence of the additive white Gaussian noise [12], like almost all the unmixing methods do [36].
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We have transformed the VM into minimizing the volume inverse, so the two objective functions are
both minimization problems. The two objectives are listed below:

f1 =
1

volume(A)
=

(P− 1)!∣∣∣∣∣det

[
1 1 · · · 1
a1 a2 · · · aP

]∣∣∣∣∣
(3)

f2 = RMSE
(
Y, Ŷ

)
=

1
N

N

∑
i=1

√
1
L
‖yi − ŷi‖2

2 (4)

where L is the spectral dimensionality of the HSI, N is the total number of pixels, P is the number of
endmembers, A is the endmember matrix, and Y and Ŷ are the original image and the remixed image,
respectively. The abundances used to calculate Ŷ are estimated by Equation (5) rather than the fully
constrained least squares method (FCLS) for the sake of efficiency:

Ŝij = max

(
0,
((

ATA
)−1

ATY
)

ij

)
, 1 ≤ i ≤ P, 1 ≤ j ≤ N (5)

In most cases, these two objective functions will not obtain their optimal solution for the
same combination of endmembers, for considering that there usually exists noise or outlier in real
hyperspectral images. The strategy for optimizing the multiple objective functions in MODPSO will
help to find a number of endmember combinations, and none of the obtained solutions can be further
improved on the objective value without degrading another.

2.2. The Updating Strategy of the Particle’s Velocity and Position in MODPSO

MODPSO use particles to search in the feasible solution space. Each particle has two properties:
the position and the velocity. A particle moves along a trajectory depicted by its position and velocity
in the search space, to find an optimal solution. For the EE problem, the search space is discrete,
the particle’s position and the velocity must also be discrete to ensure the validity of the solution.
The Binary coding method used in the D-PSO method is employed here to make particles be able to
search in the discrete feasible solution space. The position of the ith particle at iteration time t can be
written as:

Xt
i =

{(
x1, · · · , xj, · · · , xN

)∣∣xj ∈ {0, 1} ,
N

∑
j=1

xj = P

}
(6)

where xj = 1 if yi ∈ A and xj = 0 if not. Explicitly, for the position of the ith particle Xt
i , all the

elements of it are composed of 0 and 1, and each element xj(j = 1, . . . , N) in it represents the attribute of
the corresponding pixel yj(j = 1, . . . , N), if the value of xj is 1, the pixel yj is selected as an endmember;
otherwise, the pixel yj is not selected as an endmember. Hence, P elements in each particle’s position
are 1, and the remaining elements are 0.

Vt
i is used to specify the ith particle’s velocity at time t. pbestt

i and gbestt are used to specify the
ith particle’s personal best position and all population’s global best position in history before time t.
The updating functions of position and velocity are:

Xt+1
i = Xt

i + Vt
i

Vt+1
i =

{
T
((

pbestt
i − Xt

i
)
+
(

gbestt − Xt
i
))

, rand() ≥ p
R
(
Xt

i
)
, rand() < p

(7)

where T and R are both random selection functions. The velocity obtained by T is based on
self-experience and social experience, while R generates velocity without considering past experiences.
Both T(X) and R(X) are vectors with the same dimension of X, and the calculation for them can be
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divided into three steps: (1) Predefine a random selection probability p, and randomly generate a
number between 0 and 1. (2) If the generated number is greater than or equal to p, select T to obtain
the velocity. First, we find the positive elements and the negative elements of X, respectively. Then,
randomly select one element from all the positive elements of X, and set the element of T(X) with the
same position of this randomly select one to 1. Next, randomly select another element from all the
negative elements of X, and set the element of T(X) with the same position of this randomly select one
to −1. The final velocity is obtained by setting the rest of the elements of T(X) to 0. (3) If the generated
number is less than p, select R to obtain the velocity. First, we find the zero elements and the positive
elements of X respectively. Then, randomly select one element from all the zero elements of X, and set
the element of R(X) with the same position of this randomly select one to 1. Next, randomly select
another element from all the positive elements of X, and set the element of R(X) with the same position
of this randomly select one to -1. The final velocity is obtained by setting the rest of the elements of
R(X) to 0. The acquisition of pbestt

i and gbestt will be introduced in the following part.

2.3. Strategy for Updating pbest and gbest for Optimizing the Multiple Objective Functions

Considering the minimization optimization problem, a MOO problem is of the form:

min f (z) = [ f1(z), f2(z), · · · , fm(z)] (8)

where the decision vectors z belong to the feasible space formed by some constraint functions. m(≥ 2)
conflicting objective functions are to be minimized simultaneously. A decision vector z1 is said to
dominate z2 if:

∀i ∈ [1, 2, · · · , m] fi(z1) ≤ fi(z2), ∃ fi(z1) 6= fi(z2) (9)

A vector z1 is called Pareto-optimal if another z2 that dominates it does not exist. Figure 1 shows
the Pareto-optimal solutions when m = 2. There is no single optimal solution in MOO, but a set of
optimal solutions. The set containing all the optimal solutions is known as the Pareto front, and the
task of MOO is to achieve the Pareto front. It is obvious that the solutions in the Pareto front are
non-dominated solutions.
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One main step in MODPSO is to determine the personal and global best positions. They are easy to
be determined in single objective optimization by selecting the position best fits the objective function.
However, in MOO problems, it is hard to determine which position is better if the solutions represented
by two positions are not dominated by each other. To handle this problem, the nondominated sorting
algorithm [21] is used to update pbest and gbest. Among the population, different particles are
compared by the concept of Pareto domination. If the solution of one particle is not dominated by that
of all the other particles, then it is a Pareto-optimal solution.



Remote Sens. 2017, 9, 558 6 of 17

It should be noted that there is not only one gbest in MOO, all non-dominated solutions in the
optimization process are taken as gbest. For the update of gbest, all the pairwise comparisons of the
solutions are conducted by Pareto domination after each iteration, and all the non-dominated solutions
are kept as gbest. A set named global best archive (GBA) is used to store all these non-dominated
solutions (gbest).

For the update of pbest, the newly generated particle’s position Xt+1
i is compared with the pbest in

the history by Pareto domination, if Xt+1
i dominates pbestt

i , we set pbestt+1
i = Xt+1

i ; if pbestt
i dominates

Xt+1
i pbestt+1

i = pbestt
i ; if none of Xt+1

i and pbestt
i dominates the other one, then randomly choose one

from them as pbestt+1
i , as shown in Figure 2.
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Figure 2. The update of the particle’s personal best position. The blue point stands for the current pbest
of one particle, and other points are possible locations of the particle at the next time. The plane can
be divided into four parts centered on the pbest. If the particle appears in the area where the purple
point located, then the pbest of the particle should remain unchanged; if the particle appears in the area
where the red point located, then the pbest of the particle will be updated by the red point; and if the
particle appears in the area where the cyan points located, then randomly select one point as the pbest.

2.4. Choose the Best Local Guide for Each Particle

In single objective optimization, there is only one gbest for the population, so all of the particles
use the same gbest to generate the new velocity. However, we have stated that there is not only one
gbest in MOO, all the solutions in GBA are taken as gbest. This brings an additional problem of which
gbest solution in GBA should be used to generate the velocity for each particle. To solve this problem,
The Sigma method [35] is utilized to select one best local guide gbestt

i from GBA for the ith particle.
In the Sigma method, a value σi is assigned to each point ( f1,i, f2,i), and the σ value is defined as:

σ =
f 2
1 − f 2

2
f 2
1 + f 2

2
(10)

According to Equation (10), all the points on the line f2 = a f1 have the same σ values.
By considering the objective space, finding the best local guide gbestt

i among GBA for the particle i at
iteration time t is as follows: in the first step, the σ values of each position in GBA is assigned. In the
second step, σi for particle i is calculated. Then the distances between σi and all the σ values of GBA
are calculated. Finally, the kth position in GBA which has the minimum σ value distance with particle i
is selected as the best local guide gbestt

i . Figure 3 shows this method for a two objective example.
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2.5. The Framework of MODPSO for EE

The overall process of the proposed MODPSO for EE is shown in Figure 4.
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3. Experiments

Two real HSIs are used to test the performance of the proposed method. N-FINDR [15], VCA [17]
and D-PSO [24] are comparison algorithms. There are two reasons for selecting these three algorithms
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as comparing algorithms. One reason is that N-FINDR and VCA are two of the most popular
EE methods, and D-PSO is a representative method of the intelligent optimization based methods.
Furthermore, the objective functions used in MODPSO have been used in these three methods, so the
validity of the proposed method can be checked by comparing the objective values of these methods.
For both D-PSO and MODPSO, the maximum iteration number was set to 300, the number of particles
was set to 20, the random selection probability was 0.2, and the particles were randomly initialized.

3.1. HYDICE Washington DC Dataset

The first real image dataset was collected by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor over Washington DC, and a subset of 150× 150 was extracted from the
original image for this experiment. In the Washington DC dataset, there are 210 bands, which cover
the range of 0.4–2.5 um. Low-SNR and water-vapor absorption bands were removed before unmixing,
leaving 187 bands for the experiment. Figure 5 shows the false-color image composed of R-band 64,
G-band 52, and B-band 36. There are six distinct materials in the image [37], so the endmember number
is set to six.
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Since there are no standard references of endmembers and abundances for the real image, we
cannot directly conduct quantitative evaluation for the extracted endmembers. Considering the
following: (1) N-FINDR and VCA try to find the simplex vertices, it is suitable to use the volume of the
extracted endmembers to evaluate the searching ability of them; (2) D-PSO searches the endmember
combination that minimize the RMSE; and (3) MODPSO try to maximize volume and minimize RMSE
simultaneously, two metrics are used to evaluate the performance. (1) The volume inverse: obtained
by f1. (2) RMSE: Obtained by f2. The smaller f1 and f2 are, the better performance the method has.

Figure 6 shows the objective function value as a function of the number of iteration times of
MODPSO for the Washington DC dataset. It can be seen that the proposed method can converge to a
stationary point when reached the maximum iteration.
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Figure 7a shows the obtained GBA by MODPSO, ten non-dominated solutions are finally
remained. The number of solutions in GBA is less than the number of particles, which indicates
that some different particles converge to the same solution. We can see in these results that no solution
has the minimum f1 and f2 values simultaneously. The non-dominated solution with the minimum
f1 has the largest f2 and vice versa. The ten results are uneven distributed in the objective function
value space, they can be easily divided into three parts: three solutions have relatively bigger f2 and
smaller f1, four solutions have relatively bigger f1 and smaller f2, the remaining three solutions have
the best tradeoff between the two objective functions. We have also calculated f1 and f2 values of the
other three methods according to their extracted endmembers. The results are put together with that
of MODPSO in Figure 7b, and the numerical results are shown in Table 1 as well as the computation
time of them. It can be seen that solutions of MODPSO dominate the result of D-PSO, so the search
ability of MODPSO is better than that of D-PSO. VCA and N-FIDNR achieved smaller f1 and larger
f2 than MODPSO, which indicates that the results with bigger volume are obtained by VCA and
N-FINDR, while the RMSE generated by them is larger. Since the results by VCA and N-FINDR are
non-dominated solutions compared with the results by MODPSO, it tells us that the Pareto front found
by MODPSO is not completed. In terms of the computation time, the two conventional EE methods are
more efficient than the two intelligent optimization based methods, especially for the VCA method.
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Table 1. The results of objective function values and computation time for the Washington DC Dataset.

f 1 = 1/volume (×10−3) f 2 = RMSE Time (sec)

MODPSO

1.553 0.0335

1556.736

1.585 0.0331
1.692 0.0321
2.017 0.0256
2.027 0.0254
2.064 0.0253
4.525 0.0248
4.683 0.0246
4.774 0.0239
4.950 0.0237

D-PSO 20.762 0.0378 1500.106

N-FINDR 0.414 0.0414 122.118

VCA 0.499 0.0471 0.936

For the HYDICE Washington DC dataset, the ground features are easy to distinguish by visual
interpretation; we manually select the endmembers of the six kinds of materials from the image by
referring to [37]. These spectra are taken as a rough reference to be shown together with the extracted
spectra. The extracted endmembers by the four algorithms and manually selected reference spectra are
shown in Figure 8, where the shown endmembers by MODPSO are the union set of the endmembers
in GBA. Among the ten sets of results in GBA, there are twelve different endmember spectra. We can
see from Figure 8 that N-FINDR and VCA missed the street’s spectra and extracted two different
paths’ spectra. The spectral shapes of the extracted endmembers by the four methods are similar to the
shapes of the reference spectra, while there are some differences in the scale, the endmember spectra by
D-PSO and MODPSO are more close to the manually selected reference spectra than that of N-FINDR
and VCA.
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Figure 8. Endmember spectra manually selected from the image and automatically extracted by the
four methods for the Washington DC dataset: (a) grass; (b) path; (c) roof; (d) street; (e) tree; and
(f) water.

3.2. HYDICE Urban Dataset

The second real dataset was the Urban HYDICE HSI, as shown in Figure 9 by R-band 64, G-band 52,
and B-band 36. This image is of size 307× 307 and has 210 spectral bands in the range of 0.4–2.5 um.
A total of 162 bands remained after removing bands 1–4, band 76, band 87, band 111, bands 101–111,
bands 136–153 and bands 198–210. The number of endmembers is set to six [38].
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Figure 9. The Urban hyperspectral dataset.

Figure 10 shows the objective function value as a function of the number of iteration times of
MODPSO for the Urban dataset. It can be seen that the proposed method can converge to a stationary
point when it reached the maximum iteration, and the volume value reached the stationary point
earlier than the RMSE value.
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dataset: (a) the volume inverse; and (b) RMSE.

The Pareto front by MODPSO is displayed in Figure 11a. Eleven non-dominated solutions finally
remained, which indicates that some different particles converge to the same solution. We can see
that a more uniform distribution of the non-dominated solutions is obtained by the Urban image than
the Washington DC image. The comparison results of four methods in Figure 11b and Table 2 are
similar to that of the Washington DC image: most of solutions of MODPSO dominate the result of
D-PSO; MODPSO and D-PSO have results with smaller RMSE than VCA and N-FINDR; and VCA and
N-FIDNR obtained bigger volume than MODPSO and D-PSO, which demonstrate the validity of the
MODPSO method. Meanwhile, the MOO result can be further improved. Seen from the computation
time, VCA is the most efficient method, while MODPSO and D-PSO are both time consuming.

The extracted endmembers and manually selected reference spectra of the Urban image are shown
in Figure 12. Half of the endmembers extracted by N-FINDR and VCA and one endmember extracted
by MODPSO cannot be matched with the manually selected reference spectra. Only the N-FINDR
algorithm extracted the sixth endmember, and the spectrum of the endmember is not so close to that
of the reference endmember. In general, the endmembers extracted by D-PSO and MODPSO are better
matched than that of N-FINDR and VCA.
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Figure 11. The results of the Urban image: (a) the Pareto front obtained by MODPSO; and
(b) comparison of the results by four methods.

Table 2. The results of objective function values and computation time for the Urban Dataset.

f 1 = 1/volume f 2 = RMSE Time (sec)

MODPSO

0.0054 0.0568

5544.243

0.0069 0.0548
0.0073 0.0482
0.0165 0.0474
0.0170 0.0417
0.0225 0.0415
0.0284 0.0376
0.0294 0.0367
0.0378 0.0365
0.0435 0.0358
0.0459 0.0356

D-PSO 0.0625 0.0522 5324.252

N-FINDR 0.0001 0.1934 502.744

VCA 0.0002 0.1291 3.588
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and (g) spectra unmatched with the reference endmembers. 

Figure 12. Endmember spectra manually selected from the image and automatically extracted by the
four methods for the Urban dataset: (a) Road#1; (b) Roof#1; (c) Grass; (d) Tree; (e) Road#2; (f) Roof#2;
and (g) spectra unmatched with the reference endmembers.
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4. Discussion

4.1. Review of Experimental Results

Experimental results of the Washington dataset showed that N-FINDR and VCA failed to extract
the fourth endmember, which resulted in a larger RMSE than the other two methods, while the volumes
obtained by N-FINDR and VCA were much larger than the other two methods. Considering the
fact that one of the objective functions of MODPSO is VM, we can infer that the searching ability of
MODPSO needs further improvement. In term of RMSE, MODPSO was superior to the other methods.
Experimental results of the Urban dataset showed that N-FINDR and VCA extracted several outliers,
which indicated that they were easy to be affected by outliers. MODPSO and D-PSO were more robust
to these interferences. We can infer that the RMSE objective function can play a key role when there are
interferences in the image. In both experiments, MODPSO can find better solution than D-PSO. This
may because the MOO mechanism of MODPSO (several gbest in MODPSO compared to one in D-PSO)
increased the diversity of particles and alleviated the premature convergence problem of D-PSO, thus
leading to a better optimization result. Time costs of the methods showed that the two intelligent
optimization based methods were time consuming, which mainly resulted from the calculation of the
RMSE objective function.

4.2. Generalization of MODPSO

In this work, MODPSO assumed that the error is represented by the additive white Gaussian
noise. In fact, there may have mixed noise in the HSI such as impulse noise, multiplicative noise or
vertical line strips [36,39]. It should be noted that the MODPSO method can also be applied when
considering other types of noise, as long as an objective function is built according to a certain type of
noise or mixed noise, the RMSE function can be replaced by the newly built one.

5. Conclusions and Future Work

This paper proposed a multiobjective optimization method MODPSO for endmember extraction.
In MODPSO, the volume maximization and RMSE minimization objective functions are simultaneously
optimized, and the multiobjective optimization framework is especially designed to solve the
multiobjective endmember extraction problem. Instead of obtaining one unique solution for one
implementation like other endmember extraction methods, the result by MODPSO is a set of
non-dominated solutions, and they can be regarded as solutions with different tradeoffs between
two objective functions. The experimental results show that the search ability of MODPSO method
is superior to that of the D-PSO method, and it can obtain result with smaller RMSE than N-FINDR
and VCA. However, the results of N-FINDR and VCA are not dominated by that of MODPSO for the
reason that the volume obtained by them is bigger than that of MODPSO, which indicates that the
Pareto front obtained by MODPSO is not complete, a part of non-dominated solutions are not founded
by them, which revealed the limitation of the MODPSO’s search ability.

Considering the future work, in our opinion, two contents are worthy of study. One is that there
exist other characteristics of the hyperspectral image that are not considered in this work, so the
objective functions can be replaced by others to study the effect of different combinations of objective
functions on the endmember extraction result. The other is that the multiobjective optimization method
with better search ability can be studied to achieve a Pareto front with higher quality.
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